
Application Level

Client-Server and Peer-to-Peer Paradigms
 HTTP: Web Surfing
 FTP: remote connectivity
 SMTP: emailing
 DNS: symbolic addressing
 P2P: file sharing

Some Applications running in the
INTERNET

 World Wide Web
◼ HTTP

 Posta elettronica:
◼ SMTP, Gmail

 Social networking:
◼ Facebook, Twitter, Instagram,

Snapchat, ecc.. (social
networking)

 P2P file sharing: BitTorrent,
eMule, ecc..

 Video streaming:
◼ NetFlix, YouTube, Hulu

 Telefonia:
◼ Skype, Hangout, ecc..

 Network games
 Video conference
 Massive parallel computing
 Instant messaging
 Remote login:

◼ TELNET
 …

Designing network applications

Write programs that

◼ run on different end
systems and

◼ communicate over a
network.

◼ e.g., Web: Web server
software communicates
with browser software

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Designing network applications
application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Little software written for
devices in network core

◼ network core devices do
not run user application
code

◼ application on end
systems allows for rapid
app development,
propagation

Communications among
Processes

Process: program running within a host.

 Within the same host, two processes
communicate using inter-process
communication (defined by OS).

 processes in different hosts communicate
by exchanging messages

Processes and Protocols

 Processes running on remote hosts may
exchange messages and services through the
network

 The application protocols define the rules and the
formats of the communication between remote
processes

Application Protocols

Web (web server,

browser, HTML)
HTTP

E-mail (mail server, mail

client, MIME)
SMTP

Lower layers interaction

 Application protocols use the services provided
by lower layers through the SAPs (Service
Access Point)

 Each application process is associated to a SAP

 OSI Stack:

Presentation

Session

WEB FTP Mail

Transport

Application controlled Layer

OS controlled layers

Interaction with Lower layers

 Application protocols directly
communicate with the transport layer

WEB FTP Mail

TCP/UDP

Application controlled Layer

OS controlled layers

 process sends/receives
messages to/from its
socket

 socket analogous to door

◼ sending process shoves
message out door

◼ sending process relies
on transport
infrastructure on other
side of door which
brings message to
socket at receiving
process

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

Sockets

 Sockets equivalent to
SAPs between application
and transport layers

Addressing Processes

 To receive messages, a process must
have an identifier

 A host device has a unique 32-bit IP
address

 Q: does the IP address of host on
which process runs suffice for
identifying the process?

Addressing Processes

◼ Answer: NO, many processes can be
running on the same host

◼ identifier includes both IP address and port
number associated with process on host

◼ Example port numbers (HTTP server: 80,
Mail server: 25)

◼ to send HTTP message to www.unibg.it:

 IP address: 193.204.253.1

 Port number: 80

◼ The transport layer multiplexes several
flows coming from the application layer

App-layer protocol defines

 Types of messages
exchanged,

◼ e.g., request, response

 Message syntax:

◼ what fields in messages
& how fields are
delineated

 Message semantics

◼ meaning of information
in fields

 Rules for when and how
processes send &
respond to messages

Public-domain
protocols:

 defined in RFCs

 allows for
interoperability

 e.g., HTTP, SMTP

Proprietary protocols:

 e.g., KaZaA

What transport service does an app
need?

Data loss
 some apps (e.g.,

audio) can tolerate
some loss

 other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

Timing
 some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth

 some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”

 other apps (“elastic
apps”) make use of
whatever bandwidth
they get

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

instant messaging

Data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Bandwidth

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

Transport service requirements of
common apps

Internet transport protocols services

TCP service:
 connection-oriented:

setup required between
client and server
processes

 reliable transport
between sending and
receiving process

 flow control: sender
won’t overwhelm receiver

 congestion control:
throttle sender when
network overloaded

 does not provide: timing,
minimum bandwidth
guarantees

UDP service:
 unreliable data

transfer between
sending and
receiving process

 does not provide:
connection setup,
reliability, flow
control, congestion
control, timing, or
bandwidth guarantee

Q: why bother? Why is
there a UDP?

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g. RealNetworks)

proprietary

(e.g., Vonage,Dialpad)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

Applications vs Transport
Protocols

Client-Server Architecture

 The main target of the communication
between remote processes is the provision of
services

 Two functionalities can be accomplished by a
process:

◼ Request for services

◼ Provide services

 If a given process accomplishes just one of
the above functionalities, the communication
is a client-server one

client server

request

response

Client-Server Architecture

 Client processes make requests and
interpret responses

 Server processes interpret requests
and provide the responses

 If the same host needs to issue
requests and provide responses two
processes are needed

Client/Server Paradigm

 Differences between program and process

◼ Program: software

◼ Process: instance of the program being executed

 A server process is continuously executed on the
host (daemon) and is activated through a passive
open

 A client process is activated when needed only (by
the user or by some other process) through an
active open

 After the passive open the server is able to handle
requests from clients

 The active open requires the indication of the IP
address and the port of the server

request

response

... ...

Client/Server Paradigm

 Multiple clients can issues requests to a
single server

 Clients may also issue multiple requests at
the same time

Client/Server Paradigm

 A client may implement both serial and
parallel operation modes

◼ Example: multiple requests can be issued
for all the files contained in a web page

 Even a server may implement both
serial and parallel operation modes

 Usually, the applications using UDP are
handled serially

Client/Server Paradigm

 Usually, the servers using TCP
implement parallel operation mode

 A TCP connection towards all the clients
is opened for all the time needed to
exchange requests/responses

 The procedure handling each client is
handled via multi-threading, using fork
operations

Application Protocols: Possible
Architectures

 Client-server

◼ Terminals act as clients OR as servers

◼ Client hosts and server hosts may have
different features

 Peer-to-peer (P2P)

◼ All the terminals can implement the client
process AND the server one

 Hybrid

Client-server architecture

server:
◼ always-on host
◼ permanent IP

address
◼ server farms for

scaling

clients:
◼ communicate with

server
◼ may be

intermittently
connected

◼ may have dynamic
IP addresses

◼ do not communicate
directly with each
other

Pure P2P architecture

 no always-on server

 arbitrary end
systems directly
communicate

 peers are
intermittently
connected and
change IP addresses

 example: Gnutella

Highly scalable but
difficult to manage

Hybrid of client-server and P2P

Skype
◼ Internet telephony app

◼ Finding address of remote party: centralized
server(s)

◼ Client-client connection is direct (not through
server)

Instant messaging
◼ Chatting between two users is P2P

◼ Presence detection/location centralized:

 User registers its IP address with central
server when it comes online

 User contacts central server to find IP
addresses of buddies

Web Browsing

Hyper Text Transfer Protocol (HTTP)

HyperText Transfer Protocol
(HTTP)

 client-server architecture

 clients request objects (files) identified
through a URL

 servers send back the files to the clients

 Stateless operation (no memory on
previous requests is mantained)

client server

HTTP request

HTTP response

• "Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

• "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, January 1997

• "Hypertext Transfer Protocol Version 2 -- HTTP/2", RFC 7540, May 2015

• "Hypertext Transfer Protocol Version 3 -- HTTP/3", RFC 7540, Jan 2020

Message transfer

 HTTP relies upon TCP for message transfer

 Usually a web page is composed of a main document
(HTML) and multiple linked objects

 Object can include JPEG images, JAVA applets, audio and
video files, links to other web pages ...

 Requests use the

URL (Uniform Resource Locator)

http://www.unibg.it/index.html

Type of
protocol

Symbolic address of the
server

Document on the
server

TCP assigns port number 80 to HTTP servers

Method Host:// : Port Path/

Message transfer

 Suppose a client requests a composite web page

(1 main HTML document + 10 figures)

:

Two operation modes
can be adopted

Non-persistent
connection (default mode
of HTTP 1.0)

Persistent connection
(default mode of HTTP
1.1 and HTTP/2)Other Objects

HTML Text

Non persistent

 One TCP connection for each request-response cycle.
The server closes the TCP connection once it has sent
the requested object

 The same procedure is adopted for all the docs within
the required web page

 Multiple TCP connections can be opened in parallel
 The maximum number of connections can be set in the

browser configuration options

Request (index.html)

Response (index.html file)

Request (image1.jpg)

Request (image2.jpg)

Persistent connection

 The server does not close the connection after the response

 The same connection can be used to transfer other objects
within the same page or even other web pages

 The server closes the connection on a timeout basis

 Two Flavors:

◼ without pipelining: the client issues a new request
only upon reception of the previous response

◼ with pipelining: multiple requests can be issued at
the same time (default mode HTTP v1.1)

Example – Nonpersistent connection

The user inserts in the browser the URL:

1a. The HTTP client establishes a
TCP connection with the
HTTP server www.polimi.it
on port 80

2 the HTTP client sends an

HTTP request (containing the

URL) through the TCP

connection. The request

indicates the client wants the

object /home/index.html

1b. the HTTP server in execution

on www.polimi.it is waiting on port

80, it accepts the connection and

notifies the client

(HTML contains text and reference

to 10 JPEG images)

www.polimi.it/home/index.html

time

3 the HTTP server receives the

HTTP request and sends back an

HTTP respose containing the

HTML file

http://www.polimi.it/
http://www.polimi.it

Example – Nonpersistent connection

5. The HTTP client receives the response
message conaining the HTML page
and visualizes it. Analyzing the
HTML, it discovers there are 10
other JPEG objects to download.

4. The HTTP server closes the TCP

connection

time

Steps from 1 to 5 are repeated for each one of the 10 JPEG

images indicated on the HTML file

Estimation of the time needed
for the whole transfer

 Round trip Time (RTT) = time to
transfer a message from client to
server and back

 Response time for HTTP:
◼ one RTT to establish the TCP connection
◼ one RTT to send the very first byte of

the HTTP request and receive the first
byte of the HTTP respons

◼ Time to transmit the whole bytes of the
ojbect (HTML file, images, etc..)

 Supposing the web page contains 11
objects (one HTML file and 10 JPEG
images), the download time for the
whole page is:

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Requests

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

Some Methods

GET To get a doc from the server. The doc is specified by the
URL. The server answers with the required doc in the body
of the response message

HEAD To get info on a specified doc. The server answers with the
requested information

POST To post some input to the server regarding a given object
identified by the URL

PUT To store a doc on the server. The doc is carried by the
request message. The URL specifies the position for the doc
to be stored.

Other Methods:

PATCH, COPY, MOVE, DELETE, LINK, UNLINK, OPTIONS.

Responses

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n

\r\n

data data data data data ...

Messages in the status line are identified with a code1:
1xx: informational
2xx: success
3xx: redirection (request is correct, it has been redirected to
another server)
4xx: client error (bad request)
5xx: server errore (problem in the server)

Messages are accompanied by a text “human readable”

1Full list in RFC 2616

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Messages

100 Continue: Go On

.

500 Internal server

error

Server failure

501 Not implemented Required functionality not

supported

503 Service

unavailable

Unavailable service

200 OK: Request OK, the required info is in

the field of this message

302 Moved

Permanently:

The required object has been

moved (perm)

304 Moved

Temporalily:

The required object has been

moved (temp)

400 Bad Request: Generic error

401 Unauthorized: Access failed due to userID or

password error

404 Not Found: File not found

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

Headers

 headers are used to exchange further
service information

 A message can carry multiple headers

 Examples

Header name Header value:

Cache-control Cache info

Accept Supported formats

Accept-language Supported languages

Authorization Client permits

If-modified-since send doc. only if modified

User-agent user agent type

Message Exchange

 Example: request
GET /ntw/index.html HTTP/1.1

Connection: close

User-agent: Mozilla/4.0

Accept: text/html, image/gif, image/jpeg

Accept-language:it

HTTP/1.1 200 OK

Connection: close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 09:23:24 GMT

Content-Length: 6821

Content-Type: text/html

data data data data data ...

 Example: response

Conditional get

Client:

GET /fruit/kiwi.gif HTTP/1.0

User-agent: Mozilla/4.0

Accept: text/html, image/gif, image/jpeg

If-modified-since: Mon, 22 Jun 1998 09:23:24

Server:

HTTP/1.0 304 Not Modified

Date: Wed, 19 Aug 1998 15:39:29

Server: Apache/1.3.0 (Unix)

(empty entity body)

 Also method HEAD can be used

Network caching and proxy

 Main duty of a proxy is to provide a
distributed cache memory

 If a doc is stored in a proxy near the client
the download time can be reduced

Proxy

 A proxy is an application gateway, that is, it
implements up to the application layer

 It must act both as a client and as a server
 The final server speaks with the client on

the proxy (hiding of users)

LL

IP

TCP

HTTP

User Agent

LL

IP

TCP

HTTP

Server

LL

IP

TCP

HTTP

Proxy

Authentication

 HTTP is stateless
 Consecutive requests from the same user

cannot be recognized
 Very simple authentication procedure based

on userID and password to be inserted in the
requests

GET /ntw/index.html HTTP/1.1

401 Authorization Required

WWW-Authenticate:[tipo di autenticazione]

GET /ntw/index.html HTTP/1.1

Authorization: account, passwd

GET image.gif HTTP/1.1

Authorization: account, passwd

...

Cookies

 The server can assign to each client a cookie number
which identifies the client in future transactions

 The cookie number is stored by the client and used in
following requests towards the same server

 Used in e-commerce

GET /ntw/index.html HTTP/1.1

200 OK

Set-cookie:18988466

GET /ntw/carrello/index.html HTTP/1.1

Cookie: 18988466

GET image.gif HTTP/1.1

Cookie: 18988466

...

Example: utilization of cookies

client server

usual http response msg

usual http response msg

cookie file

One week later:

usual http request msg
cookie: 1678

cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for usercreate
entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

• Goal

– Reduce latency (or loading time) of webpages

– Solve some of the problems of HTTP/1.1

• The site www.gazzetta.it includes 209 objects

o HTTP/1.0 uses one connection per object -> 209 TCP

connections are required

o HTTP/1.1 uses persistent TCP connections, but they are «serial»

-> if an object is «slow», it blocks all others (Head of Line

Problem)

HTTP/2 vs HTTP/1.1: differences

48

http://www.gazzetta.it/

• HTTP/2 is in binary format: it transfers frames

• Multiplexing: one TCP connection for multiple streams

• Header compression

• Service of server push

• Flow control implemented at the application level

• It uses TLS (available also a version without it)

How much do you save? Demo https://http2.akamai.com/demo

HTTP/2 features

49

• HTTP/2 introduces a new binary framing mechanism that changes how the

data is exchanged between the client and server. Here is the HTTP/2

terminology:

• Stream

– A bidirectional flow of bytes within an established connection, which may

carry one or more messages.

• Message

– A complete sequence of frames that map to a logical request or response

message.

• Frame

– The smallest unit of communication in HTTP/2, each containing a frame

header, which at a minimum identifies the stream to which the frame

belongs.

Streams, Messages, and Frames

Source: High Performance Browser Networking (O'Reilly, Ilya Grigorik)

https://hpbn.co/

• All communication is performed over a single TCP connection that can carry

any number of bidirectional streams.

• Each stream has a unique identifier and optional priority information that is

used to carry bidirectional messages.

• Each message is a logical HTTP message, such as a request, or response,

which consists of one or more frames.

• The frame is the smallest unit of communication that carries a specific type of

data—e.g., HTTP headers, message payload, and so on. Frames from different

streams may be interleaved and then reassembled via the embedded stream

identifier in the header of each frame.

Streams, Messages, and Frames

Source: High Performance Browser Networking (O'Reilly, Ilya Grigorik)

https://hpbn.co/

Streams, Messages, and Frames

Source: High Performance Browser Networking (O'Reilly, Ilya Grigorik)

https://hpbn.co/

• Type:

– DATA: carries data of a stream

– HEADERS: used to open a stream

– PRIORITY: specifies priorities of a stream

– RST_STREAM: to terminate a stream

– SETTINGS: carries configuration parameters

– PUSH PROMISE: manages the PUSH service

– PING,GOAWAY, WINDOW_UPDATE, CONTINUATION:

HTTP/2 Frames

53

• The header of HTTP requests can have non-negligeable

size since it can contain: several cookies, several header

line for authentication, specific of the transaction, etc.

• The header of consecutive HTTP (towards the same

server) contains redundant information

HTTP/2: header compression

54

– Huffman coding: gives binary strings to most common

symbols

o ex: a-101, c-0, e-111, p-110, t-100, the word «accept» (6 byte if

codified in ASCII) is sent as 101 0 0 111 110 100 (only 2 bytes)

– Indexing: it consists in giving an index to the most common

header lines and then send only the such index in the

messages

– Differential coding: the header of consecutive requests carries

only the difference with respect to the header of previous

requests

HTTP/2: HPACK header conmpression
1RFC7541, https://tools.ietf.org/html/rfc7541

HTTP/2: HPACK header compression

HTTP/2

HTTP/1.1

:method: GET

:scheme: https

:host: www.keycdn.com

:path: /index.html

referer: https://www.keycdn.com/

accept-encoding: gzip

:method: GET

:scheme: https

:host: www.keycdn.com

:path: /logo.svg

referer: https://www.keycdn.com/index.html

accept-encoding: gzip

2

7

62

4 logo.svg

51 https://www.keycdn.com/index.html

16

2

7

38 www.keycdn.com ➔ ID 62

5

51 https://www.keycdn.com/

16

Generated Message Sent Message

First

Request

Second

Request

GET /index.html HTTP/1.1

Host: www.keycdn.com

Referer: https://www.keycdn.com/

Accept-Encoding: gzip

GET /logo.svg HTTP/1.1

Host: www.keycdn.com

Referer: https://www.keycdn.com/index.html

Accept-Encoding: gzip

GET /index.html HTTP/1.1

Host: www.keycdn.com

Referer: https://www.keycdn.com/

Accept-Encoding: gzip

GET /logo.svg HTTP/1.1

Host: www.keycdn.com

Referer: https://www.keycdn.com/index.html

Accept-Encoding: gzip

First

Request

Second

Request

Multiplexing (1)

57

Client Server

T
im

e

Client Server

Saved

Time

HTTP/1 HTTP/2

• The frame exchange between the client and the server is

organized in streams

• A stream is a logic sequences of frames

• Every stream has a priority (set by the browser)

Multiplexing (2)

58

• The server can send useful information to the client before

the client explicitly asks for it

• This functionality is asked by the client

Server Push

59

Client Server

T
im

e

HTTP/1 HTTP/2

Client Server

T
im

e

GET main.html

200 OK, main.html

GET image.jpg

200 OK image.jpg

GET form.js

200 OK form.js

HEADER main.html

DATA main.html

DATA image.jpg

DATA form.js

PUSH Promise

image.jpg, form.js

• What could happen if transactions made with Amazon

would be carried by HTTP?

– A malevolent player could capture HTTP messages that

contain, among other, credit card information (no

confidentiality of data)

– Or, it could forge/modify HTTP messages related to the

transaction, making the user buy different items, more

items than what specified etc… (no integrity of data)

– Or, it could act as Amazon itself and steal

information/money from the user (no authentication

between client and server)

Securing HTTP: HTTPs

60

• Secure Socket Layer (SSL) and Transport Layer Security

(TLS) add confidentiality, integrity and authentication to

TCP connections

Solutions

61

Application

TCP

IP

No security

Application

SSL/TLS

TCP

IP

Secure

• Handshake:

– Phase in which the server
(and client) authenticate
and agree on which
technique used to encrypt
data

• Tdata transfer

– Data are divided in
records (PDU), each of
which is encrypted with
the algorithm chosen in
the 1st phase

• Connection closing

– A special message is
used to close the
connection in a secure
way

SSL/TLS connections

62

client server

• Exchange of certificate between server and client (and
viceversa) which certifies the identity of the server (client)

– The certificate is generated by a Certification Authority (CA)
and contains:
o the public key of the certified entity

o Additional information (IP address, name, etc)

o Digital signature of the CA

• Generation and exchange of symmetric keys to encrypt the
transferred data

• Such exchange of symmetric keys happens on a connection
which is, in turn, encrypted with asymmetric keys

Handshake Phase

63

• HTTP over QUIC (a transport protocol)

– QUIC already incorporates stream multiplexing and per-stream flow
control, in a similar way to that provided by HTTP/2

– QUIC also incorporates TLS 1.3 at the transport layer, offering
comparable security to running TLS over TCP, with the improved
connection setup latency of TCP Fast Open [RFC7413]

• HTTP/3 provides a transport for HTTP semantics using the QUIC
transport protocol and an internal framing layer similar to HTTP/2.

• Once a client knows that an HTTP/3 server exists at a certain
endpoint, it opens a QUIC connection. QUIC provides protocol
negotiation, stream-based multiplexing, and flow control.

https://datatracker.ietf.org/doc/draft-ietf-quic-http/

HTTP/3 (IETF Draft)

64

https://datatracker.ietf.org/doc/draft-ietf-quic-http/

HTML (HyperText Markup
Language)

 HTTP handles the object transfer and does
not account for the object format

 The visualization of the object is done through
interpreter programs (browsers)

 Formatted text pages are transferred in ASCII
files and are interpreted according to
formatting instructions written in HTML

 HTML pages may contain references to other
objects which need to be interpreted by the
browser as
◼ Part of the document to visualize
◼ Links to other pages

 If a HTML page is stored on the server and is
sent upon request, this is a static page

Dynamic WEB Pages

 If a page is created on the fly upon
reception of a request, this is a dynamic
page

 The server examines the request, executes
a program associated to the request and
generates the HTML page to be sent back

GET /cgi-bin/prog.pl HTTP/1.1

prog.pl

200 OK Dynamic Page

Active Web Pages

 A web page may contain a program to
be executed by the client

 The program is downloaded and
executed locally by the client

 This can be used to set up interactive
pages, moving graphs, etc.

GET /java/applet HTTP/1.1

200 OK program

File Transfer Protocol (FTP)

File Transfer Protocol (FTP)

 Used to transfer files between two remote
hosts

 The application operates directly on the
file system (both at server and at client
side)

• "File Transfer Protocol”, RFC 959, October 1985.

File Transfer Protocol (FTP)

 Uses TCP for the transfer

 Two TCP connections are used for the
transfer of data and control

User

Interface

Control

process

Data tranfer

process

LFS

Control

process

Data tranfer

process

LFS

client

server

Port 21

Port 20

FTP: user interface

FTP: control connection

 It is opened in the usual way

◼ The server issues a passive open with port number
21 and waits fir requests

◼ The client issues an active open with a dynamic
port number every time it needs to transfer files

 The control connection is persistent, and remains
open for all the data transfer time

Control

process

Data tranfer

process
LFS LFS

client server
Passive open

Port 21 Control

process

Data tranfer

process

Active open

Port 66778

FTP: Data connections

 Data connections are non-persistent,
◼ one connection for each file to transfer,
◼ connection closed upon completion of file transfer

 To open a data connection:
1st Way:
◼ The client issues a passive open with a dynamic port

number
◼ The client notifies the port number to the server on the

control connection through the PORT command
◼ The server issues an active open towards the specified

port of the client using 20 as local port number
2nd Way:
◼ The client sends the PASV command to the server
◼ The server chooses a dynamic port number, issues a

passive open and communicate the chosen port number
to the client

◼ The client issues an active open using the port number
received from the server

FTP: Data connections

 The data transfer can be accomplished in
different ways and using different formats:

 File types:

◼ ASCII

◼ Binary:

 Transmission modes:

◼ Stream mode: the file is sent down to the TCP
as a stream of unstructured bytes

◼ Block mode: the file is structured in blocks with
a header each and sent down to the TCP

FTP: commands

 Commands are transferred in ASCII

USER username

PASS password

QUIT log out

Access Commands

CWD change directory

DELE delete file

LIST list files

RETR retrieve file

STOR store file

File Management

TYPE file type

MODE transfer mode

PORT client port

PASV server choose port

Transfer Management

Port Management

FTP: Responses

125 Data connection already open; transfer starting

200 Command OK

225 Data connection open

226 Closing data connection

227 Entering passive mode; srv. sends Ip_add.,port

230 User login OK

331 Username OK, password required

425 Can't open data connection

426 Connection closed; tranfer aborted

452 Error writing file

500 Syntax error; unrecognized command

501 Syntax error in parameters or arguments

502 Command not implemented

FTP: Transfer Example

Client Server

220 service ready

USER matteo

331 username OK; password ?

PASS pippo123

230 user login OK

PORT 65667

150 opening data connection

LIST /usr/pub

125 data connection OK

226 closing data connection

Data

E-mail Service

Simple Mail Transfer Protocol (SMTP)

The e-mail service

 Client aka User
Agent (OutLook,
Thunderbird, etc.)

 Mail Server
 Simple Mail Transfer

Protocol SMTP: to
transfer email from
client to the mail
server of destination
(recipient)

 Access protocols to
mail servers: to
“download” email from
own mail server (POP3,
IMAP)

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agentSMTP

POP3,

IMAP

The e-mail service

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agentSMTP

POP3,

IMAP

 Mail servers contain for
each controlled client:
◼ An incoming email queue

(mailbox)
◼ An outgoing mail queue

 Mail servers
◼ Receive all mails outgoing

from client user
«controlled» by them

◼ Receive from other mail
servers all mails destinaed
to controlled clients

 Mail servers “speak”
◼ SMTP with other mail

servers and with clients in
uplink

◼ POP3/IMAP with clients
in downlink

E-mail

 Service to send textual messages in an
asynchronous way

 It is implemented through a network of
mail servers using the SMTP (Simple Mail
Transfer Protocol)

SMTP

 Textual protocol

 Also the body of the messages needs to be
ASCII

◼ Binaries must be converted to ASCII

 Once a server receives a message from a
user agent

◼ Stores the message in a queue

◼ Opens a TCP connection (port 25) with the
destination server

◼ Sends the message

J.B. Postel, "Simple Mail Transfer Protocol," RFC 821, August 1982.

Client/Server Message
exchange

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

H
a

n
d

sh
a

k
e

Message Format

 The message format is specified
(command DATA)

 Some headers are added to the message

D.H. Crocker, "Standard for the Format of ARPA Internet Text Messages," RFC 822, August 1982.

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Request of information

<black line>

<Body>
.

Multipurpose Internet Mail
Extensions (MIME)

 MIME is used to allow the transfer of non-ASCII
messages

•"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies," RFC 2045,

Nov. 1996.

•"Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types," RFC 2046, Nov. 1996.

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

........................

.....base64 encoded data

.

Multipurpose Internet Mail
Extensions (MIME)

 Coding techniques:
◼ Base64:

 The flow of bits is divided into chunks of 24 bits each
 Each chunk is divided into 4 groups of 6 bits each
 Each chunk is interpreted as a character according

to a conversion table

11001100 10000001 00111001

110011 (51) 001000 (8) 000100 (4) 111001 (57)

01111010 01001001 01000101 00110101

Z I E 5

base64

Multipurpose Internet Mail
Extensions (MIME)

 Quoted-printable
 The flow of bits is divided into chunks of 8 bits each
 If a sequence corresponds to a ASCII character is sent

straight away
 Otherwise is sent as three characters: “=“ followed by the

hexadecimal representation of the byte

00100110

&

01001100

L

10011101

Non-ASCII

Quotable-printable

00111001

9

00100110

&

01001100

L =

00111001

9

1001

9

1101

D

Multipurpose Internet Mail
Extensions (MIME)

 MIME allows the transfer of multiple objects
within the same message:

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe with commentary

MIME-Version: 1.0

Content-Type: multipart/mixed; Boundary=StartOfNextPart

--StartOfNextPart

Dear Bob,

Please find a picture of an absolutely scrumptious crepe.

--StartOfNextPart

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

--StartOfNextPart

Let me know if you would like the recipe.
.

MailBox Access Protocols

◼ POP3 (Post Office Protocol version 3)

◼ IMAP (Internet Mail Access Protocol)

◼ HTTP

◼ Security Issue: the protocols can run over
TLS/SSL

ESMTP

POP3

Authorization Phase

 Client Commands:

◼ user: username

◼ pass: password

 Server Responses:

◼ +OK

◼ -ERR

Transaction Phase, client:

 list: list mess. number

 retr: get message

 dele: delete message

 quit

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: <message 1 contents>

S: .

C: dele 1

C: retr 2

S: <message 1 contents>

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

Commands

Login:

USER <username>

PASS <password>

●STAT

info on the mbox status

●LIST

list # of messages

●RETR n

read message n

●DELE n

delete message n

●RSET

cancel delete operations

●QUIT

exits

●CAPA

show server capabilities

Common Operations:

-ERR

+OK

Server responses:

Case History

 December 1995, S. Bhatia and J.
Smith propose the first web based e-
mail service (Hotmail)

 In 1 month, 100K users

 In 1 year, 12M users

 December 1997, Hotmail is acquired
by Microsoft for $400M

 Example of “first mover advantage”
and “viral marketing”

Remote Terminal

TELNET

TELNET (TErminaL NETwork)
 Remote terminal application
 The commands are transferred through a TCP

connection

Terminal

driver

TCP

IP

LL

Telnet

client

Pseudo-terminal

driver

TCP

IP

LL

Telnet

server

Internet

TELNET (TErminaL NETwork)

 TELNET transfers characters

◼ Data characters:

 ASCII with the first byte “0”

 ASCII characters with the first byte “1” (preceded
by a special control byte)

◼ Control characters:

 8 bit commands (first bit “1”)

 examples

◼ IAC (255): next one is a control character

◼ EC (247): erase character

c a t f i l e a IAC EC 1

TELNET (TErminaL NETwork)

Domain Name System (DNS)

Domain Name System
(DNS)

 IP addresses are not suited to be used by
applications

Is it better www.google.com or 74.125.206.99?

 Symbolic addresses are more convenient

◼ Hierarchical (street, city, state)

◼ Independent from layer 3

 Binding is needed

131.175.21.1 morgana.elet.polimi.it

http://www.google.com

Domain Name System
(DNS)

 IP networks provide a symbolic addressing
service

 Supported by a distributed database service
which handles the binding: DNS (Domain Name
System)

 DNS is an application layer protocol which uses
UDP/IP to transfer its messages

 DNS is currently used also for
◼ Host aliasing
◼ Mail server aliasing
◼ Load distribution

"Domain Names - Concepts and Facilities," RFC 1034, Nov. 1987.

"Domain Names - Implementation and Specification," RFC 1035,

Nov. 1987.

Distributed, hierarchical database

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

… …

Top Level Domain

(TLD) server

 Each level in the hierarchy has a different «depth» of
information

 Example: a user wants the IP address of www.google.com
◼ Root name servers know how to «find» name servers that

manage .com domains
◼ .com servers know hw to find the name server that manages

the google.com domain
◼ google.com name servers know how to resolve the symbolic

name www.google.com

Symbolic Addressing

 Hierarchical Addressing

 Each branch is controlled by a known
authority

 To get a symbolic address you must go
through these authorities

com edu org gov mil it fr jp de ...

ucla columbia polimi

eletcs

virgilio

rett

yahoo

morgana

morgana.elet.polimi.it

Types of Name Servers

 Local Name Servers
◼ Directly connected to tyhe hosts

◼ Each ISP (residential, university, industry, etc.)
has a LNS

◼ Talks with the Root NS

 Root Name Servers
◼ Stores info on the addressing of big groups of

hosts and domains

◼ Stores info on the authoritative NS for a given
domain

◼ Talks with the Authoritative NS

 Authoritative Name Servers
◼ NS responsible for a specific hostname

Hierarchical DNS

Source: Computer Networking, J. Kurose

Root NS

 13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA

 (5 other sites)

b. USC-ISI Marina del Rey, CA

l. ICANN Los Angeles, CA

 (41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA (and 48 other

sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo

(5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD

j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,

OH (5 other sites)

How To resolve a binding

 Every host knows the LNS address
 Each request for resolving a binding is sent to

the local NS using UDP
 The LNS gets the info and answers

HOST Local NS

DNS request

DNS response
DNS Network

Stored Info

 Type

◼ A: Name is a host name and Value is the IP
address

(morgana.elet.polimi.it, 131.175.21.1, A, TTL)

◼ NS: Name is a domain and Value is the symbolic
name of a server which knows how to resolve the
name

(elet.polimi.it, morgana.elet.polimi.it, NS, TTL)

◼ CNAME: Name is an alias and Value is the real
name

(www.polimi.it, zephyro.rett.polimi.it, CNAME, TTL)

◼ MX: Name is a mail domain or a mail alias and
Value is the name of the mail server

(elet.polimi.it, mailserver.elet.polimi.it, MX,TTL)

Name, Value, Type, TTL

Database Organization

 ARPANET was using a central database

 Internet uses a distributed database structure

 Branches are divided into zones and each zone is
associated a DNS

 The server of a zone is authoritative for that zone

com edu org gov mil it fr jp de ...

ucla columbia polimi

eletcs

virgilio

rett

yahoo

morgana

How to get Info

 Recursive Way:

◼ Requests travel
along the
hierarchy

◼ Responses travel
the opposite
direction

Source: Computer Networking, J. Kurose

How to get Info

 Iterative Way:

 A server can
notify the name
of another
server where to
get the info
from

Caching

 A server can cache a info temporarily

 If a request is issued regarding cached
info the server can answer even if it is not
authoritative for that specific info

 TTL is set by the authoritative server to
advertise the “freshness” of a piece of info

 The non-authoritative server uses the TTL
to set a validity timer for the cached info

DNS Messages

 identification: identifies the
couple request/response

 flag: request/response,
authoritative/non auth.,
iterative/recursive

 number of: field sin the
following header sections

 questions: name to resolve
(usually A or MX)

 answers: complete resource
records

 authority: contains other
record provided by other
servers

 additional info

Binary Format (not ASCII)

How to add a new domain to the DNS

 The new startup I-Like-Networking vuole wants
to register the domain I-Like-Networking.com
(let us suppose this domain is free)

 I-Like-Networking register this domain in one
of the DNS Registrars
◼ I-Like-Networking must give to the DNS registrar

the symbolic name and the corresponding IP
addresses of the authoritative name servers

◼ The DNS registrar inserts two RR nel TLD server
.com

I-Like-Networking, dsn1.I-Like-Networking.com, NS

dns1.I-Like-Networking.com, 212.212.212.1, A

◼ The DNS registrar eventually writes a record of type
MX for I-Like-Networking.com

Simple examples with nslookup

 You can use the command nslookup that permits to
send DNS requests to a given server

 You can look how it works:
man nslookup

 Try to solve a symbolic name:
nslookup www.unibg.it

 Let’s find the authoritative name servers for a given
domain

nslookup –type=NS unibg.it

Try to find an authoritative response for the symbolic
name www.google.com

Simple examples with dig

 The command dig (similar to nslookup)

gives more details on the DNS messages
exchanged

 Try a simple query

dig www.polimi.it

http://www.polimi.it

Simple examples with dig

Header of the
DNS message

Description
of the request

Response

Authoritative server for
the requested domain

Additional
information

Information on the
performance of the
request

Experimentation with dig

 If you want only the NS records
dig –t NS polimi.it +noall +answer

 If you want only the list of MX records
dig –t MX polimi.it +noall +answer

 If you the list of all records available
dig –t ANY polimi.it +noall +answer

 dig permits also to analyze the sequence of
DNS requests for each query

dig –t A polimi.it +noall +answer
+trace

Content Delivery Networks

 Problem:

◼ How to efficiently distribute several contents
(video) at the same time to several users (very)
far from each other

 Solution:

◼ Build a network of geographically distributed
servers that host copies of the requested
content (similarly to a very big distributed
cache)

◼ This network of servers (Content Delivery
Network, CDN) can be built and owned by the
content provider (Google, Netflix, Facebook) or
by third parties (Akamai, Limelight, KCDN)

CDN: Example of access to contents

The firm NetCinema relies on a CDN managed by KingCDN

Bob (client) requests a video http://netcinema.com/6Y7B23V

The video is found in the CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob obtains the URL of the video

http://netcinema.com/6Y7B23V

from page netcinema.com
2

2. Query DNS to Local DNS for

http://netcinema.com/6Y7B23V

netcinema’s

authorative DNS

3

4

4&5. query DNS for

http://KingCDN.com/NetC6y&B23

Towards authoratitative DNS for KingCDN, which

responds with the IP address of server KingCDN.com

5
6. request video from

KINGCDN server,

streamed via HTTP

KingCDN

authoritative DNS

3. DNS of netcinema answers with the URL

http://KingCDN.com/NetC6y&B23V

6

http://netcinema.com/6Y7B23V

• Closest: choose the closest serve (geographically
speaking) to the client

• Shortest path: choose the server with the lowest
number of hops towards the client

• Let the user decide: give to the user a list of
possible servers, and the user chooses the best
(Netflix)

Choice of the best server

Peer-to-Peer Architectures

File sharing, architectures, search

P2P file sharing

Example

 Alice runs a P2P client
application on her
notebook computer

 Intermittently connects
to Internet; gets new
IP address for each
connection

 Asks for “Hey Jude”

 Application displays
other peers that have
copy of Hey Jude.

 Alice chooses one of
the peers, Bob.

 File is copied from
Bob’s PC to Alice’s
notebook: HTTP

 While Alice
downloads, other
users uploading from
Alice.

 Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

P2P: centralized directory

original “Napster”
design

1) when peer connects,
it informs central
server:

◼ IP address

◼ Shared files

2) Alice queries for “Hey
Jude”

3) Alice requests file
from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

P2P: problems with centralized
directory

 Single point of
failure:if the server
fails, the system is
blocked

 Performance
bottleneck: the
server is the
bottleneck

 Copyright
infringement: the
server can the
liable

file transfer is
decentralized,
but locating
content is highly
centralized

P2P completely distributed: Gnutella

 fully distributed
◼ no central server

 public domain
protocol

 many Gnutella
clients worldwide
based on this same
protocol

overlay network: graph

 edge between peer X
and Y if there’s a TCP
connection

 The search of
neighbors is distributed
in nature

 all active peers and
edges are overlay net

 Edge is not a physical
link

 Given peer will typically
be connected with < 10
overlay neighbors

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:

HTTP
 Query message
sent over existing TCP
connections

 peers forward
Query message up to a
given # of hops

 QueryHit
sent over the
reverse
path

Scalability:

limited scope
flooding

Gnutella: Peer joining

1. Joining peer X must find some other peer in
Gnutella network: to use list of candidate
peers

2. X sequentially attempts to make TCP with
peers on list until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping
message.

4. All peers receiving Ping message respond
with Pong message

5. X receives many Pong messages. It can
then setup additional TCP connections

• Files are divided in chunks of 256 kbytes

BitTorrent

tracker: tiene traccia dei peer
che partecipano ad un torrent

torrent: gruppo di peer che si
scambiano chunk di un file

Alice ottiene la lista
di peer dal tracker… …

… ed inizia a scambiare
chunk con i peer nel torrent

FIR: 2 - Livello Applicativo 127

• The peers that enter in a torrent

register on a tracker to obtain a list

of «active» peers

• The tracker sends a list of active

peers on a torrent (IP addresses)

• The new peer establishes TCP

connections only with a subset of

peers in the list (neighboring peers)

• Neighboring peers send to the new

peer the list of available chunks

• The new peer chooses which chunk

to download and from which peer

based on heuristic mechanisms

BitTorrent – join the torrent

FIR: 2 - Livello Applicativo 128

• Principle of Rarest First

◼ The incoming peer, among all missing chunks,
downloads first the rares chunks in the list of
chunks sent by all neighboring peer

Chunk request mechanism

New (incoming)

peer

Available chunks

[1, 4, 7]

neighboring

peer 1

Available chunks

[1, 2, 6]

neighboring

peer 2

Available chunks

[6]

Rarest chunk

FIR: 2 - Livello Applicativo 129

• The new peer answers to requests that come from
the x peers that send chunks at the maximum rate

• All the other peers are choked

• The best x peers are re-determined periodically
(10[s])

• Every 30[s] a new peer is chosen randomly to send
a chunk to (optimistic unchoking)

Sending chunk mechanism

FIR: 2 - Livello Applicativo 130

