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A B S T R A C T

The Internet of Things (IoT) has reshaped technology paradigms through the integration of
intelligent components like sensors, paving the way to the development of Wireless Body Area
Networks (WBANs) specifically tailored for healthcare applications. However, designing an
efficient WBAN requires addressing several challenges, including energy-efficient routing and
data rate uncertainty. In response to these challenges, this paper proposes a novel approach
— a two-stage robust programming formulation — for WBAN design. The primary aim is
to minimize both energy consumption and relay placement costs, all while accounting for
the inherent uncertainty in data rates. The proposed formulation explicitly addresses data rate
uncertainties, leveraging robust optimization techniques to handle this uncertainty. We prove
that efficiently solving an approximation of this robust formulation is achievable. Numerical
results, measured in a set of realistic WBAN scenarios, demonstrate the effectiveness of the
introduced two-stage robust programming formulation in achieving notable reductions in energy
consumption and relay placement costs within the context of WBANs.

1. Introduction

The Internet of Things (IoT) has radically transformed technology, particularly in the healthcare domain, by
enabling the integration of intelligent sensors. This has paved the way for the Internet of Medical Things (IoMT),
a technological advancement that significantly enhances healthcare services and reduces operational costs through
wireless medical devices [Kumar et al., 2021, Razdan and Sharma, 2022]. A critical component of IoMT is Wireless
Body Area Networks (WBANs), which rely on wearable body sensors for real-time patient monitoring, collection
of physiological data, and the facilitation of remote healthcare services. WBANs enable continuous surveillance of
patients’ health signals, facilitating early identification of medical emergencies and enabling prompt intervention [Lata
et al., 2021, Elhayatmy et al., 2018, Sharma and Kang, 2020].

These networks are built around sensors placed on or within the human body, which wirelessly transmit medical
data to a remote server or a personal device, such as a smartphone or smartwatch. The devices can then classify
physiological signals as normal or abnormal and take appropriate actions, such as issuing warnings or notifying
healthcare providers or family members. Figure 1 illustrates a typical WBAN, with multiple biosensors deployed on
the human body. The integration of WBANs into daily life has revolutionized patient monitoring, ensuring seamless,
real-time health tracking and early detection of abnormalities during normal activities [Akkaş et al., 2020, Zhang and
Dong, 2023]. This approach has enabled healthcare professionals to adopt more proactive treatment strategies based
on continuous data analysis, leading to early diagnoses and targeted interventions [d’Angelis et al., 2022].

Despite these advantages, the deployment of WBANs faces several critical challenges. Notably, ensuring the
continuous operation of all sensors is crucial for effective health monitoring. Sensor malfunctions due to energy
depletion or hardware failures can result in missed data, jeopardizing the patient’s health, particularly when treatment
decisions rely on real-time sensor data. As such, maintaining the longevity and reliability of WBANs is vital [Paganelli
et al., 2022]. The performance of WBANs is directly influenced by the energy consumption of sensors and the quality
of their data transmission capabilities, which are impacted by the wireless technology in use (e.g., Bluetooth Low
Energy (BLE) or Wi-Fi) [Swaroop et al., 2019].
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In this context, there is an urgent need to design energy-efficient network topologies and routing protocols that
ensure continuous, reliable operation of WBANs over extended periods. Researchers have proposed various solutions,
including energy-aware topology design, Quality-of-Service (QoS)-aware performance improvements, reliable routing
protocols, and cross-layer media access control mechanisms [Ullah et al., 2022, 2019, Zhou et al., 2017, Kaur and
Singh, 2017]. These studies emphasize the importance of energy-efficient routing to mitigate issues related to energy
consumption and ensure optimal sensor performance in WBANs.

1.1. Motivation

Wireless Body Area Networks have become essential for healthcare applications, enabling remote and real-time
monitoring of patients’ health conditions. However, their adoption faces significant challenges, particularly due to
energy consumption, traffic demand uncertainty, and dynamic patient conditions. Neglecting such uncertainties may
result in infeasible or inefficient solutions, compromising the reliability of the network and, consequently, patient
health. Addressing these issues is crucial for ensuring the reliability, efficiency, and practicality of WBAN deployment
in healthcare scenarios.

A primary issue is traffic/demand uncertainty, where body sensors produce data at variable rates influenced by
event-driven operations or dynamic patient conditions [Keoh et al., 2007, Mitra et al., 2012, Chen et al., 2010,
D’Andreagiovanni and Nardin, 2015]. For example, cardiac sensors may generate bursts of data during critical
events, such as arrhythmias, while remaining dormant otherwise [D’Andreagiovanni and Nardin, 2015]. Ignoring this
variability risks network designs that fail under real-world conditions, leading to data loss, delays, and compromised
patient outcomes. Overestimating data rates may result in inefficient resource utilization, while underestimating them
risks overloading relays or network bottlenecks, causing packet drops [Flushing and Di Caro, 2013]. The repercussions
of such failures are particularly severe when vital data, such as ischemia detection, is involved. These issues highlight
the necessity of robust optimization models that proactively account for traffic uncertainties and ensure feasible,
resilient, and efficient WBAN designs [Khan et al., 2020].

Energy efficiency is another critical concern for WBANs, particularly due to the limited capacity and non-
replaceable nature of many sensor batteries [Chen et al., 2010, Khan et al., 2020]. This challenge is even
more pronounced for implanted sensors, where replacing batteries may require invasive procedures. Multi-hop
communication has been proposed as an energy-efficient strategy to mitigate this issue by reducing transmission
distances [Jawad and Khurshid, 2022]. Intermediate relay nodes can extend the network’s lifetime and reduce energy
consumption. However, this approach introduces additional complexities, such as optimal relay placement and routing,
which must balance energy usage, traffic load, and network lifetime [Vyas et al., 2021, Raayatpanah et al., 2023].
Without careful optimization, relays may experience traffic congestion, leading to higher energy depletion and reduced
network reliability [Chen et al., 2010].

Patient mobility further complicates WBAN deployment. Movements such as walking, running, or sitting alter the
network’s topology and degrade communication reliability [Samanta and Misra, 2018]. Topological changes may
cause frequent disconnections or increased packet delays, threatening the quality of real-time health monitoring.
Ensuring continuous connectivity and stable performance during patient mobility is vital for applications like post-
operative care or monitoring chronic illnesses [Raayatpanah et al., 2023].

Finally, existing WBAN design approaches often rely on deterministic assumptions about network condi-
tions [Keoh et al., 2007], failing to account for the inherently unpredictable nature of real-world scenarios. Biosensors
configured in event-driven modes [Chen et al., 2010] generate highly variable data rates, creating uncertainty that
complicates effective planning [Flushing and Di Caro, 2013]. We will show that addressing such uncertainty through
robust optimization frameworks enables WBANs to maintain energy efficiency and reliable data transfer despite
fluctuating network conditions.

This study builds on prior work by developing a novel two-stage robust optimization framework for WBANs.
This framework simultaneously addresses traffic/demand uncertainty, energy consumption, and relay placement.
By modeling traffic variability explicitly, the proposed method ensures reliable network performance under worst-
case conditions while minimizing energy consumption and placement costs [D’Andreagiovanni and Nardin, 2015,
Khan et al., 2020]. Furthermore, compared to existing single-stage approaches, our two-stage optimization strategy
dynamically adjusts routing and relay placements, enhancing adaptability to real-time changes in network condi-
tions [Raayatpanah et al., 2023].

In summary, the motivation for this work lies in addressing these interconnected challenges—traffic/demand
uncertainty, energy efficiency, patient mobility, and adaptability—to provide a practical, reliable, and resilient WBAN
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Figure 1: Schematic example of a WBAN with different types of biosensors deployed on the human body.

solution. By leveraging robust optimization techniques, we offer significant advancements that ensure the feasibility
and robustness of WBANs in realistic and dynamic healthcare scenarios.

1.2. Contributions

In this paper, we focus on robust optimization to address demand uncertainty, striving for solutions that remain
feasible for all demand vectors within estimated uncertainty sets. Our focus is on capacity planning for WBANs,
jointly optimizing topology and routing under traffic uncertainty. The problem is naturally expressed as a two-stage
stochastic programming problem with recourse [Sen et al., 1994, Lisser et al., 1999, Riis and Andersen, 2002]. The
first stage involves determining relay nodes capacities, while decisions related to relay placement and traffic routing
are made in the second stage to satisfy the observed demands. As a result, routing inherently incorporates stochastic
elements due to uncertainty in data rates. This problem represents a specific instance of broader network design
formulations where demands and, potentially, travel times are uncertain parameters. With the transmission of critical
data in WBANs, a two-stage robust programming formulation emerges as a more suitable framework for adapting to
uncertain data transmission rates via relays.

Our main contributions revolve around the proposed model and methodology, and can be summarized as follows:

• Uncertainty Modeling for WBANs: We propose a novel uncertainty-modeling framework tailored specifically
for WBANs. Unlike previous studies that often overlook the dynamic nature of biosensor data and traffic
fluctuations, our framework effectively captures and represents uncertainty associated with various biosensor
data types in diverse scenarios.

• Robust Optimization Approach: Leveraging robust optimization techniques, we address the challenge of
demand uncertainty in WBAN design. By formulating a two-stage robust programming framework, we ensure
that solutions remain feasible for all possible demand vectors within estimated uncertainty sets, enhancing the
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reliability and resilience of WBANs for continuous and dependable communication between biosensors and
sinks. We further demonstrate that efficiently solving an approximation of this robust formulation is achievable.

• Energy-Aware WBAN Design: Additionally, our work focuses on optimizing the design of Energy-Aware
WBANs, aiming to minimize network energy consumption while making optimal routing decisions among an
optimal number of installed relays. By integrating uncertainty modeling and robust optimization, we provide a
comprehensive solution that balances energy efficiency with practical considerations.

• Computational Experiments: To validate the effectiveness of the proposed models and algorithms, we conduct
computational experiments using realistic WBAN instances. To assess our approach, we compare it with two
baseline models: a Deterministic Model and a Worst Case Scenario approach, highlighting the flexibility and
robustness of our method in comparison. The evaluation measures the network’s performance under varying
data rates and traffic conditions.

1.3. Paper Organization

The remainder of this paper is organized as follows: Section 2 provides an overview of related works. Section 3
introduces the network model and discusses the energy model considered in our study. Following this, Section 4
presents the Mixed-Integer Linear Programming (MILP) framework developed to optimize relay node placement and
determine efficient routing strategies amidst uncertain biosensor data generation. Section 5 details the formulation of
a two-stage robust optimization approach, and illustrates an example scenario that shows the effectiveness of such
approach. Section 6 presents the WBAN scenario, providing insight into the network’s topology and the specific
scenario considered for our numerical evaluation. Subsequently, Section 7 illustrates and discusses computational
experiments comparing Robust solutions with Deterministic ones. Finally, in Section 8, we summarize the key findings
and implications of our research, identifying promising research directions.

2. Related work

To address the challenges of wireless sensor networks for healthcare applications, extensive research has focused
on optimizing various aspects of network performance. Prior works have investigated strategies to improve energy
efficiency for biosensor nodes, establish secure and energy-efficient frameworks for e-healthcare, optimize energy
consumption in wireless body area networks (WBANs), and develop mathematical models for body area network
topology design [Cao et al., 2009, Chen et al., 2010, Liu et al., 2013, Peter et al., 2016, Khan and Pathan, 2018,
Alshaheen and Takruri-Rizk, 2017, Kanthi and Dilli, 2023, Hu et al., 2016]

More recent studies have expanded these efforts. For instance, the work in [Ghosh, 2023] explores optimal
relay node deployment in WBANs to enhance energy efficiency and network lifetime, demonstrating that linear
midpoint placement may not always yield optimal results. Similarly, [Panhwar, 2021] employs a Genetic Algorithm
to optimize routing paths for continuous health monitoring, minimizing energy consumption while ensuring reliable
data transmission. Moreover, [Patra, 2024] introduces a mathematical model utilizing the Free Search Krill Herd
algorithm for relay node placement, complemented by a Harmony Search algorithm for routing, targeting improved
energy efficiency and reliability.

Dynamic scheduling and resilience principles from related fields also offer valuable insights. Han et al. [Han et al.,
2015] investigate on-line supply chain scheduling in dynamic environments, focusing on minimizing makespan and
delivery costs. Their exploration of scheduling decisions under incomplete information aligns with the challenges of
data transmission scheduling in WSNs. Similarly, Zhang et al. [Zhang and van Luttervelt, 2011] propose principles
for resilient manufacturing systems, emphasizing adaptability and recovery from failures. These insights parallel the
need for robust and adaptable network design in healthcare applications. Furthermore, Wang et al. [Wang et al., 2019]
present an integrated approach to resilience in transportation systems, combining infrastructure recovery with flow
planning, which informs the development of robust strategies for WSN routing and relay placement.

Adaptability in resource-constrained systems is further highlighted by Zhang et al. [Zhang et al., 2018], who
propose an underactuated self-reconfigurable robot architecture featuring passive joints to enhance resource efficiency
and resilience. Their two-phase reconfiguration planning and scheduling model demonstrates how adaptability can be
achieved under resource constraints, providing useful analogies for WSN optimization.

In the context of mobile WBANs, where dynamic body movements degrade link quality and network performance,
several innovative frameworks have emerged. The authors in [Samanta and Misra, 2018] proposed an energy-efficient
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distributed framework for managing network connectivity and minimizing data dissemination delays in opportunistic
WBANs. Their approach accounted for irregular body movements, such as walking and running, significantly
improving throughput and reducing energy consumption compared to existing solutions. Similarly, [Samanta et al.,
2024] presented LALB, a packet loss detection algorithm, alongside a joint optimization framework to mitigate
mobility’s adverse effects on network performance, demonstrating significant improvements in power consumption
and throughput through simulations.

Despite these advancements, existing works often fail to address data rate uncertainties between biosensor-sink
pairs comprehensively. Neglecting such uncertainties can lead to impractical solutions, particularly in healthcare
applications where reliability is paramount [D’Andreagiovanni and Nardin, 2015, Ben-Tal et al., 2009a]. This gap
underscores the necessity of robust optimization methodologies to accommodate uncertainty while ensuring network
reliability and efficiency.

The operations research community has extensively explored uncertainty in mathematical programming. Proba-
bilistic approaches, such as scenario-based stochastic optimization [Birge and Louveaux, 2011], optimize the expected
value of objective functions under the assumption of known probability distributions. However, these methods face
limitations, including high computational complexity, sensitivity to uncertainty outcomes, and reliance on potentially
inaccurate probabilistic models [Bertsimas and Sim, 2003, Ben-Tal et al., 2009b]. Robust optimization offers a
compelling alternative by focusing on worst-case scenarios within predetermined uncertainty sets [Ben-Tal and
Nemirovski, 1998, El Ghaoui et al., 1998, Bertsimas and Sim, 2004]. This methodology ensures feasible and efficient
solutions even under severe uncertainty.

A notable contribution in this domain is [D’Andreagiovanni and Nardin, 2015], which proposed a single-stage
robust optimization model for WBAN topology and routing under traffic uncertainty. Employing a scenario-based
min-max approach, the model minimizes the maximum deviation between proposed and optimal solutions across
all scenarios. However, the reliance on scenario-based uncertainty sets may not encompass all potential demand
realizations, limiting its applicability.

Several methodologies addressing uncertainty in IoT networks have been highlighted, including fault-tolerance
mechanisms [Samanta et al., 2021]. In IoT systems, [Hussain et al., 2019] evaluated classifiers like Decision Tree and
Random Forest for robustness against data quality issues, while [Alwhishi et al., 2022] proposed multi-valued model
checking for verifying IoT services under uncertainty. Additionally, [Xu et al., 2022] developed Evidential Multiview
Deep Learning (EMDL), a method synthesizing multiple features for reliable decision-making, demonstrating superior
performance in synthetic and real-world datasets.

Building on this foundation, our work introduces a two-stage robust optimization model tailored for WBANs. This
approach surpasses single-stage methods by accommodating real-time adjustments to uncertain parameters, providing
flexibility and adaptability to varying network conditions. Two-stage optimization enables the formulation of a robust
counterpart to the original problem in the first stage, addressing wide-ranging uncertainties, and the fine-tuning of
solutions in the second stage to optimize performance under specific realizations [Ben-Tal et al., 2004, Atamtürk and
Zhang, 2007].

Our methodology diverges significantly from [Amjad et al., 2020], which employed stochastic programming to
optimize energy efficiency in WBANs without requiring channel state information. While their work addressed single-
hop routing and utilized generalized gamma distributions to model uncertainties, our approach emphasizes multi-hop
routing. This strategy integrates intermediary biosensors to create shorter connections, reduce energy consumption,
and extend network lifespans. Moreover, our robust optimization framework eliminates the need for known probability
distributions, enhancing solution reliability and adaptability.

Finally, our prior work [Raayatpanah et al., 2023] explored relay-based multi-hop communication to optimize
device positioning and routing in WBANs, demonstrating improved energy efficiency and data transfer reliability. Ex-
panding on this, the current study incorporates a novel two-stage robust programming framework that simultaneously
addresses energy consumption, relay placement costs, and data rate uncertainties. By leveraging robust optimization
techniques, we achieve substantial reductions in energy consumption and relay placement costs, offering a practical
and resilient solution for WBANs in realistic healthcare scenarios.

3. System Model

In this section we first introduce the network model (section 3.1) and then the energy model (section 3.2)
considered in our work.
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Notation Meaning

𝜔 Biosensor node set
𝜀 Relay node set
𝜗 Set of capacity choices available for relays
𝜛 Sink node
𝜚𝜍 Set of links between relay nodes
𝜑𝜍 Set of links between relay nodes, biosensor nodes and sink
𝛻𝜕(ℵ) Forward star of node ℵ

ℶ𝛻𝜕(ℷ) Set of relays that can be assigned to biosensor ℷ
𝜀𝜕(ℵ) Reverse star of node ℵ

ℸ𝜀𝜕(𝜛) Set of relays that can be assigned to the sink 𝜛

⊳
𝜀⊲0102

Received energy
⊳

3⊲0102
Transmission energy

⊳
456

Energy for the transmission amplifier
7 Objective function coefficient
8
9

ℵ
Capacity of relay ℵ of type 9

2
9

ℵ
Cost for installing relay ℵ with capacity 8

9

ℵ

. Maximum number of relays that can be installed (candidate sites)
, Maximum number of relays that can establish a link with sink 𝜛

6 Total number of transmitted/received bits
<
ℷ Uncertain traffic generated by biosensor ℷ [bits/s]

⋛
<

Uncertain set of traffic generated by all biosensors
ℏ
ℵ>

Path loss coefficient for link (ℵ,>)
⋆

ℵ>
Distance between two nodes ℵ, >

4
ℷℵ

0-1 connectivity parameter between biosensor ℷ and relay ℵ

0
ℵ𝜛

0-1 connectivity parameter between relay ℵ and sink 𝜛

Variable Description

≨
ℷℵ
(<ℷ) 0-1 variable indicating if biosensor ℷ ε 𝜔 is assigned to relay ℵ ε 𝜀

𝐴
ℷ

ℵ>
(<ℷ) 0-1 variable indicating if link (ℵ, >) ε 𝜚𝜍 is used by biosensor ℷ ε 𝜔

𝐵
ℷ

ℵ𝜛
(<ℷ) 0-1 variable indicating if link (ℵ, 𝜛) ε 𝜑𝜍 is used by biosensor ℷ ε 𝜔

≨
ℵ𝜛

0-1 variable indicating if relay ℵ ε 𝜀 is assigned to sink 𝜛

𝐶
9

ℵ
0-1 variable indicating if relay ℵ of type 9 ε 𝜗 is installed in candidate site ℵ ε 𝜀

Table 1
Notations, parameters and variables definition

3.1. Network Model

The wireless body area network considered in this study models a typical standing scenario where arms hang
along each side of the body. This scenario’s topology includes various biosensors positioned strategically for different
detection purposes, along with relay nodes that assist biosensors by acting as data transmitters towards the sink.
Consequently, a multi-hop routing strategy is employed to transfer data from biosensors to the sink, with each
biosensor-sink path containing at least one relay node.

Biosensors, denoted as 𝜔, are deployed at predefined locations based on their specific applications, as illustrated in
Figure 1. The sink node (terminal) is situated at the origin of the coordinate system [Raayatpanah et al., 2023]. In fact,
the locations of biosensors and the sink node are predetermined. A summary of the notations for all the parameters
and variables utilized in this paper is provided in Table 1.

The topology configuration for the WBAN under consideration can be represented by a directed graph 𝐷 = (𝐸 ,𝜍).
The node set 𝐸 encompasses a collection of biosensors 𝜔 that generate biomedical data and transmit it to the sink
node 𝜛 using a set of intermediate relay nodes 𝜀. Each biosensor ℷ ε 𝜔 generates <

ℷ units of data. The actual data
value is assumed to be uncertain, with < ε 𝜀

⌋𝜔⌋
+ lying within a given polytope.

The multi-hop routing approach implemented in this model necessitates the placement of at least one relay ℵ ε 𝜀

along the path from biosensor ℷ ε 𝜔 to the sink 𝜛. Therefore, relays play a crucial role in the WBAN design. As
a consequence, the first set of decisions in our model focuses on the selection of relay nodes. We assume that relay
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nodes may exhibit non-uniform characteristics: they could vary in type, implying different capacities and costs. For
instance, if relay ℵ ε 𝜀 of type 9 ε 𝜗 is installed, it will have a corresponding capacity denoted as 8

9

ℵ
and a cost

indicated by 2
9

ℵ
. Such cost may represent the purchasing or monetary cost, as well as the maintenance cost (when

relay ℵ is not a one-time device) of the relay node with capacity 8
9

ℵ
. This decision-making process aims to optimize

the network’s performance by selecting the most suitable relay nodes based on their capacities and costs.
While using a significant number of relays can significantly reduce network energy consumption and enhance

the network’s quality of service, it can also increase radiation absorption in body tissues, potentially causing harm to
sensitive organs due to reduced blood flow and the growth of certain bacteria [Ahmed et al., 2020, Zhou et al., 2017].
Therefore, a constraint is imposed on the maximum number of relays that can be installed. In our model, there is a
maximum of . available candidate sites for relay installation. Another constraint limits the number of relays that can
establish connections with the sink to , ∱ 0. Thus, , relays are allowed to establish links with the sink 𝜛.

We assume that all biosensors transmit data through at least one relay. However, our formulation can be easily
modified as we specify below to enable direct communication between nearby biosensors and the sink, if that is the
optimal solution.

In our scenario, the Communication Range (CR) is defined for each biosensor ℷ and the sink 𝜛, along with binary
coverage parameters 4ℷℵ and 0ℵ𝜛, respectively. This means that biosensors and the sink can only communicate with
relays installed within their communication range. Consequently, 4ℷℵ = 1 if biosensor ℷ can establish a link with
relay ℵ; otherwise, 4ℷℵ = 0. Similarly, 0ℵ𝜛 = 1 when relay ℵ can establish a connection with the sink 𝜛; otherwise,
0ℵ𝜛 = 0.

The enforcement of the communication range in establishing wireless links between devices yields two sets of
eligible links, denoted as 𝜚𝜍 and 𝜑𝜍, where 𝜍 = 𝜚𝜍 ϑ 𝜑𝜍. We define 𝜚𝜍 𝐹 {(ℵ, >)⌋ℵ, > ε 𝜀} as the set of wireless links with
both incident nodes in 𝜀, and 𝜑𝜍 𝐹 {(ℷ, >) ϑ (>, 𝜛)⌋ℷ ε 𝜔, > ε 𝜀} as the set that includes all eligible biosensor-relay
and relay-sink assignments.

For each relay ℵ ε 𝜀, we define the forward star as 𝛻𝜕(ℵ) = {>⌋(ℵ, >) ε 𝜍} and the reverse star as 𝜀𝜕(ℵ) =
{𝐺⌋(𝐺, ℵ) ε 𝜍}. Similarly, we define ℶ𝛻𝜕(ℷ) =

⌈
ℵ⌋(ℷ, ℵ) ε 𝜑𝜍

⌉
to represent the set of relays that can be assigned to

biosensor ℷ ε 𝜔. It is important to note that in order to enable a direct communication between biosensors and the
sink, we just need to modify ℶ𝛻𝜕(ℷ) as ℶ𝛻𝜕(ℷ) =

⌈
ℵ⌋(ℷ, ℵ) ε 𝜑𝜍 ϑ (ℷ, 𝜛)

⌉
. We also define ℸ𝜀𝜕(𝜛) =

⌈
ℵ⌋(ℵ, 𝜛) ε 𝜑𝜍

⌉
as the

set of relays that can be assigned to the sink 𝜛.

3.2. Energy Model

To extend the battery life of nodes within WBANs, it is imperative to reduce energy consumption. The primary
contributors to energy utilization in WBANs include data transmission, reception, sensing, and processing. Therefore,
in line with the approach outlined in [Elias, 2014, Reusens et al., 2009, Elias et al., 2013], our primary focus is on
diminishing the energy expenditure of wireless nodes, particularly by targeting the communication-related energy
incurred during data transmission and reception.

To quantify the energy utilization of individual devices, we use ⊳3⊲0102 and ⊳𝜀⊲0102 to denote the energy
consumption associated with transmitting and receiving a single bit of data. Employing this methodology, we can
calculate the energy required by wireless device ℵ to transmit 6 bits to device > over the link (ℵ, >) as follows:

⊳𝐻𝐼4ℏ𝜛(ℵ, >) = 6

{
⊳3⊲0102 + ⊳456(ℏℵ>)⋆

ℏℵ>

ℵ>

}
.

Similarly, the energy consumed by a relay or the sink for receiving 6 bits can be computed as:

⊳𝐼02 = 6⊳𝜀⊲0102 .

Here, ⊳456(ℏℵ>), ⋆ℵ> , and 6 represent the energy for the transmission amplifier, which depends on the path loss
coefficient ℏℵ> , the distance between nodes ℵ and >, and the total number of transmitted/received bits, respectively.

4. Mixed-Integer Linear Programming formulation

This section presents the Mixed-Integer Linear Programming (MILP) framework designed to optimize the
placement of relay nodes and identify the most efficient routing strategies in the presence of uncertain biosensor
data generation. The decision variables are defined below.
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We first introduce an integer decision variable, ≨ℷℵ, acting as an assignment variable for biosensor ℷ. This sensor
produces uncertain traffic denoted by <

ℷ. We express this variable as follows:

≨ℷℵ(<ℷ) =
⦃

<
ℷ
, if biosensor ℷ ε 𝜔 is assigned to relay ℵ ε 𝜀,

0, otherwise. (1)

Since routing is unsplittable, ≨ℷℵ = <
ℷ means that biosensor ℷ ε 𝜔 is assigned to only one relay ℵ ε 𝜀, hence

all (uncertain) data generated by ℷ is routed/transmitted to relay ℵ. Note that <ℷ takes integer values, which is not a
limiting assumption since it is expressed in bits/s.

We also define two additional unsplittable flow variables, 𝐴ℷ
ℵ>

and 𝐵
ℷ

ℵ𝜛
, which are associated with links and indicate

whether all uncertain data generated by biosensor ℷ is routed through the given link:

𝐴
ℷ

ℵ>
(<ℷ) =

⦃
<
ℷ
, if link (ℵ, >) ε 𝜚𝜍 is used by biosensor ℷ ε 𝜔,

0, otherwise, (2)

𝐵
ℷ

ℵ𝜛
(<ℷ) =

⦃
<
ℷ
, if link (ℵ, 𝜛) ε 𝜑𝜍 is used by biosensor ℷ ε 𝜔,

0, otherwise. (3)

We also define the binary variable ≨ℵ𝜛 to indicate the assignment of relay ℵ to sink 𝜛:

≨ℵ𝜛 =
⦃

1, if relay ℵ ε 𝜀 is assigned to sink 𝜛,

0, otherwise. (4)

Moreover, we introduce the binary variable 𝐶
9

ℵ
, which determines the installation of relay ℵ of type 9:

𝐶
9

ℵ
=
⦃

1, if relay ℵ of type 9 ε 𝜗 is installed in candidate site ℵ ε 𝜀,

0, otherwise. (5)

Once the decision variables have been defined, we can now proceed to establish the constraints representing
feasible solutions for our problem.

To ensure that each biosensor ℷ transmits data via a single path, we enforce that it connects to exactly one relay,
in accordance with the definition of the integer variable ≨ℷℵ:

⦄

ℵεℶ𝛻𝜕(ℷ)

≨ℷℵ = <
ℷ
, ϖℷ ε 𝜔. (6)

We need to ensure that the uncertain generated data transmitted by biosensors to the sink at each relay is balanced
by the data received from biosensors and forwarded to other relays. This is achieved by applying the following flow
balance constraint:

⦄
>ε𝛻𝜕(ℵ)

𝐴
ℷ

ℵ>
ϱ

⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
= ≨ℷℵ ϱ 𝐵

ℷ

ℵ𝜛
, ϖℷ ε 𝜔, ℵ ε 𝜀. (7)

Additionally, constraints are imposed to ensure that biosensors can only establish connections with relays that are
both installed and eligible based on their capacity:

≨ℷℵ ∲ <
ℷ
⦄
9ε𝜗

𝐶
9

ℵ
4ℷℵ, ϖℷ ε 𝜔, ℵ ε 𝜀. (8)

The following constraints are applied to the sink assignment variables, restricting the sink coverage by relay type
and setting an upper limit on the number of relays assigned to the sink:

≨ℵ𝜛 ∲

⦄
9ε𝜗

𝐶
9

ℵ
0ℵ𝜛, ϖℵ ε 𝜀, (9)
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⦄

ℵεℸ𝜀𝜕(𝜛)

≨ℵ𝜛 ∲ ,. (10)

Relays facilitate data transmission from biosensors to the sink, subject to link availability, as per the following
constraint:

𝐵
ℷ

ℵ𝜛
∲ <

ℷ
≨ℵ𝜛0ℵ𝜛, ϖℷ ε 𝜔, ℵ ε 𝜀. (11)

Constraint (12) ensures that at most one relay of capacity type 9 can be installed at each candidate site ℵ:
⦄
9ε𝜗

𝐶
9

ℵ
∲ 1, ϖℵ ε 𝜀. (12)

Additionally, constraints (13) and (14) limit the total number of relay nodes in the network and ensure that incoming
traffic to relay nodes does not exceed their capacity.

⦄
ℵε𝜀

⦄
9ε𝜗

𝐶
9

ℵ
∲ . , (13)

⦄
ℷε𝜔

⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
+
⦄
ℷε𝜔

≨ℷℵ ∲

⦄
9ε𝜗

8
9

ℵ
𝐶
9

ℵ
, ϖℵ ε 𝜀. (14)

In the domain of WBANs, effectively managing data traffic demands is crucial, mirroring the complex challenges
posed by demand uncertainty. This uncertainty in WBANs arises from various factors, primarily due to their
prominent application in healthcare. Here, data transmission requirements exhibit substantial variability, contingent
on the physiological state, activity levels, and health conditions of the monitored individuals, creating uncertain data
loads akin to those observed in traditional telecommunications networks. Furthermore, inherent resource constraints
within WBAN devices necessitate the deployment of adaptive communication protocols designed to optimize energy
consumption. This need for adaptability introduces additional layers of variability in data demands as the network
continuously adapts to conserve energy, adding a dimension of complexity comparable to demand uncertainties in
telecommunications networks.

Addressing demand uncertainty within the WBAN paradigm presents a significant research challenge, akin to
the critical issues faced in capacity planning and network design for conventional telecommunications networks.
Effectively managing demand variability is not only essential but also crucial for ensuring the efficient and dependable
operation of WBANs, especially in life-critical healthcare applications. Even a slight deviation in demand can make
routing problems very challenging to solve. Thus, incorporating safety margins into capacity planning becomes
imperative, enabling the network to adeptly accommodate fluctuations between planned and actual demand.

Moreover, it is essential to recognize that fluctuations in demand can exert a notable influence on the objective
function, potentially resulting in shifts in its value. Our objective is to minimize the expression 𝐽𝐾ℏ80𝜛𝐻50ℏ𝐻+7𝐽⊳ℏ0𝐼,𝐶,
where 𝐽𝐾ℏ80𝜛𝐻50ℏ𝐻 represents the cost associated with relay capacity investment, computed as

⟨
>ε𝜀

⟨
9ε𝜗2

9

>
𝐶
9

>
,

and 𝐽⊳ℏ0𝐼,𝐶 encompasses three distinct energy consumption components: ⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
, ⊳3

𝜀014𝐶

𝐻𝐼4ℏ𝜛
, and ⊳3

𝜀014𝐶

𝐼02 . These
components represent the energy expended during traffic transmission by biosensors, traffic transmission by relays,
and traffic reception by relays, respectively. The parameter 7 plays a pivotal role in our optimization, determining
the relative weight attributed to each cost component in the objective function. As a result, variations in demand
can significantly influence the overall optimization objective, highlighting the importance of incorporating demand
uncertainty comprehensively into our modeling approach.

Therefore, we formulate the Linear Optimization Uncertain (LOU) problem as follows:

𝑀𝑁𝑂. = min𝐽𝐾ℏ80𝜛𝐻50ℏ𝐻 + 7𝐽⊳ℏ0𝐼,𝐶 (𝑁𝑂. ) (15)

𝜛.𝐻. 𝐽𝐿ℏ𝜛𝐻𝐼4ℵℏ𝐻𝜛 (1) ϱ (14).
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The robust solution is obtained by solving the following Robust Counterpart problem (RC):

𝑀𝜀𝐽 = min
⦄
>ε𝜀

⦄
9ε𝜗

2
9

>
𝐶
9

>
+ 7 max

<ε⋛<

(
⦄
ℷε𝜔

⟩ ⦄

>εℶ𝛻𝜕(ℷ)

≨ℷ>(⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
) +

⦄
(ℵ,>)ε𝜀

𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
) +

⦄

>εℸ𝜀𝜕(𝜛)

𝐵
ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪
)

𝜛.𝐻.

⦄

ℵεℶ𝛻𝜕(ℷ)

≨ℷℵ = <
ℷ
, ϖℷ ε 𝜔,

⦄
>ε𝛻𝜕(ℵ)

𝐴
ℷ

ℵ>
ϱ

⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
= ≨ℷℵ ϱ 𝐵

ℷ

ℵ𝜛
, ϖℷ ε 𝜔, ℵ ε 𝜀,

≨ℷℵ ∲ <
ℷ
⦄
9ε𝜗

𝐶
9

ℵ
4ℷℵ, ϖℷ ε 𝜔, ℵ ε 𝜀, < ε ⋛<

≨ℵ𝜛 ∲

⦄
9ε𝜗

𝐶
9

ℵ
0ℵ𝜛, ϖℵ ε 𝜀

⦄

ℵεℸ𝜀𝜕(𝜛)

≨ℵ𝜛 ∲ ,

𝐵
ℷ

ℵ𝜛
∲ <

ℷ
≨ℵ𝜛0ℵ𝜛, ϖℷ ε 𝜔, ℵ ε 𝜀, < ε ⋛<⦄

9ε𝜗
𝐶
9

ℵ
∲ 1, ϖℵ ε 𝜀,

⦄
ℵε𝜀

⦄
9ε𝜗

𝐶
9

ℵ
∲ .

⦄
ℷε𝜔

⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
+
⦄
ℷε𝜔

≨ℷℵ ∲

⦄
9ε𝜗

8
9

ℵ
𝐶
9

ℵ
, ϖ < ε ⋛< ,ϖℵ ε 𝜀,

(≨, 𝐴,𝐵 ) ε 𝑃 ,

where 𝑃 denotes the set of decision variables ≨, 𝐴, and 𝐵 as defined by equations (1) through (4).
Hence, in this paper, we adopt the principles of robust optimization to improve the reliability and adaptability of

network design and capacity planning in WBANs. Our core premise involves integrating uncertain demand, a key
aspect of WBANs, into a predetermined uncertainty set. We establish a robust foundation for our research, exploring
optimization strategies that can effectively tackle and mitigate the inherent demand variability in WBANs. This
approach takes into account the various sources of demand uncertainty, such as the health conditions and physical
states of the monitored individuals. Through our study, we aim to develop both theoretical insights and practical
solutions to strengthen WBANs against uncertainties, with a particular focus on enhancing their performance and
resilience in healthcare applications and related domains.

5. Two-stage Robust Methodology

As previously discussed (Section 2), in the single-stage robust optimization approach, all decision variables must
be determined before the uncertain data is realized. However, the network design problem under traffic uncertainty
is better suited for expression as a two-stage robust optimization approach. This involves formulating a model in
which only some of the decision variables are determined as “here and now” decisions, while the remaining variables
represent “wait and see” decisions and can adapt to the uncertain outcome.

The first stage of the model requires decisions to be made regarding network design and capacity allocation before
uncertain demand is realized, while the second stage involves making routing decisions after observing the demand
[Atamtürk and Zhang, 2007]. This type of problem is commonly referred to as a two-stage problem with recourse in
stochastic programming literature [Birge and Louveaux, 2011]. On the other hand, in single-stage robust optimization,
all decisions are made at the beginning, considering the worst-case scenario for the uncertain parameters. Two-stage
robust optimization offers several advantages over single-stage robust optimization under demand uncertainty. Firstly,
it allows for less conservative solutions by deferring a subset of decisions, thus reducing the probability of infeasibility
for a robust solution under random demand vectors. Secondly, the two-stage approach can handle uncertainties in
various parameters. Finally, despite the increased computational complexity, the two-stage approach can provide
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upper bounds on the probability of infeasibility, allowing for quicker solution times and slightly more conservative
solutions [Ben-Tal and Nemirovski, 1999, Ben-Tal et al., 2004, Atamtürk and Zhang, 2007]. It typically involves the
use of uncertainty sets, such as Gaussian processes, to represent the uncertainty of demand. The approach has been
applied to various domains, including energy management, relief network design, water treatment, and supply chain
management [Atamtürk and Zhang, 2007, Kammammettu and Li, 2020, Jabbarzadeh et al., 2019, Huang et al., 2021].

We develop the robust formulation for the problem under the assumption that the demand < belongs to a given
uncertainty set, ⋛< , where ⋛< is closed, convex, and bounded. Given this uncertainty, we naturally separate decision
variables 𝐶 prior to variables ≨, 𝐵 , and 𝐴. Since the coefficient matrix of variables ≨, 𝐵 , and 𝐴 is not uncertain, our
problem becomes a stochastic problem with fixed recourse [Ben-Tal et al., 2004]. The Adjusted Robust Counterpart
problem (ARC) is introduced as the robust counterpart for a stochastic problem with recourse [Ben-Tal et al., 2004].
Hence, if we let 𝑄 = max<ε⋛<

(⟨
ℷε𝜔

⟩⟨
>εℶ𝛻𝜕(ℷ) ≨ℷ>(⊳3

𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
) + ⟨

(ℵ,>)ε𝜀 𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
) + ⟨

>εℸ𝜀𝜕(𝜛) 𝐵
ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪
), we

can obtain the following (ARC) of the LOU problem:

𝑀𝜍𝜀𝐽 = min
⦄
>ε𝜀

⦄
9ε𝜗

2
9

>
𝐶
9

>
+ 7𝑄

𝜛.𝐻.

⦄
9ε𝜗

𝐶
9

ℵ
∲ 1, ϖℵ ε 𝜀,

⦄
ℵε𝜀

⦄
9ε𝜗

𝐶
9

ℵ
∲ . ,

𝐶
9

ℵ
ε {0, 1}, ϖ9 ε 𝜗 , ℵ ε 𝜀

ϖ < ε ⋛< , there exists (≨, 𝐴, 𝐵 ) s.t.

⟫
❲
❲
❲
❲
❲
❲
❲
❲
❲
❲
❲
❳
❲
❲
❲
❲
❲
❲
❲
❲
❲
❲
❲/

⟨
ℷε𝜔

⟩⟨
>εℶ𝛻𝜕(ℷ) ≨ℷ>(⊳3

𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
) +⟨

(ℵ,>)ε𝜀 𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
)+

⟨
>εℸ𝜀𝜕(𝜛) 𝐵

ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪
∲ 𝑄 ,

⟨
ℵεℶ𝛻𝜕(ℷ) ≨ℷℵ = <

ℷ
, ϖℷ ε 𝜔,

⟨
>ε𝛻𝜕(ℵ) 𝐴

ℷ

ℵ>
ϱ⟨

𝐺ε𝜀𝜕(ℵ) 𝐴
ℷ

𝐺ℵ
= ≨ℷℵ ϱ 𝐵

ℷ

ℵ𝜛
, ϖℷ ε 𝜔, ℵ ε 𝜀,

≨ℷℵ ∲ <
ℷ
⟨

9ε𝜗 𝐶
9

ℵ
4ℷℵ, ϖℷ ε 𝜔, ℵ ε 𝜀,

≨ℵ𝜛 ∲
⟨

9ε𝜗 𝐶
9

ℵ
0ℵ𝜛, ϖℵ ε 𝜀

⟨
ℵεℸ𝜀𝜕(𝜛) ≨ℵ𝜛 ∲ ,,

𝐵
ℷ

ℵ𝜛
∲ <

ℷ
≨ℵ𝜛0ℵ𝜛, ϖℷ ε 𝜔, ℵ ε 𝜀,⟨

ℷε𝜔
⟨

𝐺ε𝜀𝜕(ℵ) 𝐴
ℷ

𝐺ℵ
+⟨

ℷε𝜔 ≨ℷℵ ∲
⟨

9ε𝜗 8
9

ℵ
𝐶
9

ℵ
, ϖℵ ε 𝜀,

(≨, 𝐴,𝐵 ) ε 𝑃 .

The ARC offers greater flexibility than the RC, with a larger feasible set that allows for better optimal value
while still meeting all constraints (𝐴𝜍𝜀𝐽 ∲ 𝐴𝜀𝐽 ). However, this increased flexibility comes at the cost of losing the
favorable complexity results demonstrated in [Ben-Tal et al., 2004], which proves that the ARC problem for an LP with
polyhedral uncertainty is NP-hard. Our research concentrates on determining the conditions within the uncertainty set
that result in a manageable ARC for the robust capacity expansion problem. The contrast between the ARC and the
RC can indeed be substantial, as illustrated in the following example.

Example 5.1. Consider Figure 2, which presents a feasible solution for the topology shown in Figure 1. We assume
that each relay node is allowed to select a capacity of either 7, 14 or 21. Therefore, the feasibility constraints imply
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the following:
<
ℷ1 ∲ 7𝐶1

𝐼1
+ 14𝐶2

𝐼1
+ 21𝐶3

𝐼1
<
ℷ2 ∲ 7𝐶1

𝐼2
+ 14𝐶2

𝐼2
+ 21𝐶3

𝐼2
<
ℷ1 + <

ℷ2 ∲ 7𝐶1
𝐼3
+ 14𝐶2

𝐼3
+ 21𝐶3

𝐼3
Now, let us assume that the demand < is uncertain, but is known to belong to the following polyhedral set [Ben-Tal
et al., 2006, Bertsimas and Brown, 2009]:

⋛< = {(<ℷ1 , <ℷ2 ) ε 𝜀
2⌋0 ∲ <

ℷ1 ∲ 4, 0 ∲ <
ℷ2 ∲ 5, 4<ℷ1 + 3<ℷ2 ∲ 19},

as illustrated in Figure 3.

ℷ1

ℷ2𝐼1

𝐼2
𝐼3

SS

Figure 2: Network planned for example 5.1

<
ℷ2

<
ℷ1

5

4

Figure 3: Polyhedral set of uncertainty demand used in example 5.1
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A single-stage robust solution for this network is a solution vector 𝐶 that is feasible for all ϖ < ε ⋛< . Hence,
it requires that for relay node 𝐼1, 4 ∲ 10𝐶1

𝐼1
+ 20𝐶2

𝐼1
+ 30𝐶3

𝐼1
, for relay node 𝐼2, 5 ∲ 10𝐶1

𝐼2
+ 20𝐶2

𝐼2
+ 30𝐶3

𝐼2
, and

consequently for relay node 𝐼3, 9 ∲ 10𝐶1
𝐼3
+ 20𝐶2

𝐼3
+ 30𝐶3

𝐼3
. These inequalities lead to a minimum capacity of 14 for

relay node 𝐼3.
Let us compare this solution with a two-stage version. In the first stage, we need to determine the capacity variable

𝐶 that is feasible in the second stage for any < ε ⋛< . Then, since <
ℷ1 + <

ℷ2 ∲ 6 for all < ε ⋛< , relay node 𝐼3 only
needs to satisfy 6 ∲ 10𝐶1

𝐼3
+ 20𝐶2

𝐼3
+ 30𝐶3

𝐼3
to guarantee feasible incoming traffic to relay node 𝐼3 in the second stage

for any < ε ⋛< . This leads to a minimum capacity of 7 for relay node 𝐼3.

This simple example illustrates that employing a two-stage robust decision-making approach leads to remarkable
50% reduction in the installed capacity for relay node 𝐼3.

5.1. Uncertainty Sets

The uncertainty model assumes demand, denoted as < , that belongs to a closed, convex, and bounded uncertainty
set, ⋛< . This set does not have any distribution assumptions and models independent uncertainty between demands.
For example, this type of uncertainty set can represent the confidence intervals of uncertain quantities.

We assume that, for each < ε ⋛< , the WBAN design problem is feasible. It should be noted that such
assumption regarding the uncertainty sets is equivalent to the relatively complete recourse assumption in the stochastic
programming literature [Birge and Louveaux, 2011].

While the RC of an uncertain linear program is usually computationally solvable, the same does not hold true for
the ARC [Ben-Tal et al., 2004]. Therefore, in this paper, we consider the following factors to define an uncertainty set
that helps in finding a solvable alternative.

It is crucial for the uncertainty set to account for observed data uncertainty. In our case, the set ⋛< should
accommodate the observed demand fluctuations that frequently occur, while excluding demand realizations that are
extremely improbable. The availability of data to formulate and parameterize the uncertainty set is essential. It is
desirable to have the ability to adjust the shape of ⋛< meaningfully. It is often overlooked but crucial for the resulting
formulations or reformulations to be computationally feasible and scalable with the size of instances.

In this study, we define uncertainty sets as deviations from an estimated or nominal value of the uncertain
parameter. For instance, when considering the uncertain parameter < we define sets centered around the estimated
value < and utilize a scalar value 𝑅< to manage the confidence in the estimate. Indeed, in the design of wireless body
area networks, it is crucial to select an appropriate range of deviation for data parameters according to the specific
medical application and biosensors’ specifications. Failure to do so can result in the loss of critical biomedical data,
potentially endangering patients’ lives, as well as the reduction of the network’s lifespan [Bertsimas and Sim, 2003,
Ben-Tal et al., 2006, Bertsimas and Brown, 2009, Jalilvand-Nejad et al., 2016].

To comprehensively characterize uncertainty while ensuring computational feasibility and scalability, we propose
a polyhedral uncertain set that can represent a wide range of correlation structures within the uncertain parameter < .
This approach enables us to account for correlations between demands of different biosensors in the network, which
is a reasonable assumption in wireless networks. By using the polyhedral uncertain set, we can model uncertainty in
the demand parameters more accurately, providing a flexible and comprehensive framework for real-world network
design scenarios. Since all constraints in the polyhedral set are linear, a solution that proves robust across all scenarios
also demonstrates robustness for the convex hull of those scenarios.

Polyhedral: ⋛< =
\
< ε ⋜⌋𝜔⌋⌋< = < + 𝑅<

𝜚< , 𝑁 𝜚< ∲ 𝑆, 𝜚< ∱ 0
(

(16)

The Polyhedral uncertainty set is a general case of the Budget uncertainty set defined in [Bertsimas and Sim, 2003]
as:

∳ = {< ε ℝ⨋ ς <
𝐺 = <

𝐺

+ 𝐴
𝐺 𝜚<

𝐺
,

⦄
𝐺ε⨋

𝐴
𝐺
∲ φ, 0 ∲ 𝐴

𝐺
∲ 1,ϖ𝐺 ε ⨋} (17)

where <
𝐺

is the nominal demand for commodity 𝐺, 𝜚<
𝐺 is the maximum possible deviation from <

𝐺

, and φ is a parameter
that specifies a limit (the budget) on the deviations of all demands at the same time with respect to the nominal values.
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It is noteworthy that the box uncertain set, which represents the variation of demand around a given nominal
demand with a maximal possible deviation, is a special case of the polyhedral uncertain set. As a simple form of
uncertain demand, we can consider the following formulation:

Box: ⋛< =
\
< ε ⋜⌋𝜔⌋⌋< = < + 𝑅<

𝜚< , ) 𝜚<)∇ ∲ 𝑇∇

(
(18)

where, in both cases, the parameter < represents the nominal or average data rate, while 𝑅< denotes the standard
deviation or any other measure of dispersion. Additionally, 𝜚< represents a random factor. Typically, the choice of 𝜚< is
made based on the level of uncertainty or risk tolerance in the problem and can be derived from historical data, expert
judgment, or sensitivity analysis. While the uncertainty set represents an individual demand, it does not consider the
low probability of all demands being at their highest value simultaneously. To enhance the precision of the uncertainty
set, we can limit the uncertainty by introducing the constraint ) 𝜚<)1 ∲ 𝑇1 into the uncertainty set ⋛< , resulting in the
following intersection uncertain set.

Intersection: ⋛< =
\
< ε ⋜⌋𝜔⌋⌋< = < + 𝑅<

𝜚< , ) 𝜚<)∇ ∲ 𝑇∇, ) 𝜚<)1 ∲ 𝑇1

(
(19)

The uncertain set represented in (19) provides a close approximation of an uncertain demand set that is spherical in
shape, denoted by ⋛< =

\
< ε ⋜⌋𝜔⌋⌋< = < + 𝑅<

𝜚< , ) 𝜚<)2 ∲ 𝑇2

(
in which 𝑇∇ = 𝑇2 and 𝑇1 = 𝑇2

⦅
⌋𝜔⌋. This spherical

representation is suitable when all demands are independent normal random variables. For visual reference, when we
have two biosensors with uncertain traffic, Figure 4 illustrates an approximation of the unit ball in ⋜2 with 𝑇∇ = 1
and 𝑇1 =

⦅
2.

Figure 4: Uncertainty set as the intersection of balls.

Tractable approximate ARC

The adjusted problem, as discussed in [Ben-Tal et al., 2004], presents a significant challenge in terms of finding a
solution. To address this, a solution approach was introduced to approximate the problem by constraining the second-
stage variable to a specific decision rule of the uncertainty parameter.

The method we propose focuses on the relationship between uncertainty and second-stage variables, providing
a more manageable approach to problem-solving. In this context, a decision rule is a function that maps demand
realizations to recourse decision variables, capturing the flexibility of these decisions and allowing them to be adjusted
to fit the observed demand. Decision rules offer a valuable framework for managing the impact of uncertainty on
the decision-making process. They acknowledge that recourse decisions do not need to be fixed before demand
is realized and can be adapted to align with actual demand, offering a more dynamic and responsive approach to
decision-making under uncertainty. In various works including for example [Wang et al., 2019], the authors pointed
out how the dependency between the variables in the two stages can greatly increase the computational overhead. We
acknowledge that this dependency increases computational complexity, as second-stage decisions are contingent on
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both first-stage decisions and uncertainty realizations. To address this, we have implemented a linear approximation
for the second-stage variables, as explained in equation (20) hereafter. We define these variables as linear functions of
demand realizations, expressed as deviations from nominal values of uncertain parameters, as follows:

≨ℷℵ = <
ℷ
≨ℷℵ, 𝐴

ℷ

ℵ>
= <

ℷ
𝐴
ℷ

ℵ>
, 𝐵

ℷ

ℵ𝜛
= <

ℷ
𝐵
ℷ

ℵ𝜛
, (20)

where ≨ℷℵ, 𝐴
ℷ

ℵ>
, and 𝐵

ℷ

ℵ𝜛
represent the new binary decision variables. This linear decision rule approach helps reduce

computational overhead by simplifying the dependency structure between stages.
The approach enables a thorough characterization of uncertainty while ensuring computational feasibility and

scalability. It is important to note that the decision variables are to be fixed in the first stage, similar to the 𝐶 variable.
By representing the second stage variables of the ARC of the problem with this function, the following problem arises:

𝑀𝜍𝜀𝐽 = min
⦄
>ε𝜀

⦄
9ε𝜗

2
9

>
𝐶
9

>
+ 7𝑄 (21)

𝜛.𝐻.

⦄
9ε𝜗

𝐶
9

ℵ
∲ 1, ϖℵ ε 𝜀, (22)

⦄
ℵε𝜀

⦄
9ε𝜗

𝐶
9

ℵ
∲ . , (23)

⦄
ℷε𝜔

<
ℷ
⟩ ⦄

>εℶ𝛻𝜕(ℷ)

≨ℷ>(⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
) +

⦄
(ℵ,>)ε𝜀

𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
) +

⦄

>εℸ𝜀𝜕(𝜛)

𝐵
ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪
∲ 𝑄 ,ϖ < ε ⋛< , (24)

⦄

ℵεℶ𝛻𝜕(ℷ)

≨ℷℵ = 1, ϖℷ ε 𝜔, (25)

⦄
>ε𝛻𝜕(ℵ)

𝐴
ℷ

ℵ>
ϱ

⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
= ≨ℷℵ ϱ 𝐵

ℷ

ℵ𝜛
, ϖℷ ε 𝜔, ℵ ε 𝜀, (26)

≨ℷℵ ∲

⦄
9ε𝜗

𝐶
9

ℵ
4ℷℵ, ϖℷ ε 𝜔, ℵ ε 𝜀, (27)

≨ℵ𝜛 ∲

⦄
9ε𝜗

𝐶
9

ℵ
0ℵ𝜛, ϖℵ ε 𝜀, (28)

⦄

ℵεℸ𝜀𝜕(𝜛)

≨ℵ𝜛 ∲ ,, (29)

𝐵
ℷ

ℵ𝜛
∲ ≨ℵ𝜛0ℵ𝜛, ϖℷ ε 𝜔, ℵ ε 𝜀, (30)

⦄
ℷε𝜔

⦄
𝐺ε𝜀𝜕(ℵ)

<
ℷ
𝐴
ℷ

𝐺ℵ
+
⦄
ℷε𝜔

<
ℷ
≨ℷℵ ∲

⦄
9ε𝜗

8
9

ℵ
𝐶
9

ℵ
, ϖℵ ε 𝜀, < ε ⋛< , (31)

≨ℷℵ, 𝐴
ℷ

ℵ>
, 𝐵

ℷ

ℵ𝜛
ε {0, 1}. (32)

In this model, uncertainty is incorporated into constraints (24) and (31). We can now describe the Robust
Counterpart of these constraints which is obtained by utilizing the uncertainty sets defined in (16) and (19), as
demonstrated in the following theorems.

Theorem 5.1. The robust counterpart of constraints (24) and (31) with uncertain demand, given by polyhedral sets
in (16), can be expressed as follows:

⦄
ℷε𝜔

<ℷ
⟩ ⦄

>εℶ𝛻𝜕(ℷ)

≨ℷ>(⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
) +

⦄
(ℵ,>)ε𝜀

𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
) +

⦄

>εℸ𝜀𝜕(𝜛)

𝐵
ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪
+ 𝑈𝑆 ∲ 𝑄 ,

𝑁
ℷ3
𝑈 ∱ 𝑅<ℷ

⟩ ⦄

>εℶ𝛻𝜕(ℷ)

≨ℷ>(⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
) +

⦄
(ℵ,>)ε𝜀

𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
) +

⦄

>εℸ𝜀𝜕(𝜛)

𝐵
ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪

ϖℷ ε 𝜔,
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⦄
ℷε𝜔

<ℷ(
⦄

𝐺ε𝜀𝜕(ℵ)
𝐴
ℷ

𝐺ℵ
+ ≨ℷℵ) + 𝑄ℵ𝑆 ∲

⦄
9ε𝜗

8
9

ℵ
𝐶
9

ℵ
, ϖℵ ε 𝜀,

𝑁
ℷ3
𝑄ℵ ∱ 𝑅ℷ

⟩ ⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
+ ≨ℷℵ

⟪
ϖℷ ε 𝜔, ℵ ε 𝜀,

𝑈 ∱ 0,
𝑄ℵ ∱ 0, ϖℵ ε 𝜀.

Proof. A solution to constraint (24) is referred to as robust with respect to polyhedral sets in (16). The worst-case
scenario is obtained by solving the following problem:

max
𝜚<

⦄
ℷε𝜔

(<ℷ + 𝑅<ℷ
𝜚<ℷ)
⟩ ⦄

>εℶ𝛻𝜕(ℷ)

≨ℷ>(⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
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𝐴
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𝐵
ℷ

>𝜛
(⊳𝜀
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𝐼02
)
⟪

𝜛.𝐻.

⦄
ℷε𝜔

𝑁
ℷ 𝜚<ℷ ∲ 𝑆,

𝜚<ℷ ∱ 0, ϖℷ ε 𝜔.

The linear programming optimization problem under a polyhedral feasible region is equivalent to its dual optimization
problem according to duality theory [Bertsimas and Tsitsiklis, 1997, Bazaraa et al., 2010]. Then, the dual of this
problem also provides the worst-case value, as expressed by the following equation:

min
𝑈

⦄
ℷε𝜔
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≨ℷ>(⊳3
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𝐴
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𝐵
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(⊳𝜀
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𝐼02
)
⟪
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𝑁
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≨ℷ>(⊳3
𝜔ℵ𝐿

𝐻𝐼4ℏ𝜛
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⦄
(ℵ,>)ε𝜀

𝐴
ℷ

ℵ>
(⊳3

𝐼01

𝐻𝐼4ℏ𝜛
) +

⦄

>εℸ𝜀𝜕(𝜛)

𝐵
ℷ

>𝜛
(⊳𝜀

𝜛ℵℏ9

𝐼02
)
⟪

ϖℷ ε 𝜔

𝑈 ∱ 0.

Similarly, the worst-case scenario of constraint (31) for each relay ℵ can be found by addressing the following
problem:

max
𝜚<

⦄
ℷε𝜔

⦄
𝐺ε𝜀𝜕(ℵ)

(<ℷ + 𝑅<ℷ
𝜚<ℷ)𝐴ℷ

𝐺ℵ
+
⦄
ℷε𝜔

(<ℷ + 𝑅<ℷ
𝜚<ℷ)≨ℷℵ

𝜛.𝐻.

⦄
ℷε𝜔

𝑁
ℷ 𝜚<ℷ ∲ 𝑆,

𝜚<ℷ ∱ 0, ϖℷ ε 𝜔.

The dual form of constraint (31) for every relay ℵ, which also provides the maximum value in the worst case with dual
variable 𝑄ℵ, can be described as follows:

min
𝑄ℵ

⦄
ℷε𝜔

<ℷ(
⦄

𝐺ε𝜀𝜕(ℵ)
𝐴
ℷ

𝐺ℵ
+ ≨ℷℵ) + 𝑄ℵ𝑆

𝜛.𝐻.

𝑁
ℷ3
𝑄ℵ ∱ 𝑅ℷ

⦄
𝐺ε𝜀𝜕(ℵ)

𝐴
ℷ

𝐺ℵ
+ ≨ℷℵ ϖℷ ε 𝜔

𝑄ℵ ∱ 0.

Any feasible solution that satisfies the duality conditions produces an objective value that acts as a lower bound
for the optimal (worst-case) value. Thus, the theorem is proven.
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In the following theorem, we present results for an uncertain set as described in (19), which closely approximates
an uncertain demand set that is spherical in shape. This set representation is suitable when all demands consist of
independent normal random variables.
It is essential to highlight a crucial distinction between the uncertainty set described in set (19) and the one in (16).
While the terms defining the uncertainty set in (16) are linear inequality relationships, the terms in set (19) are
nonlinear. This nonlinearity introduces a significant difference in the complexity and handling of the uncertainty
set. Therefore, in the upcoming theorem, our approach will involve first linearizing the nonlinear terms to facilitate
the analysis, similar to the methodology employed previously. By addressing this distinction and the subsequent
linearization process, we aim to enhance the understanding and treatment of the uncertainty set in (19) within the
robust optimization framework.

Theorem 5.2. The robust versions of constraints (24) and (31) with an uncertain set in (19) can be formulated as
follows:
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⟩ ⦄
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Proof. The worst-case scenario of constraint (24) concerning the uncertain set in (19) can be identified by addressing
the following problem:
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or we can also write

max
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0 ∲ 𝜚<ℷ+ ∲ 𝑇∇, ϖℷ ε 𝜔,
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This problem’s dual also yields the worst-case value. The dual is written as
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Biosensor A B C D E F G H I J K L M sink
x-coordinate (m) 0.10 -0.20 -0.03 0.05 0.10 -0.10 -0.10 0.10 -0.10 -0.05 0 0.20 0.10 0
y-coordinate (m) -0.60 -0.10 0.10 0.25 -0.90 -0.30 0.35 0.35 0.60 0 0.70 -0.20 0.90 0
Single-hop (m) 0.66 0.13 0.14 0.47 0.85 0.23 0.53 0.53 0.66 0.3 0.8 0.31 0.85 -
Multi-hop (m) 0.66 0.13 0.14 0.47 0.2 0.17 0.36 0.07 0.45 0.48 0.37 0.58 0.2 -

Table 2
Deployment of biosensors on patient’s body. Distances (in meters) between biosensors and the sink for the single-hop
case, and between biosensors and the nearest node for the multi-hop case.

min
𝑉,𝑊+,𝑊+
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⟩ ⦄
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The worst-case scenario for constraint (31) for each relay ℵ can be determined by solving the following problem:

max
𝜚<

⦄
ℷε𝜔

⦄
𝐺ε𝜀𝜕(ℵ)

(<ℷ + 𝑅<ℷ ( 𝜚<ℷ+ ϱ 𝜚<ℷϱ))𝐴ℷ
𝐺ℵ
+
⦄
ℷε𝜔

(<ℷ + 𝑅<ℷ ( 𝜚<ℷ+ ϱ 𝜚<ℷϱ))≨ℷℵ

𝜛.𝐻.

⦄
ℷε𝜔

𝜚<ℷ+ + 𝜚<ℷϱ ∲ 𝑇1,

0 ∲ 𝜚<ℷ+ ∲ 𝑇∇, ϖℷ ε 𝜔,

0 ∲ 𝜚<ℷϱ ∲ 𝑇∇, ϖℷ ε 𝜔.

By assigning the dual variables 7ℵ, 𝑋
ℷ+
ℵ

, and 𝑋
ℷϱ
ℵ

to the dual form of the above formulation for each relay ℵ, we can
achieve the result. Therefore, the theorem is proven.

The models introduced in this paper involve constraints that must be satisfied for all traffic vectors < within
the uncertainty set, < ε ⋛< . When ⋛< takes the form of a polytope with a polynomial number of extreme points,
some formulations such as those concerning dynamic WBAN design can be effectively solved by considering the
constraints related to each extreme point. However, for most of the polytopes considered in the literature (such as those
described above), the number of extreme points is not polynomial. In such cases, there are primarily two methods to
handle constraints involving <: either employing cutting-plane algorithms where traffic vectors are generated in an
iterative way [Ben-Ameur and Kerivin, 2003], or adopting duality-based approaches [Ben-Tal et al., 2009a]. While
the cutting-plane approach can be applied to any tractable polytope (i.e., for which separation is polynomial), the latter
method is recommended when the polyhedral set can be described using a limited number of variables and constraints
[Ben-Ameur et al., 2011, Ben-Tal et al., 2009a].

6. Wireless Body Area Network Scenario

In this section, we present the topology and scenario of the wireless body area network considered in our numerical
evaluation. The topology consists of a set of 13 biosensors of various types, strategically placed on specific parts of
the body to monitor and transfer data to the sink device. Virtual 2D coordinates (x,y) specify network components
location, as detailed in Table 2. Referring to Figure 5, the sink device is positioned at the origin of the coordinate
system, and ensures accessibility to all devices. The Euclidean distance between each biosensor and its nearest node,
in multi-hop communication, is also reported in Table 2. Additionally, eight ellipsoidal regions, shown in Figure 5,
have been identified for installing relays uniformly at random on the body surface or patient’s clothes. These regions
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Figure 5: A wireless body area network with different areas for installing relays.

cover the entire body surface, ensuring that transferring data through multi-hop communication is not affected by
changes in body state or network topology. In other words, these regions have been carefully selected to facilitate
communication between devices and ensure that body movements do not interfere with the monitoring process. The
topology is designed for healthcare applications and represents a normal standing scenario with arms hanging on
the sides. For each experiment, described in the next Section, the maximum number of relays that can be installed
(candidate sites, . ) is assumed to be 80, but only a few are actually installed as we will detail in the next Section.

Wireless nodes in a WBAN access the channel through various wireless technologies and protocols tailored
for healthcare monitoring applications, typically requiring low power consumption (often less than 1 mW peak
power) within short communication distances, usually up to 2 meters [Zhong et al., 2022]. WBANs utilize wireless
standards like Bluetooth, Zigbee, WiFi, and IEEE 802.15.6 to enable communication among wearable and implantable
sensors [Latré et al., 2011, Arefin et al., 2017]. Channel access methods in WBANs involve techniques such as
Contention-Based Access with Collision Avoidance (CSMA/CA) and Slotted ALOHA to manage channel access
efficiently [Arefin et al., 2017, Zhong et al., 2022]. However, WBANs face challenges such as intra-BAN interference,
mitigated using Time Division Multiple Access (TDMA) techniques, while inter-WBAN interference may occur when
multiple WBANs are co-located. The control system manages the network, providing TDMA cycle parameter values
for equal distribution of TDMA device slots among nodes [Mohanty et al., 2023]. In this work, we focus on the
routing level, assuming the adoption of solutions proposed at the MAC/physical layer for successful and reliable
communication of biosensors [Arefin et al., 2017, Zhong et al., 2022, Mohanty et al., 2023] at such layers to ensure
successful/reliable communication of biosensors. To ensure optimal healthcare services, minimize heat absorption
by devices [Elias, 2014, Zhou et al., 2017, Shahbazi and Byun, 2020], prevent signal interference [Samal et al.,
2019], and reduce network energy consumption [Shahbazi and Byun, 2020], it is crucial to limit the communication
range of devices and reduce transmission power. Given that wireless communication takes place in close proximity
to the human body, it is important to consider Specific Absorption Rates (SAR), which measure the amount of radio
frequency energy absorbed by human tissue per unit mass [Wu and Lin, 2014]. As the distance between biosensors and
the sink increases, higher transmission power is required to ensure packet delivery, which can lead to increased heat
and SAR levels. To mitigate these risks, we have employed intermediate relay nodes to adjust the distance between
biosensors and the sink, allowing for low transmission power and ensuring that SAR levels remain within acceptable
thresholds. Our topology is carefully designed to facilitate communication between devices while minimizing the
potential risks associated with wireless communications near the human body.
Multi-hop communication has the potential to mitigate the adverse effects of SAR while simultaneously improving
transmission success rates [Wu and Lin, 2014, Ahmed et al., 2018]. To regulate the distance between network
components, we assign connectivity parameters 4ℷℵ and 0ℵ𝜛 a value of 1 only if a relay ℵ is installed within a radius
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Parameter Value

⊳
3⊲0102

16.7 (nJ/bit)
⊳

𝜀⊲0102
36.1 (nJ/bit)

⊳
456

(3.38) 1.97 (nJ/bit)
⊳

456
(5.9) 7990 (nJ/bit)

Frequency range 2.4 ϱ 2.45 GHz

Table 3
Energy consumption values and frequency range for the Nordic nRF2401 transceiver.

no greater than the defined communication range (CR) in centimeters for both biosensors and the sink, respectively.
In wireless channel propagation models, the path loss power is typically assumed to be 2 for free space propagation
and around 4 in lossy environments. However, the path loss power can exceed 4 when transmission occurs around the
human body, with values ranging from 5 to 7.4 [Elias, 2014]. Specifically, line-of-sight transmission typically has
a propagation value of about 3.38, whereas non-line-of-sight transmission around the body has a propagation value
of approximately 5.9. For the computation of the network energy consumption, we utilize parameters specific to the
Nordic nrf2401 transceiver, which operates within the 2.4-2.45 GHz frequency range and is commonly employed
in wireless body networks [Kaur et al., 2021, Elias, 2014, Reusens et al., 2009]. These parameters are detailed in
Table 3. Therefore, the initial parameters for assessing network energy consumption in both deterministic and robust
models are ⊳3⊲0102 and ⊳𝜀⊲0102 , which correspond to transmitter and receiver circuitry, respectively. Furthermore, to
regulate the communication distance between devices and minimize the required transmission power, we incorporated
amplifier energy to sustain weak signals until routing completion and efficiently manage their transmission to the
subsequent device in the communication path. Consequently, the amplifier energy, which is dependent on path loss
value, for line-of-sight (LOS) transmission (ℏ = 3.38) and non-line-of-sight (NLOS) transmission (ℏ = 5.9) was
calculated as ⊳456(3.38) = 1.97 (ℏ𝑌∂ℷℵ𝐻) and ⊳456(5.9) = 7990 (ℏ𝑌∂ℷℵ𝐻), respectively.

7. Numerical Results

In this section we will discuss the computational experiments that compare Robust solutions to Deterministic ones;
these latter are obtained by replacing < in the LOU model (15) with its nominal or average data rate < . We utilize
two data uncertainty sets, specifically polyhedral and intersection, defined in (16) and (19), respectively. Our set of
experiments aims to demonstrate that the robust approach is more suitable for WBANs than the deterministic ones
since biosensors may generate an uncertain amount of data, even though in a given range.

Before presenting the metrics used to evaluate the performance of our proposed approach, we emphasize that our
work is compared against two baseline approaches:

• Deterministic Model: This model assumes perfect knowledge of the problem parameters without any
consideration of uncertainty. While it provides a benchmark for ideal conditions, it lacks the robustness needed
to handle real-world variability.

• Worst Case Scenario: This approach accounts for uncertainty by considering the most adverse conditions
within the uncertainty set. It is comparable to the robust optimization model proposed by D’Andreagiovanni et
al. [D’Andreagiovanni and Nardin, 2015], which minimizes the maximum deviation between proposed and
optimal solutions across all scenarios. However, as discussed before, our two-stage robust approach offers
greater flexibility than the single-stage model of D’Andreagiovanni et al., enabling more adaptable and efficient
solutions.

To assess the effectiveness of our methodology relative to these baselines, we use the following four metrics:

• 𝑀⋆: the optimal value of deterministic solutions.

• 𝑀𝜀: the conservative estimate of the optimal value obtained by solving the two-stage robust problem under
uncertain data parameters. 𝑀𝜀 can be compared with 𝑀⋆ to assess the impact of uncertainty on the performance
of the network. If 𝑀𝜀 is higher but close to 𝑀⋆, it means that the solution is robust to uncertainty, that is, the
network can overcome the worst-case scenario.
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• 𝑀𝑍𝐽 : the worst-case value of the deterministic solution when data rate is subject to uncertainty. Therefore, it
measures the maximum (i.e., worst) possible output value that can be obtained from the model under all possible
scenarios involving uncertain data.

• 𝑀𝜍𝐽 : the objective function’s value of the robust solution under the deterministic scenario. In other words, 𝑀𝜍𝐽

measures the performance of the solution obtained from a robust optimization problem when the input data
is known with certainty. This metric provides a measure of how well the robust solution performs under ideal
conditions, when there is no uncertainty in the input data.

Finally, in each experiment, we compare the performance of robust and deterministic solutions using the following
two metrics:

𝜀𝑍𝐽 =
𝑀𝑍𝐽 ϱ𝑀𝜀

𝑀𝜀

, 𝜀𝜍𝐽 =
𝑀𝜍𝐽 ϱ𝑀⋆

𝑀⋆

.

Specifically, metric 𝜀𝑍𝐽 measures the relative improvement of the robust solution in the worst case and 𝜀𝜍𝐽 is the
relative loss of optimality of the robust solution on the nominal data.

7.1. Experiment 1: Performance metrics and Relay Capacity analysis with Polyhedral uncertainty

In this first set of experiments, we assume that the generated data < are within the Polyhedral uncertainty set:

Polyhedral: ⋛< =
⦆

< ε ⋜⌋𝜔⌋⌋< = 80 + 𝑅<
𝜚< ,

⦄
ℷε𝜔

𝜚<ℷ ∲ 𝑆 = 50, 𝜚< ∱ 0
[

.

Figure 6 reports the trend of metrics 𝑀⋆, 𝑀𝜀, 𝑀𝑍𝐽 and 𝑀𝜍𝐽 as a function of the uncertainty level 𝑅< ε [0, 1]
with 0.1 increments. Initially, there is almost no change in all metrics while 𝑅< increases from 0 to 0.3; then, the
changes are more evident starting at 𝑅< = 0.3. According to the figure, there exists, at most, a 12.7% gap between
𝑀⋆ and 𝑀𝜀; specifically, this gap raises as 𝑅< grows, and assumes values from 0 to 12.7%. Thus, the robust solution
only deviates slightly from the optimal solution when using deterministic data parameters.

In contrast to the robust model optimal value, 𝑀𝑍𝐽 sharply jumps as the uncertainty level raises from 0.3 to 0.8,
then this metric gradually increases and stabilizes for 𝑅< ∱ 0.8. In fact, as the uncertainty levels increase, the worst-
case value of the deterministic solution increases too because it requires the installation of relay nodes with higher
capacity and therefore a higher investment cost.
In Figure 7, we illustrate 𝜀𝜍𝐽 and 𝜀𝑍𝐽 versus 𝑅< within the [0, 1] range for 𝑆 = 50 (refer to equation 16, reported
at the beginning of this subsection for sake of clarity) to evaluate the effectiveness of the robust solution in reducing
worst-case energy consumption and the level of optimality lost in the deterministic model due to the robust solution. It
is important to note that implementing a WBAN using the suggested two-stage robust approach results in only a 6.4%
increase in energy consumption compared to the deterministic approach. However, it is crucial to consider worst-
case scenarios, as evidenced by the plateau observed in the 𝜀𝜍𝐽 curve. In contrast, developing a WBAN without
considering data uncertainty could result in worst-case scenarios, leading to a significant loss in energy resources
(24%) per data transmission, as depicted by the 𝜀𝑍𝐽 curve. This highlights that the energy consumption rise in the
robust approach is significantly lower than that in the worst-case scenario, meaning that the robust WBAN design
can flexibly handle data uncertainty considering the actual design of such networks, while adopting a conservative
approach to data transmission.

Relay Capacity Analysis
The emergence of uncertainty in the network necessitates changes in its topology. This is especially true when the

level of uncertainty increases. In fact, the decision-making regarding the number of relays to install and the selection of
their capacities is a major challenge in the context of wireless body area network design. Moreover, relays’ capacities
should be chosen in a way that, in addition to guaranteeing low installation costs, they provide sufficient capacity for
data transmission even when the worst-case data rates occur.

Figures 8-10 illustrate the distribution of the installed relays with four different capacity values, denoted as
8
9
, 9 ε 𝜗 , where 8

1
< 8

2
< 8

3
< 8

4. These values are randomly extracted from a uniform distribution between 100
to 400. We observe, however, that similar results (not shown for sake of brevity) were obtained fixing capacity values
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and 𝜀
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as a function of the uncertainty level 𝑅
<
ε [0, 1].

to 100, 200, 300 and 400 for 81, 82, 83 and 8
4 respectively. Similarly, the investment/relay installation costs, which

increase proportionally to relay capacities’ values, range uniformly from 120 to 700 monetary units. Constraint (12)
imposes that only one relay of capacity type 9 can be installed at each candidate site ℵ.

The comparison is made between the MIP model with nominal data rate (<ℷ), the two-stage robust model
considering uncertain data within a polyhedral uncertainty set, and the worst-case scenario, with 𝑅ℷ varying in the
set {0.3, 0.6, 0.9}.

Figure 8 illustrates that in the deterministic model, 28.6% and 42.9% of relays were installed with the lowest
capacity (81 and 8

2, respectively), and 28.5% were installed with capacity 8
3. However, the pattern changes when

we introduce uncertainty. With an uncertainty level 𝑅ℷ = 0.3, in the proposed robust model, 71.3% of the relays are
installed with the lowest capacities of type 8

1 (14.3%) and 8
2 (57%), while almost 60% of the installed relays in the

worst-case scenario have the highest capacities: 83 (42.9%) and 8
4 (14.3%).
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1, 82, 83, and 8

4 under a polyhedral uncertainty set with
𝑅
ℷ
= 0.9.

Figure 9 further demonstrates that the robust approach offers high flexibility and exhibits a behavior closely
resembling that of the deterministic model, even when the uncertainty level increases to 𝑅ℷ = 0.6; in fact, with
such a 𝑅ℷ value, the robust model installs a total of 71% relays of type 81 (28.6%) and 8

2 (42.9%). Furthermore, it only
installs relays of type 8

4 (28.5%, and none of type 8
3) as compared to the case where 𝑅ℷ = 0.3 (14.4% of type 8

4 and
14.3% of type 8

3) to accommodate the increasing network traffic.
In this scenario, the worst-case model shows more variety in installing relays. This provides a topology for the

network in which 28.6% of the relays have type 1 capacity, 14.2% of the relays have capacity 82, 28.6% 83, and finally,
28.6% of the relays have the highest installed capacity. Finally, Figure 10 illustrates that more than 71.5% of the total
number of relays are installed with high capacity in the worst-case scenario model when 𝑅ℷ = 0.9 (28.6% of type
8
3 and 42.9% of type 8

4), while in the robust model, about 43% of the relays were installed with such capacities (83
and 8

4).

Hence, to summarize, the deterministic model does not account for variability and uncertainty in data rates, which is
critical in practical scenarios where data traffic can be highly unpredictable. This inflexibility can result, especially
when data rate uncertainty increases, in either under-provisioning (leading to failures in data transmission and hence
in patients monitoring) or over-provisioning (leading to unnecessary costs); installing a large number of relays with
high capacity would in fact significantly increase costs for patients, thus violating the principle of provisioning cheap
health services, which is one of the goals of WBANs.
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of 0.1 with respect to 𝑆.

In contrast to the worst-case scenario, our two-stage robust WBAN design model selects relay capacities while
considering a range of potential data rate scenarios within an uncertainty set in the first stage. This stage offers a
solution that remains feasible under various potential data rate realizations, with 71.3% and 71% of the relays being
equipped with the lowest capacity for 𝑅ℷ = 0.3 and 𝑅ℷ = 0.6, respectively. Even at the highest uncertainty level of
𝑅ℷ = 0.9, this percentage remains at 57.2%.

At this stage we reconsider the Polyhedral uncertainty set ⋛< =
\
< ε ⋜⌋𝜔⌋⌋< = 80 + 𝑅<

𝜚< ,
⟨

ℷε𝜔
𝜚<ℷ ∲ 𝑆, 𝜚< ∱ 0

(
,

and we vary the parameter 𝑆’s value in the set {50, 100, 150, 200, 250, 300}.
Figure 11 compares the average value (with respect to 𝑆) of ratios 𝜀𝜍𝐽 and 𝜀𝑍𝐽 as a function of the uncertainty

level 𝑅< ε [0, 1].
The results indicate that the robust solution is only slightly suboptimal for the deterministic data parameters, while

it significantly reduces the worst-case cost, especially when the uncertainty level in data rates increases.

7.2. Experiment 2: Performance metrics and Relay Capacity analysis with Intersection uncertainty

In this second set of experiments we assume that the generated data < fall in the following intersection uncertainty
set:

Intersection: ⋛< =
\
< ε ⋜⌋𝜔⌋⌋< = 80 + 𝑅<

𝜚< , ) 𝜚<)∇ ∲ 4, ) 𝜚<)1 ∲ 50
(

Figure 12 shows the metrics 𝑀⋆, 𝑀𝜀, 𝑀𝜍𝐽 , and 𝑀𝑍𝐽 plotted against the uncertainty level 𝑅< ε [0, 1].
The curves in Figure 12 show that 𝑀𝜍𝐽 and 𝑀𝜀 almost overlap, exhibiting minimal variance at each uncertainty

level. Moreover, the maximum increase in 𝑀𝜀 over 𝑀⋆ amounts to 26.6% as 𝑅< reaches 1. Furthermore, as the
uncertainty level increases, 𝑀𝑆2 can reach up to 162% of 𝑀⋆ and 106% of 𝑀𝜀. This suggests that adopting a robust
strategy towards data variability and implementing a resilient strategy for WBANs in specific scenarios does not result
in wasteful energy consumption within the network and permits to manage worst-case scenarios while decreasing
network energy usage. Figure 13 illustrates the energy loss in the aforementioned scenarios through the 𝜀𝜍𝐽 and
𝜀𝑍𝐽 metrics. The 𝜀𝜍𝐽 metric shows a slight increase as 𝑅< increases. In contrast, the 𝜀𝑍𝐽 metric exhibits a
significant rise as the 𝑅< parameter increases. The optimality loss exceeds 49% for 𝑅< > 0.5. This implies that
with an increasing uncertainty level in the data rate, energy loss also rises, underscoring the importance of considering
data rate uncertainty in energy-aware WBANs to reduce energy loss while maintaining a consistent data output from
biosensors.
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Relay Capacity Analysis
As previously discussed, the uncertainty in data rate presents a challenge in selecting relay capacities for wireless

body area networks. Figures 14-16 show the percentage of installed relays with varying capacities, 89, under uncertain
conditions. Four capacity levels, 81 < 8

2
< 8

3
< 8

4, are considered as before for the deterministic MIP model with
nominal data rate, the two-stage robust model, and the worst-case scenario under the intersection uncertainty set.

In Figure 14, the deterministic model installs no relays with maximum capacity (84) and 28.6% of type 8
3, while

71.5% are lower capacity relays (81 and 8
2). When uncertainty is present, even at a high level (𝑅< = 0.9), the two-stage

robust model shows flexibility in selecting relay capacities. In Figure 14, 12.5% and 75% of relays are installed with
the lowest capacities (81 and 8

2) at 𝑅< = 0.3. These values change slightly as uncertainty increases to 𝑅< = 0.6
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Figure 14: Percentage of installed relays with capacities 8
1, 82, 83, and 8

4 under an intersection uncertainty set with
𝑅
ℷ
= 0.3.
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Figure 15: Percentage of installed relays with capacities 8
1, 82, 83, and 8

4 under an intersection uncertainty set with
𝑅
ℷ
= 0.6.
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Figure 16: Percentage of installed relays with capacities 8
1, 82, 83, and 8

4 under an intersection uncertainty set with
𝑅
ℷ
= 0.9.

(Figure 15), with 30% of relays at 81, 60% at 82, and 10% at 83. At the highest uncertainty level (𝑅< = 0.9), 28.6% of
relays are installed with the highest capacity (84), while 57.2% are at 81 and 8

2 (Figure 16).
The robust model effectively selects appropriate relay capacities to ensure data transmission despite traffic

uncertainty. In contrast, the worst-case scenario installs relays with the highest capacity, with about 60% of relays
being 8

3 and 8
4 as uncertainty increases from 0.3 to 0.9.

Impact of uncertainty on the 𝜀
𝑍𝐽

and 𝜀
𝜍𝐽

metrics

This section explores how the uncertainty set impacts the metrics 𝜀𝑍𝐽 (relative improvement of the robust
solution in the worst case) and 𝜀𝜍𝐽 (relative loss of optimality of the robust solution on the nominal data).
Figure 17 illustrates the trend of the 𝜀𝑍𝐽 metric as a function of the uncertainty level 𝑅< for the polyhedral (𝜀♮𝑂𝑁

𝑍 𝐽
)

and the intersection uncertainty set (𝜀𝐾♯3

𝑍 𝐽
). From Figure 17, it is evident that when the network operates under a

polyhedral uncertainty set, robust solutions offer greater improvement in the worst-case scenario compared to when
an intersection uncertainty set is utilized. Specifically, the metric 𝜀𝐾♯3

𝑍 𝐽
shows a sharp increase with higher uncertainty

levels of 𝑅< , while 𝜀
♮𝑂𝑁

𝑍 𝐽
demonstrates almost plateaued growth. Additionally, there is an 85% gap between them in

terms of ratio differences.
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Figure 17: Relative improvement of the robust solution in the worst case, 𝜀
𝑍𝐽

, with (a) Polyhedral and (b) Intersection
uncertainty set.
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Figure 18: Relative loss of optimality of the robust solution on the nominal data, 𝜀
𝜍𝐽

, with (a) Intersection and (b)
Polyhedral uncertainty set.

In Figure 18, we plot 𝜀♮𝑂𝑁

𝜍𝐽
and 𝜀

𝐾♯3

𝜍𝐽
to compare the energy loss percentages of robust solutions with nominal

parameters. The Two-stage Robust approach under the polyhedral uncertainty set can optimize a WBAN for energy
efficiency, resulting in a 6.4% increase in energy consumption for nominal parameters (as shown by the 𝜀♮𝑂𝑁

𝜍𝐽
curve).

In contrast, the robust formulation under the intersection uncertainty set would incur a 27% energy loss under the
same nominal scenario (as shown by the 𝜀

𝐾♯3

𝜍𝐽
curve).

Impact of Relay Installation Costs on Model Performance

In this section, we examine the impact of increasing relay installation costs on the performance of our two-stage
robust model. We compare our model to two approaches, the MIP model with nominal data rate (<ℷ) and the worst-case
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scenario, considering uncertain data within an Intersection uncertainty set. For all scenarios, we set the uncertainty
level to 𝑅ℷ = 0.6.

We consider as before relays with four different capacity values, denoted as 89, 9 ε 𝜗 , where 8
1
< 8

2
< 8

3
< 8

4.
These values are randomly extracted from a uniform distribution between 80 and 480 Mbps.

To model the installation costs, we implement the following concave logarithmic function that represents the
complex relationship between relay capacity and cost. This mathematical approach captures the non-linear nature
of cost increases in our application, providing a more realistic representation of real-world infrastructure investment
scenarios.

𝐽(≨) = 4 ⋝ log(1 + ℷ≨) (33)

where 𝐽(≨) is the cost, ≨ is the relay capacity, 4 is a scaling factor, and ℷ is a parameter that affects the rate of cost
increase. The logarithmic function encapsulates cost modeling characteristics through its design. Costs consistently
increase with capacity, reflecting the reality that larger installations require more resources. Simultaneously, the
function demonstrates diminishing marginal costs, where the rate of cost increase gradually decelerates as capacity
expands. This approach mirrors real-world economies of scale, where incremental capacity investments become
progressively more efficient.

We set the scaling factor 4 to 100 initially and vary the parameter ℷ from 10 to 30 to explore different cost scenarios.
This range for ℷ allows us to examine how the rate of cost increase affects our WBAN design and performance metrics.

We measure and show hereafter the metrics introduced before, 𝑀⋆, 𝑀𝜀, 𝑀𝑍𝐽 and 𝑀𝜍𝐽 for the objective function
values as well as 𝜀𝑍𝐽 (relative improvement of the robust solution in the worst case) and 𝜀𝜍𝐽 (relative loss of
optimality of the robust solution on the nominal data).

Figure 19 illustrates a comparative analysis of the robust, deterministic, and worst-case models as the cost
parameter escalates. The robust model demonstrates a remarkably similar behavior pattern to the deterministic model
across the spectrum of increasing costs, suggesting its effectiveness in optimizing relay placement even as financial
constraints intensify. As we can see in the trend of 𝑀𝜍𝐽 , if we consider the robust solution in a deterministic situation,
the average increase in objective value is 247.89 with a standard deviation of 0.61. In contrast, if we consider the trend
of 𝑀𝑍𝐽 , which represents the deterministic solution in the worst case, the increase in objective value is 3652.10 with
a standard deviation of 0.89. This comparison highlights the robust model’s ability to provide near-optimal solutions
while accounting for data uncertainties, a crucial advantage in real-world applications where perfect information is
rarely available.

Further insights into the energy efficiency of our proposed two-stage robust approach are provided by Figure 20.
Implementing a WBAN with our two-stage robust approach results in a modest average increase of 0.058 in energy
consumption compared to the deterministic method, with a standard deviation of 0.006. This slight increase is justified
by the model’s ability to account for worst-case scenarios, as evidenced by the plateau observed in the 𝜀𝜍𝐽 curve.
Conversely, developing a WBAN without considering data uncertainty could lead to worst-case scenarios resulting
in a significant loss of energy resources—an average of 0.8026 in energy consumption, with a standard deviation of
0.082, as depicted by the 𝜀𝑍𝐽 curve. This stark contrast shows that the energy consumption increase in our robust
approach is substantially lower than in the worst-case scenario, highlighting its efficiency and practicality.

The divergence in performance between the robust and worst-case models highlights the critical importance of
selecting an appropriate modeling approach in relay placement optimization. While the robust model’s resilience to
cost increases and its ability to maintain near-optimal solutions make it a reliable choice for long-term planning and
variable economic conditions, the worst-case model’s sensitivity to cost parameters suggests its utility may be limited
to specific, highly conservative planning scenarios.

These findings emphasize the need for careful model selection in infrastructure planning, particularly when dealing
with increasing costs and uncertain economic environments. The robust model’s ability to maintain optimality closely
aligned with the deterministic approach, even under increasing financial pressure, while also accounting for data
uncertainties, makes it a better choice for practical applications in relay network design and optimization.
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Impact of Increasing Nominal Traffic Demand in the Intersection Uncertainty Model

In this section, we explore the effects of increasing nominal traffic demand in the intersection uncertainty model
by augmenting the nominal data rate (<ℷ) by 25%, 50%, 75%, and 100%. Specifically, we modify such parameter as
follows:

New Nominal Data Rate = 7 ⋝ <ℷ for 7 ε {1, 1.25, 1.5, 1.75, 2.0}. (34)

For this analysis, we set the parameters in our logarithmic cost function (33) to 4 = 200 and ℷ = 30. Additionally, for
all scenarios, we fix the uncertainty level to the maximum value considered in this work, that is, 𝑅ℷ = 0.9.

Figure 21 illustrates a comparative analysis of the robust, deterministic, and worst-case models as the nominal
data rate increases. As we can see in the trend of 𝑀𝜍𝐽 , if we consider the robust solution in a deterministic situation,
the average increase in objective value is 770.88 with a standard deviation of 504.84. In contrast, if we consider the
trend of 𝑀𝑍𝐽 , which represents the deterministic solution in the worst case, the increase in objective value is 3406.79
with a standard deviation of 534.89.
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Further insights into the energy efficiency of our proposed two-stage robust approach are provided by Figure 22.
Implementing a WBAN with this method results in a modest average increase of 0.0667 in energy consumption
compared to the deterministic method, with a standard deviation of 0.0187 (𝜀𝜍𝐽 curve). On the other hand, worst-case
scenarios lead to a significant loss of energy resources—averaging a detrimental increase of 0.2915 with a standard
deviation of 0.1477 (𝜀𝑍𝐽 curve).

These findings highlight the effectiveness of the robust model in maintaining optimality and energy efficiency
even when nominal traffic demand is increased significantly. While all models—deterministic, two-stage robust, and
worst-case—exhibit similar behavior when nominal traffic demand rises, the key distinction of our two-stage robust
model lies in its superior capability to manage the expanded uncertainty region. The results suggest that our two-stage
robust approach can effectively manage uncertainty while minimizing both cost and energy consumption in practical
WBAN implementations.
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ℷ
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Model Polyhedral Intersection Polyhedral Intersection Polyhedral Intersection
Deterministic 7 7 7 7 7 7

Robust 7 8 7 10 7 7
Worst-case 7 7 7 7 7 7

(a) Number of relays installed by the deterministic model, the two-stage robust model and the worst-case scenario under different
levels of uncertainty 𝑅

<
= {0.3, 0.6, 0.9}.

𝑅
<

Polyhedral uncertainty set (%) Intersection uncertainty set (%)
8
1

8
2

8
3

8
4

8
1

8
2

8
3

8
4

0.3 14.3 57 14.3 14.4 12.5 75 0 12.5
0.6 28.6 42.9 0 28.5 30 60 10 0
0.9 28.6 28.6 14.2 28.6 14.3 42.9 14.2 28.6

(b) Percentage of relays installed with type 8
1, 82, 83 and 8

4 by the two-stage robust WBAN design model.

Table 4
Number (a) and percentage (b) of installed relays with different capacity values.

Discussion on the Two-Stage Robust model: Relay number and installed capacity

comparison

To highlight and summarize the dependency of the robust model’s performance on the considered uncertainty
sets and the impact of these latter on the behavior of the model, in terms of selecting appropriate capacities for
relays before the realization of the actual data values, we finally focus on comparing the number and types of relays
installed in the network and their variation with changes in uncertainty levels for the robust model considering both
polyhedral and intersection uncertainty sets. The results are summarized in Table 4 for different uncertainty levels,
𝑅< = {0.3, 0.6, 0.9}. It can be observed that the worst-case model, which aims to minimize relay installation costs,
installs the minimum number of relays. As a results, the deterministic model and the worst-case scenario end up with
the same number of installed relays in this situation. However, it is important to note that the capacities of the relays
installed for the worst-case scenario vary based on the level of uncertainty, with a preference for installing higher-
capacity relays. The Robust model under the polyhedral uncertainty set, independently from the uncertainty level and
similarly to the deterministic model and the worst-case scenario, installs only 7 relays. However, the relay capacity
types change with the uncertainty level. Under the polyhedral uncertainty set, the robust model has acceptable control
over the number of installed relays and the appropriate capacity selection for them. In fact, more than 70% of the relays
are installed with the lowest capacity (and hence lowest cost) while 𝑅< = 0.3 and 𝑅< = 0.6. When the uncertainty
level reaches 0.9, only 10% of the relays have been replaced with the maximum capacity ones. Compared to the
two-stage Robust model under polyhedral uncertainty set, the number of installed relays changes with respect to the
uncertainty level in the Intersection set: under such set our model installed 8, 10, and 7 relays with 𝑅< = 0.3, 𝑅< = 0.6,
and 𝑅< = 0.9, respectively. Based on the data in the Table, the Robust model under the intersection uncertainty set
installs nearly 90% of the relays with the lowest capacity (types 81 and 8

2) for 𝑅< = 0.3, and 𝑅< = 0.6, respectively.
Finally, when the worst uncertainty occurs (𝑅< = 0.9), the intersection model behaves similarly to the polyhedral one.
Overall, we can conclude that applying our proposed two-stage robust approach to WBANs, under both Polyhedral
and Intersection uncertainty sets, effectively designs a flexible network by accurately selecting the relay capacities.
This results in a lower investment cost and reduced energy consumption, even in worst-case scenarios.

8. Conclusions and Futures Research Directions

This paper proposes a two-stage Robust programming model for capacity planning in Wireless Body Area
Networks (WBANs). The model focuses on optimizing energy consumption and relay placement costs while
addressing uncertainties in data rates. By framing the problem as a two-stage stochastic programming with recourse,
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the model determines relay capacities in the first stage and decides on relay placement and data routing in the second
stage to meet actual data requirements under uncertain conditions. This approach aligns with the broader context of
network design problems with uncertain parameters, specifically addressing the critical data transmission needs of
WBANs. The two-stage robust programming model offers a suitable framework for managing uncertainties in data
transmission rates through relay nodes, enhancing the efficiency and reliability of WBAN design.

In the context of stochastic data generation, we tackle relay capacity selection and network lifetime as fundamental
issues concerning WBAN quality of services. Initially, we formulate the model as a mixed-integer linear programming
problem aimed at optimizing relay node placement and identifying efficient routing strategies through multi-hop
routing techniques. However, numerical findings indicate that this formulation is overly conservative, leading to
limitations in extending network lifetime under worst-case scenarios of data-driven uncertainties. Additionally, the
selection of relay capacities is not cost-effective, often requiring the installation of high-capacity and costly relays to
handle substantial traffic volumes in each transmission.

To address these challenges and effectively manage fluctuations between planned and actual data, we introduce the
concept of Two-stage robust optimization in our proposed model. Our key assumption involves integrating uncertain
data, a critical aspect of WBANs, into two predefined uncertainty sets. We present a robust formulation with the
primary assumption focusing on uncertain demand within specified closed, convex, and bounded uncertainty sets.
Given this uncertainty, we naturally segregate decision variables y (first stage) from variables x, z, and f (second
stage).

The study demonstrates that the two-stage robust model optimizes WBANs efficiently. Under the polyhedral
uncertainty set, the model shows only a 6.4% increase in energy consumption for nominal parameters, maintaining
more than 71% of relays with the lowest capacity at uncertainty levels 𝑅< = 0.3 and 𝑅< = 0.6. Under the intersection
uncertainty set, 87.5% and 90% of relays have the lowest capacity for 𝑅< = 0.3 and 𝑅< = 0.6, respectively. Even at
the highest uncertainty (𝑅< = 0.9), the model ensures robust network performance with minimal adjustments, keeping
investment costs low and energy consumption efficient.

Future Research Directions

This study presents a two-stage robust optimization framework for Wireless Body Area Networks (WBANs),
focusing on demand uncertainty, energy efficiency, and network reliability. While these contributions provide a
strong foundation, future research could explore additional dimensions to enhance the performance, resilience, and
adaptability of WBANs.

A critical area for further investigation is the concept of resilience, defined in seminal works such as “Toward a
Resilient Manufacturing System” [Zhang and van Luttervelt, 2011] as a network’s intrinsic ability to sustain required
operations under both expected and unexpected disruptions. Building on concepts from resilience engineering,
future work could explore fault tolerance by designing mechanisms to ensure uninterrupted operation despite node
failures or connectivity disruptions. Self-healing networks, capable of dynamic reconfiguration and restoration of
functionality following failures or environmental disturbances, represent another promising direction. Additionally,
adaptive performance mechanisms could be developed to enable WBANs to respond dynamically to environmental
changes, interference, or unexpected traffic demands. These aspects align with resilience paradigms in complex
systems and could be quantitatively analyzed using metrics adapted from resilient manufacturing systems.

Resilient communication within WBANs is vital, especially under conditions of interference, mobility, or partial
network failures. Future studies could focus on developing adaptive and fault-tolerant routing protocols that ensure
robust data transmission under uncertain or deteriorating conditions. Introducing hierarchical or cooperative strategies
for routing could further enhance overall network resilience while optimizing energy consumption.

The current study addresses uncertainty in demand. However, WBANs are subject to diverse uncertainty factors,
including channel variations due to signal degradation caused by body movement or external interference, energy
constraints such as those arising in energy-harvesting scenarios, and mobility patterns reflecting dynamic changes in
sensor placement or user activities. Integrating these dimensions into robust optimization models would better capture
the complexity of real-world WBAN deployments.

Energy efficiency is a cornerstone of WBAN design. Future research could focus on developing energy-aware
frameworks that incorporate resilience by dynamically reallocating resources or optimizing power consumption during
failures. Advanced energy-harvesting techniques and adaptive duty-cycling mechanisms could be integrated to ensure
prolonged network operation under uncertain conditions.
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Balancing multiple objectives, such as cost, energy efficiency, and resilience, remains a challenging but essential
task. Future efforts could develop multi-objective optimization models that explicitly incorporate resilience metrics
alongside traditional performance criteria. These models could be used to evaluate trade-offs, ensuring WBANs are
both cost-effective and robust under varying operational scenarios.

The adoption of stochastic and dynamic uncertainty sets in robust optimization could further enhance the
adaptability of WBANs. Future research could investigate techniques for real-time adjustment of uncertainty sets,
enabling WBANs to adapt to evolving environmental and operational conditions. Hybrid models that combine robust
and stochastic optimization could be explored to handle both predictable and unpredictable uncertainties effectively.

By addressing these research directions, WBANs can evolve into systems capable of maintaining high perfor-
mance, efficiency, and resilience, even in the face of complex and dynamic real-world challenges.
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