

Università degli Studi di Bergamo

RETI INTERNET MULTIMEDIALI

Compressive Video

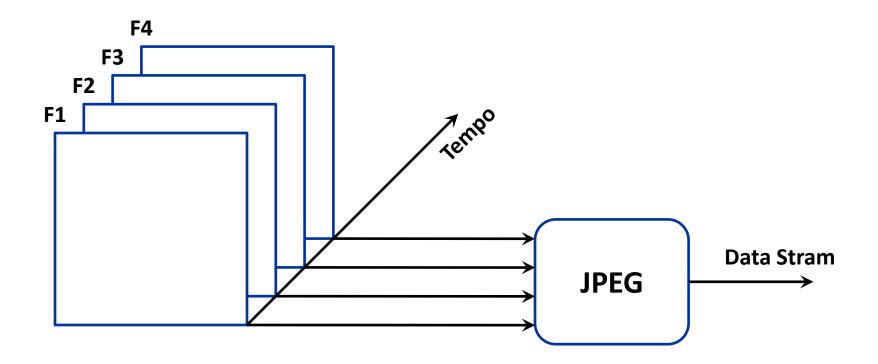
- I formati di compressione per contenuti audio e video intruducono nuovi elementi per aumentare il rapporto di codifica
 - Codifica nello spazio e nel tempo
 - Coordinamento per la sincronizzazione audio e video
- Esistono numerosi standard specifici per diverse applicazioni multimediali
 - Internet streaming (Digital TV broadcasting, VoD, etc.)
 - Video conference

Standard di compressione video

Standard	Applicazione	Rate	Raster
Motion JPEG	Camcoders	30 Mbps	
Digital Video	Camcoders	25 Mbps	720 x 480
H.261	Video Interattivo su ISDN	64 kbps	
H.263	Video Interattivo su reti a pacchetto	64-384 kbps	
MPEG-1	Streaming Video (VCR quality)	Fino 1.5 Mbps	352 x 240
MPEG-2	Streaming Video (Broadcast quality)	4-15 Mbps	704 x 480
MPEG-4 (H.26L)	Video su dispositivi low-rate	> 32 kbps	
HDTV	Televisione ad alta qualità	20 Mbps	1920 x 1080

- Standard delle dimensioni delle immagini
 - Common Intermediate Format (CIF)

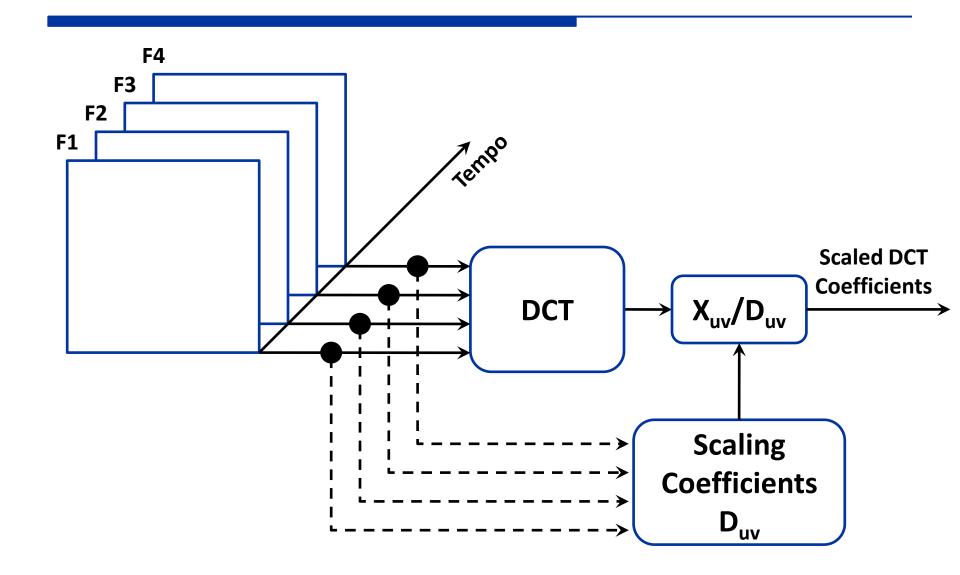
Formato Immagine	Matrice Luminanza (HxV)	Bit Rate a 30 fps
SQCIF	128 x 96	4.4 Mbps
QCIF	176 x 144	9.1 Mbps
CIF	1352 x 288	36.5 Mbps
4CIF	704 x 576	146 Mbps
16CIF	1408 x 1152	584 Mbps

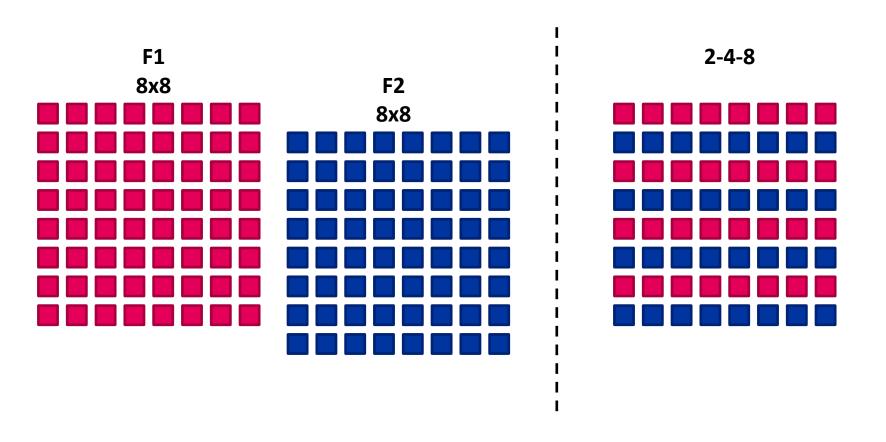

VIDEO COMPRESSO

Motion JPEG, Digital Video

Motion JPEG

- Motion JPEG è una semplice applicazione di JPEG per realizzare video
- Si codifica ogni frame della successione che rappresenta il video con uno degli algoritmi JPEG
- Il rapporto di compressione è molto contenuto in quanto non si sfrutta il contenuto informativo ridondante presente in frame successivi (codifica iterframe)
 - Es. 30 fps → 30Mbps
- L'implementazione è molto semplice in quanto si possono riutilizzare algoritmi e strutture dati di JPEG
 - Semplifica editing, memorizzazione, reverse play


Motion JPEG


Digital Video

- Digital Video (DV) è una versione migliorata di Motion
 JPEG utilizzato da videocamera
- Viene eseguita un'ottimizzazione locale della tabella di quantizzazione utilizzata per i coefficienti della DCT per codificare più efficacemente parti del frame
- Utilizza come la televisione frame composte da linee interlacciate per migliorare la velocità di visualizzazione
- Produce un flusso dati con un rate di 25 Mbps, che aumenta fino a 29 Mbps con l'aggiunta di tecniche di correzione degli errori

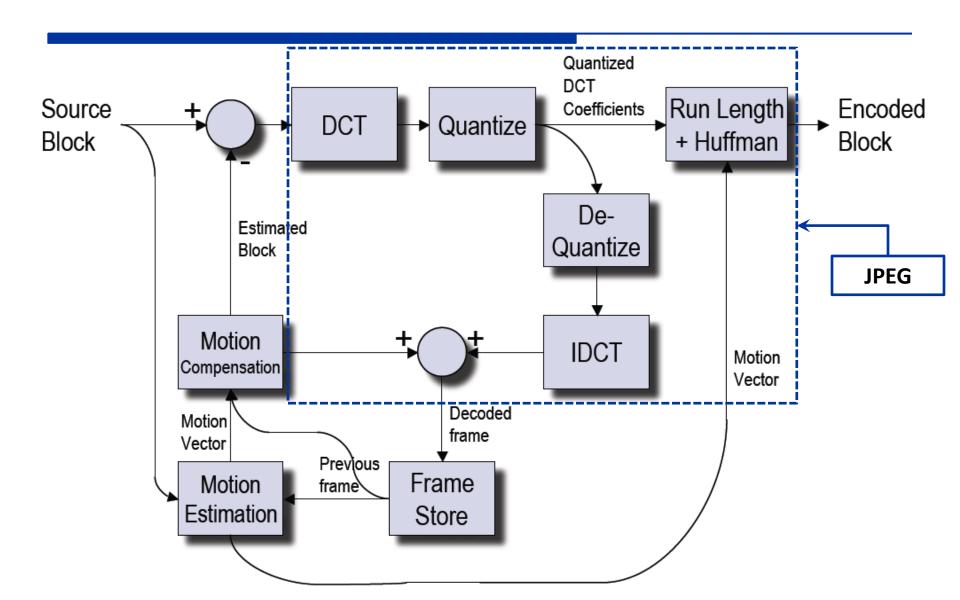
Digital Video

Digital Video

VIDEO CONFERENZA

H.261, H.263

- H.261 e H.263 sono due standard ITU-T per applicazioni di videoconferenza real-time in reti con rate di trasmissione contenuti
 - H.261 per connessioni a rate costante ISDN
 - H.263 per reti a pacchetto
- Entrambi utilizzano risoluzioni minori rispetto a MPEG-1 e MPEG-2
- Entrambi I formati di codifica appartengono ai gruppi H.320 e H.323 definiti per multimedia conference


- A differenza degli standard MPEG, H.261 e H.263 sono stati sviluppati per applicazioni interattive bidirezionali
 - I riardi in entrambe le direzioni devono essere comparabili e contenuti
 - Non si fa alcuna assunzione sulla tipologia di canale di trasmissione (full-duplex, half-duplex, etc.)
- La complessità implementativa per la codifica e la decodifica deve rimanere contenuta
 - Codifica e decodifica simmetriche
 - DCT per compressione delle immagini e codifica motioncompensated inter-frame

H.261

- H.261 supporta due tipi di risoluzione: CIF e Quarter CIF (QCIF)
 - Le componenti di crominanza C_r e C_b hanno una risoluzione dimezzata rispetto alla luminanza Y
- Il frame rate nominale di H.261 è pari a 29.97 fps, riducibile fino a una fattore 4

Resolution	Component	Horizontal	Vertical
CIF	Luminanza	352	288
	Crominanza	176	144
QCIF	Luminanza	176	144
	Crominanza	88	72

H.261 - Codifica

H.261 - Codifica

- I dati che compongono l'immagine sono elaborati in macro-blocchi:
 - 4 blocchi 8x8 dei coefficienti di luminanza Y
 - 1 blocco dei coefficienti di crominanza C_r
 - 1 blocco dei coefficienti di crominanza C_h
- I macro-blocchi sono soggetti a due tipi di codifica:
 - Intra-frame: codifica spaziale
 - Inter-frame: codifica temporale (motion prediction)

- Ognuno dei blocchi 8x8 di luminanza e crominanza
 - DCT: coefficienti trasformati con DCT
 - Quantizzazione: output della DCT quantizzato
 - Entropy coding: coefficienti quantizzati vengono codificati utilizzando uno schema lossless
- Il processo è del tutto simile a quello eseguito da JPEG sequenziale
- Una copia di ogni blocco viene ricostruita per ricreare una copia del frame originale
 - Rescaler: inverso della quantizzazione
 - IDCT: inverso della DCT

- La replica di ogni blocco ricostruita a partire dai coefficienti quantizzati è inserita nel frame store
- Dalle repliche dei blocchi si ricrea una replica del frame originale
- La replica del frame originale viene uilizzata come riferimento dall'algoritmo di predizione per predire il successivo frame
- I dati trasmessi alla destinazione sono quindi composti da
 - Coefficienti della DCT
 - Dati di movimento generati dall'algoritmo di rpedizione

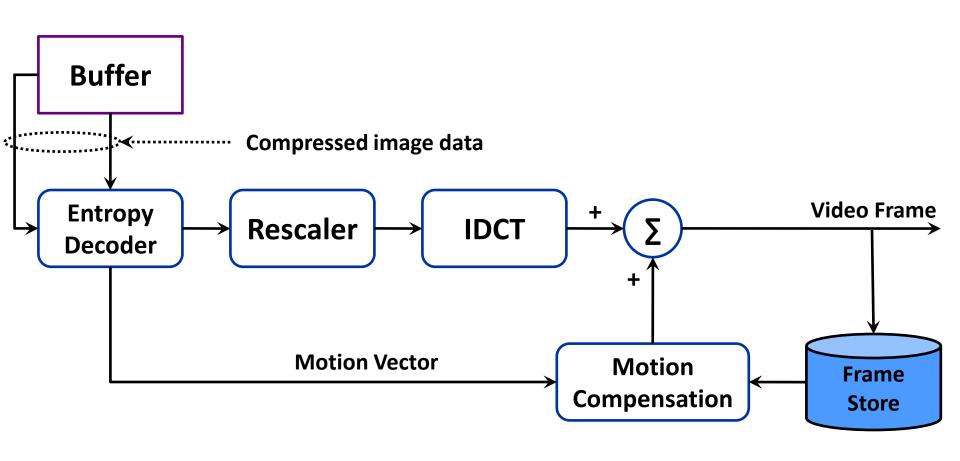
- La compressione Inter-frame si basa sulla compressione Intra-frame
- Si utilizza come dati da codificare la differenza tra il frame corrente e quello immediatamente precedente piuttosto dei dati grezzi
- Compressione Inter-frame
 - Calcola le differenze tra blocchi dei due frame
 - Utilizza motion estimation per codificare cambiamenti minimi come un vettore
 - DCT Quantizzazione Entropy Coding sul frame che rappresenta le differenze

- Generalmente l'informazione contenuta nel frame ottenuto dalla differenza di due frame successivi è nettamente inferiore a quella contenuta nel secondo frame
 - $F_D = F_2 F_1$
- Il movimento aumenta le differenze tra due frame successivi
 - Codificare il movimento come un vettore
 - Codificare le differenze del blocco spostato con il classico schema DCT- Quantizzazione – Entropy Coding

- Per tutti i frame successivi al primo, si esegue una predizione di ogni nuovo macro-blocco con uno dei macroblocchi nel frame precedente
- L'algoritmo di motion-compensation si occupa di determinare quale macro-blocco del precedente frame rappresenta il miglior predittore per il frame corrente
 - Macro-blocco composto da 256 (16x16) campioni di luminanza e da 2x64 (2x8x8) di crominanza
- H.261 definisce il miglior predittore come quel macroblocco del frame precedente che minimizza la differenza tra i macroblocchi del frame corrente e quelli del frame precedente

- Per ogni macro-blocco viene generato un vettore di movimento
- L'algoritmo di predizione deve cercare tra tutti i macro-blocchi del frame precedente quelli che occupano una posizione vicina rispetto al macroblocco del frame corrente
 - Non è detto che il macroblocco precedente scelto per codificare il vettore indichi del movimento
 - La ricerca del miglior predittore è un'operazione complessa (richiede molta potenza di calcolo)
 - Lo standard non specifica come eseguire la ricerca

- L'algoritmo di predizione commette un errore di predizione
 - Errori dei valori di luminanza e crominanza tra il frame corrente e quello predetto
 - Errore codificato utilizzando lo schema DCT Quantizzazione – Entropy Coding
- Il valore dell'errore determina l'informazione trasmessa:
 - Basso (ε < th₁): solo vettore di movimento
 - Medio (th₁ < ϵ < th₂): vettore di movimento ed errore di predizione
 - Alto $(\varepsilon > th_2)$: solo intra-frame (motion compensation controproducente)


H.261 – Buffer Management

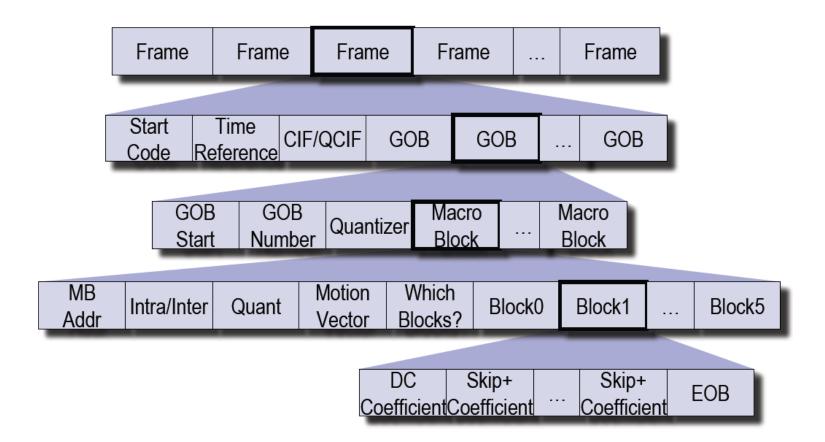
- La quantità di informazione del flusso video codificato varia nel tempo (tra frame successivi)
 - Complessità del frame
 - Movimento
- Il canale su cui viene trasmesso il flusso video ha un rate di trasmissione costante (CBR)
 - Il buffer può essere soggetto a overflow se non gestito correttamente

H.261 – Buffer Management

- L'algoritmo di gestione del buffer evita l'overflow
- L'algoritmo agisce sugli intervalli di quantizzazione modificando opportunamente i coefficienti di quantizzazione
 - Se la dimensione del buffer supera una determianta soglia t₁, la dimensione degli intervalli si allarga
 - Aumenta il rapporto di compressione
 - Diminuisce la qualità del video
 - Se la dimensione del buffer scende sotto una soglia t₂, la dimensione degli intervalli si riduce
 - Diminuisce il rapporto di compressione
 - Aumenta la qualità del video

H.261 - Decodifica

H.261 - Decodifica


- Decodifica esegue le operazioni inverse della codifica in ordine inverso
- Vengono generati 2 frame
 - I macro-blocchi degli errori sono decodificati utilizzando lo schema Entropy Decoding – Rescaler – IDCT per generrare la replica del frame delle differenze
 - Utilizzando l'ultimo frame decodificato e il vettore di movimento contenuto nel frame corrente si genera un frame di riferimento (motion-compensated reference frame)
- La somma dei due frame precedenti permette di generare una replica del frame originale

H.261 – Codifica Bidirezionale

- Finora si è considerata solo un tipo di codifica unidirezionale
 - La predizione è eseguita rispetto al frame precedente
- Si può migliorare la predizione?
 - Predizione bidirezionale
 - Utile se nel frame successivo un macro-blocco viene nascosto da un oggetto in movimento
- Compressione Bidirezionale
 - Trova il best-mach macro-block tra i macroblocchi del frame precedente e successivo
 - Migliora il rapporto di compressione
 - Aumenta il ritardo e la complessità degli algoritmi

H.261 - Bitstream

Formato del flusso video codificato (bitstream)

H.261 - Bitstream

- Struttura gerarchica
 - Ogni frame contiene molti GOBs
 - Ogni GOB contiene a sua volta molti macro-blocchi (4:2:0)
 - Ogni macro-blocco contiene i 6 blocchi 8x8 di luminanza e crominanza e il vettore di movimento
 - Ogni blocco contiene i coefficienti della DCT codificati
- GOB (Group of Blocks)
 - Contiene diversi macro-blocchi
 - Utilizzato per la sincronizzazione con il flusso video

H.263

- Evoluzione di H.261
 - Definito per applicazioni con bassi rate di trasmissione
 - Utilizzato in applicazioni Internet-based con vincoli stringenti sul rate di trasmissione (es. Modem 28.8-56 Kbps)
- Il progetto è derivato da H.261, ma sono introdotte nuove tecniche per migliorare il rapporto di compressione

H.263

- H.263 utilizza half-pixel prediction per I vettori di movimento (a differenza della full-pixel utilizzata da H.261)
 - Il vettore di movimento può cadere tra due pixel (il cui valore è ottenuto dalla loro interpolazione)
- Sono definiti i seguenti 4 miglioramenti
 - Unrestricted Motion Vectors (vettori di movimento che possono cadere oltre la fine del frame)
 - Arithmetic Coding
 - Motion vectors separati per ogni blocco di luminanza all'interno di un macroblocco
 - Bidirectional Coding
- Si utilizzano tutti i 5 formati CIF

Approfondimenti

Links:

http://www.itu.int/rec/T-REC-H.261-199303-I/en

Articoli:

- Ming Liou, "Overview of the px64 kbits/s Video Coding Standard". Communications of the ACM, vol. 34, no. 4, pp. 59-63, April 1991.
- D. LeGall, "MPEG: a Video Compression Standard for Multimedia Applications". Communications of the ACM, vol. 34, no. 4, pp. 46-58, April 1991.