
Triggers
Exercises

2

SQL:1999 Trigger Syntax

create trigger TriggerName
{before | after}
{ insert | delete | update [of Columns] } on
Table
[referencing

{[old table [as] AliasOldTable]
 [new table [as] AliasNewTable] } |
{[old [row] [as] NameTupleOld]
 [new [row] [as] NameTupleNew] }]

[for each { row | statement }]
[when Condition]
SQLCommands

Kinds of events
• BEFORE

– The trigger is considered and possibly executed before
the event (i.e., the database change)

– Before triggers cannot change the database state; at
most they can change (“condition”) the transition
variables in row-level mode (set t.new=expr)

– Normally this mode is used when one wants to check a
modification before it takes place, and possibly make a
change to the modification itself.

• AFTER
– The trigger is considered and possibly executed after the

event
– It is the most common mode.

Granularity of events

• Statement-level mode (default mode, for each
statement option)
– The trigger is considered and possibly executed only

once for each statement that activated it, independently
of the number of modified tuples

– Closer to the traditional approach of SQL statements,
which normally are set-oriented

• Row-level mode (for each row option)
– The trigger is considered and possibly executed once

for each tuple modified by the statement
– Writing of row-level triggers is simpler

Social

Highschooler(ID int, name text, grade int);
Friend(ID1 int, ID2 int);
Likes(ID1 int, ID2 int);

1 - Write one or more triggers to maintain symmetry in friend relationships.
Specifically, if (A,B) is deleted from Friend, then (B,A) should be deleted
too.
If (A,B) is inserted into Friend then (B,A) should be inserted too.
Don't worry about updates to the Friend table

2 - Write a trigger that automatically deletes students when they graduate,
i.e., when their grade is updated to exceed 12. In addition, write a trigger
so when a student is moved ahead one grade, then so are all of his or her
friends.

3 - Write a trigger to enforce the following behavior: If A liked B but is
updated to A liking C instead, and B and C were friends, make B and C no
longer friends. Don't forget to delete the friendship in both directions, and
make sure the trigger only runs when the "liked" (ID2) person is changed
but the "liking" (ID1) person is not changed.

create trigger F1_Del
after delete on Friend
for each row
when exists (select * from Friend
 where ID1 = Old.ID2 and ID2 = Old.ID1)
begin
 delete from Friend
 where (ID1 = Old.ID2 and ID2 = Old.ID1);
end

create trigger F1_Insert
after insert on Friend
for each row
when not exists (select * from Friend
 where ID1 = New.ID2 and ID2 = New.ID1)
begin
 insert into Friend values (New.ID2, New.ID1);
end

create trigger Graduation
after update of grade on Highschooler
for each row
when new.grade > 12
begin
 delete from Highschooler
 where ID = New.ID;
end

create trigger Upgrade
after update of grade on Highschooler
for each row
when new.grade = Old.grade + 1
begin
 update Highschooler
 set grade = grade + 1
 where ID in (select ID2 from Friend
 where ID1 = New.ID);
end

create trigger NoLongerFriend
after update of ID2 on Likes
for each row
when Old.ID1 = New.ID1 and Old.ID2 <> New.ID2
begin
 delete from Friend
 where (Friend.ID1 = Old.ID2 and Friend.ID2 = New.ID2)
 or (Friend.ID1 = New.ID2 and Friend.ID2 = Old.ID2);
end

Bills

Bills
Consider the following relational schema that manages the
telephone bills of a mobile phone company.

CUSTOMER (SSN, Name, Surname, PhoneNum, Plan)

PRICINGPLAN (Code, ConnectionFee, PricePerSecond)

PHONECALL (SSN, Date, Time, CalledNum, Seconds)

BILL (SSN, Month, Year, amount)

T1. Write a trigger that after each phone call updates the
customer's bill.

T2. We make the assumption that the bills to be updated are
always already present in the database. In order to do this, we
can create another trigger that creates a bill with an amount of
0 for each registered customer at the beginning of each month
(suppose we have the event END_MONTH).

create trigger InitialBill

after END_MONTH

begin

 insert into BILL

 select SSN, sysdate().month, sysdate().year, 0

 from CUSTOMER

end

create trigger CallCharges

after insert of PHONECALL

for each row

begin

 update BILL B

 set Amount = Amount + (select PP.ConnectionFee +

 PP.PricePerSecond * new.Seconds

 from PRICINGPLAN PP join CUSTOMER C

 on C.Plan = PT.Code

 where new.SSN = C.SSN)

 where B.SSN = new.SSN

 and B.Year = new.Date.year and B.Month = new.Date.month

end

T3. Write a trigger that at the end of each month discount the
bills by 5 cents per call to direct users of the company (that is,
to numbers of registered users in the table CUSTOMER) if
the total monthly amount of the bill exceeds 100 €.

create trigger Offer

after END_MONTH

begin

 update BILL B

 set Amount = Amount – 0,05 * (select count(*)

 from PHONECALL P

 where P.SSN = B.SSN

 and P.Date.month = (sysdate() – 1).month

 and P.Date.year = (sysdate() – 1).year

 and P.CalledNum in (select PhoneNum from CUSTOMER))

 where B.amount > 100 and B.year = (sysdate() - 1).year

 and B.month = (sysdate() - 1).month

end

Transactions

Consider the following relational schema:

 TITLE (TitleCode, Name, Type)

 TRANSACTION (TransCode, SellerCode, BuyerCode,

 TitleCode, Quantity, Value, Date, Instant)

 OPERATOR (Code, Name, Address, Availability)

Build a trigger system that keeps the value of Availability of Operator
updated after insertion of tuples in Transaction, taking into account that
for each transaction in which the operator sells, the amount of the
transaction must be added to its availability and subtracted for
purchases. Also, enter the operators whose availability falls below zero
in a table that lists the operators "uncovered". Assuming that there is:

 UNCOVERED (Code, Name, Address)

Create trigger TransferAvailability

after insert on TRANSACTION

for each row

begin

 update OPERATOR

 set Availability = Availability – new.Quantity * new.Value

 where Code = new.BuyerCode;

 update OPERATOR

 set Availability = Availability + new.Quantity * new.Value

 where Code = new.SellerCode;

end

Create trigger ReportUncovered

after update of Availability on OPERATOR

for each row

when new.Availability < 0 and old.Availability >= 0

begin

 insert into UNCOVERED values (new.Code, new.Name,

 new.Address);

end

Create trigger RemoveUncovered

after update of Availability on OPERATOR

for each row

when old.Availability < 0 and new.Availability >= 0

begin

 delete from UNCOVERED where Code = new.Code

end

Championship

Consider the following relational schema:

 MATCH (Day, HomeTeam, AwayTeam, HomeGoal, AwayGoal)
STANDING (Day, Team, Score)

Assuming that the first table is fed through entries and that the second is
properly derived from the first, write the active rules that construct the
ranking, giving 3 points to the teams that win, 1 point to those that tie
and 0 points to those that lose.

create trigger HomeVictory

after insert on MATCH

when new.HomeGoal > new.AwayGoal

for each row

begin

 insert into STANDING S

 select new.Day, new.HomeTeam, S2.Score + 3

 from STANDING S2

 where S2.Team = new.HomeTeam and not exists

 (select * from STANDING where Day > S2.Day);

 insert into STANDING S

 select new.Day, new.AwayTeam, S2.Score

 from STANDING S2

 where S2.Team = new.AwayTeam and not exists

 (select * from STANDING where Day > S2.Day);

end

create trigger AwayVictory

after insert on MATCH

when new.HomeGoal < new.AwayGoal

for each row

begin

 insert into STANDING S

 select new.Day, new.HomeTeam, S2.Score

 from STANDING S2

 where S2.Team = new.HomeTeam and not exists

 (select * from STANDING where Day > S2.Day);

 insert into STANDING S

 select new.Day, new.AwayTeam, S2.Score + 3

 from STANDING S2

 where S2.Team = new.AwayTeam and not exists

 (select * from STANDING where Day > S2.Day);

end

create trigger Tie

after insert on MATCH

when new.HomeGoal = new.AwayGoal

for each row

begin

 insert into STANDING S

 select new.Day, new.HomeTeam, S2.Score + 1

 from STANDING S2

 where S2.Team = new.HomeTeam and not exists

 (select * from STANDING where Day > S2.Day);

 insert into STANDING S

 select new.Day, new.AwayTeam, S2.Score + 1

 from STANDING S2

 where S2.Team = new.AwayTeam and not exists

 (select * from STANDING where Day > S2.Day);

end

Volleyball

Consider the following relational schema for the european volleyball
tournament:

PLAYER (PlayerId, Name, Team, Height, Birthday, PlayedMatches)

TEAM (Team, Coach, WonGames)

MATCH (MatchId, Date, Team1, Team2, WonSetsTeam1,

 WonSetsTeam2, Referee)

PLAYED (MatchId, PlayerId, Role, ScoredPoints)

1. Build a trigger that keeps the value of WonGames after insertions in
GAME taking into account that WonGames is relative to the entire
history of the team, not only to the current tournament, and that a
team wins a game when he wins 3 sets.

2. Building also a trigger that keeps PlayedMatches of PLAYER
updated after insertions in PLAYED.

create trigger IncrementWonGames

after insert on MATCH

for each row

begin

update TEAM

 set WonGames = WonGames + 1

 where

 new.WonSetsTeam1=3 and Team = new.Team1 or

 new.WonSetsTeam2=3 and Team = new.Team2

end

create trigger UpdatePlayedMatches

after insert on PLAYED

for each row

begin

 update PLAYER

 set PlayedMatches = PlayedMatches + 1

 where PlayerId = new.PlayerId

end

The “social” concert hall

A concert hall manages information about the shows using a set of row-level triggers.
Visitors to the Web site can create an account and register a set of keywords matching
their interests. When (a) a new show is inserted into the Website, with a set of
keywords, registers users with a match with their set of keywords will receive an
email. Some of them will buy a ticket for the event. In case of (b) show cancellation
or (c) change of starting time, a notification is sent to users who bought a ticket for
the affected show. Write only the triggers for the management of events (a,b,c).
Assume that a function send-mail(ReceiverEmail, Subject, ... OtherAttributes ...) is
available, which is invoked with all the parameters required for email creation. The
database schema is:

VISITOR(VisId, Name, Email) INTERESTS(VisId, Keyword)
SHOW(ShowId, Title, Date, StartTime) DESCRIPTION(ShowId, Keyword)
TICKET(VisId, ShowId, Seats)

We assume that keywords are always inserted together with the show, and not updated

create rule NewShow
after insert into SHOW
for each row
 send-mail((select Email
 from (VISITOR V join INTERESTS I on V.VisId = I.VisId)
 join DESCRIPTION D on D.Keyword = I.Keyword
 where D.ShowId = new.ShowId),
 “New Show”,
 new.Title,
 new.Date,
 new.StartTime)

create rule CanceledShow
after delete from SHOW
for each row
 send-mail((select Email
 from VISITOR V join TICKET T on V.VisId = T.VisId
 where T.ShowId = old.ShowId),

 “Canceled Show” ,
 old.Title,
 old.Date,
 old.StartTime)

create rule NewTime
after update of StartTime on SHOW
for each row
 send-mail((select Email
 from VISITOR V join TICKET T on V.VisId = T.VisId
 where T.ShowId = old.ShowId),
 “Rescheduled Show”,
 old.Title,
 old.Date,
 new.StartTime)

Scholarship

Consider the following relational schema that manages the
assignment of scholarships to students.

APPLICATION (StudentID, Date, State)

COURSE (CourseID, Title, Credits)

RANKING (StudentID, Average, Credits, Rank)

EXAM (CourseID, StudentID, Date, Grade)

We want to manage through a system of triggers the assignment of scholarships to
students. The scholarships are awarded to students who apply and, at the date of the
application, have taken exams for at least 50 credits, with an average score of at least
27/30.
• If the requirements are not met, the application is automatically rejected; otherwise

accepted. In both cases, the value of the column State in APPLICATION is
changed (initially it was NULL), respectively, with "rejected" or "accepted".

• In case of acceptance, the student is automatically assigned a position in the
ranking, determined by the average of the grades; in case of equality of media, we
consider first the greatest number of credits incurred at the date of application and
finally the insertion order of the applications.

• If a student renounces the scholarship (State is changed to "dropout"), the ranking is
updated.

Update the columns in APPLICATION e RANKING after insertion and deletions of
applications.

Create trigger CheckApplication
after insert on APPLICATION
for each row
declare M, C number:
M := (select avg(Grade) from EXAM
 where StudentID = new.StudentID and Date <= new.Date)
C := (select sum(Credits) from EXAM JOIN COURSE ON
 EXAM.CourseID = COURSE.CourseID
 where StudentID = new.StudentID and Date <= new.Date)
begin
if (M >= 27 and C >= 50) then (
 update APPLICATION set State=”accepted” where StudentID = new.StudentID;
 insert into RANKING values (new.StudentID, M, C, NULL);)
 else
 update APPLICATION set State=”rejected” where StudentID = new.StudentID;
end

Create trigger Dropout
after update of State on APPLICATION
for each row
when new.State = “dropout”
begin

delete * from RANKING where StudentID = new.StudentID;
end

Create trigger UpdateRanks1
after insert on RANKING
for each row
begin
POS:=select count(*) // count the number of students with greater

 // average grade or same average but more
credits

 from RANKING
 where(Average > new.Average) OR
 (Average = new.Average AND Credits > new.Credits) OR
 (Average = new.Average AND Credits = new.Credits);

update RANKING set Rank = Rank + 1 where Rank > POS;
// we move the following one down by one position (+1 in the ranking)

update RANKING set Rank = POS + 1 where StudentID =
new.StudentID;
// we attribute the «new» student the rank (pos + 1)

end

•The insertion order is implicitly considered, in fact when the average
and the credits are both the same, the «older» applications are privileged.

•The rank is below the others with the same average and credits.

•POS is the number of preceding stundents in the ranking

Create trigger UpdateRanks2
after delete From RANKING
for each row
begin

 // update the position of the one that follows moving
 // them up by one

 update RANKING set Rank = Rank - 1
 where Rank > old.Rank;
end

Companies

Companies
Consider the following table, that keeps the stock shares owned by other
companies:

OWNS (Company1, Company2, Percentage)

 Consider, for simplicity, that tuples of the table OWNS are inserted
from an empty table, which then no longer changes. Construct via
trigger the relationship CONTROLS (a Company A controls a
company B if A owns directly or indirectly more than 50% of B).

 Assume that the control percentages are decimal numbers, and please
note that the control situation is direct when a company owns more
than 50% of the "controlled" or indirect when a company controls
other companies that own percentages of B and the sum of the
percentages owned and controlled by A exceeds 50%.

Schema of the auxiliary table:

 CONTROLS (Controller, Controlled)

A can control B in two distinct ways:
• directly: it owns more than 50%
• indirectly: the sum of the percentage of direct and indirect (through

other controlled companies) ownership is greater than 50% (even if
none of these percentages exceed 50%)

The entries in OWNS can be managed with a trigger with statement
granularity that translates the insertions in CONTROLS the ones that
represent a direct control. The insertion in the table CONTROLS then
trigger the search of indirect controls.

The ownerships with percentages > 50% are directly translated
create trigger DirectControl
after insert on OWNS
for each statement
do
 insert into CONTROLS select Company1, Company2
 from new_table
 where percentage > 50

Given a new control, it is necessary to propagate any indirect control

Create view IndirectPercentage(c1, c2, perc) as
select C.Controller, O.Company2, sum(O.Percentage)
from CONTROLS C join OWNS O on C.Controlled = O.Company1
where (C.Controller, O.Company2) not in (select *
 from CONTROLS)
group by C.Controller, O.Company2

The view computes the percentage of indirect ownership not yet represented in the
table CONTROLS. The trigger considers all percentages of indirect control perc
(including those involved in the new tuple, because the trigger is after).

These percentages must be added to potential percentage of direct control (we can
perform a LEFT JOIN, in order to consider all the indirect, and when there is no direct
control for that pair of companies, the attribute will have a NULL value). The sum of
perc and possible direct component is compared with 50.

create trigger IndirectContol
after insert on CONTROLS
for each row
do
 insert into CONTROLS select c1, c2
 from IndirectPercentage left join OWNS
 on c1 = Company1 and c2 = Company2
 where c1 = new.Controller and
 ((Percentage is NULL and perc > 50) OR

 (Percentage + perc > 50))

• Note, that, in order to determinate an indirect control, it is not necessary a
contribution from the table OWNS (and if it is present, is necessarily less than 50%,
otherwise the control would have already been identified and inserted in the table
as direct control).

• Instead, there must be a contribution by IndirectPercentage, so the LEFT JOIN.

• This trigger could conflict with the previous one, but the fact that in view we don't
have tuples related to couples already in CONTROLS prevents any problem.

A registration system assigns the classrooms of a conference center:

Registration (Person, Session)
Capacity (Classroom, NumSeatMax, Available)
Allocation (Session, Classroom)

Initially, 10 sessions (numbered from 1 to 10) are allocated to classrooms
(numbered from 1 to 10) with a capacity of 25 people. There are also many
other classrooms (sufficient to meet your needs).

1 - For each registration, you must ensure that the classroom scheduled for
the session has a enough seats.

2 - When the number of seats are not enough you have to move the session
to the smallest classroom among those available to house the participants,
and make available the classroom previously allocated.

Create trigger updateAllocation
after insert on Registration
for each row
when

select count (*) from Registration where Session = new.Session
>

select NumSeatMax from Capacity C join Allocation A on C.Classroom = A.Classroom
where Session = new.Session

begin
update Capacity C join Allocation A on C.Classroom = A.Classroom
set Available = 1 where Session = new.Session

delete from Allocation where Session = new.Session

insert into Allocation
(select new.Session, Classroom
from Capacity
where NumSeatMax =

(select min(NumSeatMax) from Capacity
where NumSeatMax >=

(select count (*)
from Registration
where Session = new.Session)

and Available = 1)
and Available = 1
limit 1)

update Capacity
set Available = 0
where Classroom =

(select Classroom from Capacity
where NumSeatMax =

(select min(NumSeatMax) from Capacity
where NumSeatMax >=

(select count (*) from Registration
where Session = new.Session)

and Available = 1)
and Available = 1

Limit 1)
end

Bands

Consider the following schema describing a system for hiring
rehearsal rooms to musical groups. Start and end time of reservations
contain only hours (minutes are always “00”). Use of rooms can only
happen if there is a corresponding reservation, but can start later or
end earlier. All rooms open at 7:00 and close at 24:00.

User (SSN, Name, Email, Type)
Reservation (UserSSN, RoomCode, Date, StartTime, EndTime)
Room (RoomId, Type, CostPerHour)

1) Write a trigger that prevents the reservation of already booked
rooms

We need to capture reservations for the same room with overlapping
periods. We can use a“before” semantics to impose an early rollback
of the transaction. (N.B.: two intervals are overlapped if the first
begins before the end and ends before the beginning of the other)

create trigger ThouShallNotBook
before insert into Reservation
for each row
when exists (select *
 from Reservation
 where RoomCode = new.RoomCode
 and Date = new.Date and StartTime < new.EndTime
 and EndTime > new.StartTime)
rollback

Suppose that usage data are inserted into a table Usage only after the room
has been actually used. Enrich the schema to track the number of hours that
have been reserved but not used by each user, and write a (set of) trigger(s)
that set the “type” of a user to “unreliable” when he totalizes 50 hours of
unused reservations.

We track actual usage times and costs in the Usage table:

Usage (UserSSN, RoomCode, Date, StartTime, EndTime, Cost)

Unused hours can be counted via queries, without further schema
modifications. For efficiency reasons, however, we may want to calculate the
number incrementally, e.g., by adding a “WastedHours” field to table User.

How do we matche reservations and usages?

We assume that (1) the previous trigger guarantees reservations to be correct
and not overlapping and that (2) actual usages of each room only and always
happen within the limits of a reserved interval, and by those who actually
reserved the room.

create trigger UpdateWastedHours
after insert into Usage
for each row
 update User
 set WastedHours = WastedHours +
 (select EndTime – StartTime – (new.EndTime – new.StartTime)
 from Reservation
 where RoomCode=new.RoomCode and Date = new.Date
 and StartTime>= new.StartTime and EndTime <=
new.EndTime)

 where SSN = new.UserSSN

This is the simplest option: the field is updated at each insertion, possibly with a zero-
increment when users are on time.
Capturing zero-increments may be done in the when clause (but is as heavy as the update)

The only missing part is the monitoring of the threshold:

create trigger UpdateType
after update of WastedHours on User
for each row
when old.WastedHours < 50 and new.WastedHours >= 50
do
 update User
 set Type = “Unreliable”
 where SSN = old.SSN

ATTENTION:
we’re not considering the case in which bands do not show up at all !

How to deal with users who don’t show up at all?

- We may not accept any new reservation for users who didn’t show
up in the past (but this would be a new business rule – we should
simply try to count the hours as wasted hours... What we miss, in
this case, is the triggering event)

- We may consider a new reservation a triggering event and, before
reserving, check for previous “dangling” reservations

- And delete them, once dealt with (in order not to count them again in
the future)

- Or, more likely, in order not to delete potentially useful data, mark
them with a flag that needs to be added to the schema

- Most likely (and simply), periodically check for these situations:
we need a triggering event that is not a data modification, but
rather a system event (example: check all reservations daily, after
the change of date), as in the following trigger

create trigger InelegantNonPortable_GhostMusicians
after change-date() // each vendor has its own extended event language
do
 select * into PENDING
 from Reservation R
 where R.date = today()–1 and not exists(select * from Usage U
 where U.Date = R.Date
 and R.StartTime <= U.StartTime
 and U.EndTime >= R.EndTime)
 for-each X in PENDING
 do
 update User
 set WastedHours = WastedHours + X.EndTime – X.StartTime
end;

This solution pre-extracts the relevant reservations into a virtual table
(PENDING) and uses a proprietary explicit iteration (for-each) in order to
apply the modifications.
A much more elegant solution, using only SQL-2, is in the next trigger

create trigger ElegantAndPortable_GhostMusicians
after change-date() // each vendor has its own extended event language
do
 update User U
 set WastedHours = WastedHours +
 (select sum(P.EndTime – P.StartTime)
 from Reservation P
 where P.Date = today()–1 and P.UserSSN = U.SSN
 and not exists(select *
 from Usage S
 where S.Date = P.Date
 and P.StartTime <= S.StartTime
 and S.EndTime >= P.EndTime))
end;

Please note that the bindings on P and U take the place of the iteration, and each
user has its counter updated by the quantity depending on their specific “faults”.
Also note that this solution, by means of aggregation, also accounts for the case in
which the same user has left more than one pending reservation in the same day.

Esercizio
● Un sistema di regole attive calcola l'H-index dei ricercatori, definito come il massimo

numero H di articoli scritti dal ricercatore che risultano citati da almeno H altri articoli;
per cui, se un reicercatore ha pubblicato 5 articoli, rispettivamente citati da 7, 4, 4, 1 e
0 altri articoli, il suo H-index è uguale a 3. Si dispone di identificatori univoci Art-id (per
gli articoli) e Ric-id (per i ricercatori), e due tabelle descrivono gli autori dei vari articoli
(ogni articolo ha uno o più autori) e il numero delle citazioni:

AUTORE(Art-id, Ric-id)

CITAZIONI(Art-id, Cit-count)
● Gli unici eventi da considerare sono (a) l’incremento del campo Cit-count e (b)

l’inserimento (transazionale) di un nuovo articolo, che si traduce in alcuni inserimenti
nella tabella AUTORE e un inserimento in CITAZIONI. Si gestisca tramite regole attive
l’aggiornamento dell’H-Index nella tabella

RICERCATORE(Ric-id, H-Index)
● Suggerimento: Si può ipotizzare che l’H-Index contenuto nella tabella RICERCATORE

sia consistente con i dati delle altre tabelle all’inizio di ogni transazione, e ragionare in
modo incrementale conservando la consistenza. L’inserimento/modifica di un solo
articolo può infatti incrementare l’H-index di una sola unità.

Reazione all’evento (a)

L’incremento di citazioni di un articolo che aveva Cit-count già superiore all’H-index attuale dei
suoi autori non può aumentarne l’H-index, così come non può aumentarlo un incremento che
porta il nuovo Cit-count ad un nuovo valore ancora inferiore all’H-Index attuale. L’incremento
dell’H-index si ha solo se old.Cit-count è inferiore (o uguale) all’H-Index e new.Cit-count è
superiore, e ovviamente solo per (un sottoinsieme de-)gli autori dell’articolo che vede
incrementate le sue citaizoni:

create rule Aggiorna_Update
after update of Cit-count on CITAZIONI
for each row
begin
 update RICERCATORE R
 set R.H-Index = R.H-Index + 1
 where old.Cit-count <= R.H-Index and new.Cit-count > R.H-Index and

// l’incremento fa superare la soglia
 (R.Ric-id, new.Art-Id) in (select * from AUTORE) // R è un autore dell’articolo in C
 and R.H-Index + 1 <= (select count(*)
 from CITAZIONI C
 where (R.Ric-id, C.Art-Id) in (select * from AUTORE)
 and C.Cit-count >= H-Index + 1)
end

Reazione all’evento (b)

Con ipotesi sbrigativa (ma non irragionevole) si può sostenere che l’inserimento dei
nuovi articoli avviene sempre a breve distanza dalla loro prima pubblicazione, quindi il
lor Cit-count è necessariamente inizializzato a zero, e quindi questii inserimenti non
possono incrementare l’H-Index (saranno i successivi incrementi del Cit-count a far
scattare il trigger definito per (a))
Se invece si ammete che la base di dati possa essere estesa anche inserendo articoli
molto tempo dopo la loro data di pubblicazione, allora occorre ricalcolare l’H-Index per
tutti gli autori dell’articolo incrementato:

create rule Aggiorna_Insert
after insert into CITAZIONI
for each row
do
 update RICERCATORE R
 set R.H-Index = R.H-Index + 1
 where R.H-Index + 1 = (select count(*)
 from CITAZIONI C
 where (R.Ric-id, C.Art-Id) in (select * from AUTORE)
 and C.Cit-count >= H-Index + 1)
 and (R.Ric-id, new.Art-Id) in (select * from AUTORE)
end

FlyWithMe

Consider a database for an airline:

AIRPORT (Name, Country, City)

FLIGHT (Code, DepAirport, DepDate, DepTime, ArrAirport, ArrDate,
ArrTime)

Assume the database is distributed in the various cities in which the company
operates.

1) Describe a reasonable data fragmentation that allows each node to locally
execute the query that extracts the destinations directly reachable from an airport.

2) Write at the fragmentation and language transparency levels the query that
extracts for every nation the average number of flights that depart from cities of
that nation.

3) Write at the fragmentation and language transparency levels the update that, due
to bad weather, moves all the arrivals of the day 04/04/2014 from Madrid to
Barcelona.

	Slide 1
	SQL:1999 Trigger Syntax
	Kinds of events
	Granularity of events
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Bills
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Companies
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

