Esercizio 3 (28 Maggio 2008)

Esercizio 3

Si consideri una connessione ottica trasmessa su un cammino (path) lungo 800 km. Tale cammino è soggetto a guasti (failures) che vengono stimati essere in media pari a 5 failures/anno/1000 km (ovvero, 5 failures per anno ogni 1000 km di fibra). Il tempo medio di riparazione di un guasto (Mean Time To Repair, MTTR) risulta pari in media a 6 ore.

1)Si determini l'availability media di tale connessione.

2)Si supponga ora di proteggere tale connessione in modo dedicato (protezione 1:1) da un cammino di backup di uguale lunghezza e link-disjoint rispetto al cammino della connessione principale. Si ricalcoli l'availability media sperimentata dalla connessione in questo caso.

3)Supponendo che siano definite le seguenti classi di servizio, per cui vengono specificati in tabella i valori massimi tollerati di Unavailability (media), si indichi a quale classe di servizio appartiene la connessione non protetta (di cui al punto 1) e quella protetta in modo dedicato (di cui al punto 2)

	Premium	Gold	Silver	Bronze
Unavailability	< 10 ⁻⁵	< 10 ⁻⁴	< 10 ⁻³	< 10 ⁻²

Soluzione:

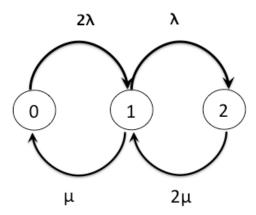
In questo caso ho un cammino soggetto a 5 guasti (failures) all'anno ogni 1000 km. La nostra connessione è lunga pero' 800km, quindi sarà soggetta a 5*800/1000= 4 failures/anno.

Un anno è composto da 365*24= 8760 ore.

Quindi avremo 4 failures ogni 8760 ore, ovvero in media il Mean Time To Failure (tempo medio tra un guasto ed il successive) sarà pari a 8760/4 = 2190 ore.

Il MTTR è dato dal teste del problema: 6 ore

Riassumendo: MTTF= 2190 ore MTTR = 6 ore


<u>Domanda 1</u>) L'affidabilità (availability) media della connessione, A, ovvero la risposta alla domanda numero 1) è data da:

A = MTTF/(MTTF+MTTR)= 2190/(2190+6)=2190/2196=**0.99727**

Domanda 2) Nel caso di protezione 1:1, ho un cammino di protezione dedicato, che protegge appunto il mio cammino (connessione) principale.

Utlizziamo il modello illustrato nella serie di lucidi sulla protezione delle reti di telecomunicazione

(https://cs.unibg.it/martignon/documenti/reti/Seminario_WDM_protection.pdf), in particolare le slide 18 e 19 ("Analysis of 1:N protection without Service Differentiation"). Nel nostro caso la catena di Markov risulta essere la seguente, molto semplice:

Nella catena qui sopra, lo stato rappresenta il numero di connessioni (senza distinzione tra la connessione principale e quella di backup) che sono guaste, ed è ovviamente compreso tra 0 (nessun guasto) e 2 (entrambe guaste).

$$\lambda$$
= 1/MTTF = 1/2190 (ore^-1)
 μ =1/MTTR = 1/6 (ore^-1)

Definiamo per comodità: $\rho = \lambda / \mu = 6/2190 = 0.002739726$

Le probabilità di stato stazionarie della catena di Markov qui sopra si ottengono semplicemente imponendo l'equilibrio dei flussi al nodo 0, e quindi al nodo 2 (è più semplice da scrivere), ed infine imponendo che le probabilità stazionarie sommino ad 1. Quindi:

Equilibrio nodo 0: $2\lambda p_0 = \mu p_1$ Equilibrio nodo 2: $\lambda p_1 = 2\mu p_2$ Condizione di normalizzazione: $p_0+p_1+p_2=1$

Risulta quindi dalla 1a equazione: $p_1 = 2(\lambda/\mu)p_0 = 2\rho p_0$ Dalla 2a equazione: $p_2 = (\lambda/2\mu)p_1 = (\rho/2) p_1 = \rho^2 p_0$ Infine sostituendo nella 3a equazione: $p_0 + 2\rho p_0 + \rho^2 p_0 = 1$, ovvero: $p_0 (1+\rho)^2 = 1$ Quindi:

$$p_0 = 1/(1+\rho)^2$$

 $p_1 = 2\rho/(1+\rho)^2$
 $p_2 = \rho^2/(1+\rho)^2$

L'unavailability media (si veda equazione di slide 19), che indicheremo con $U_{1:1}$, si calcola come segue, tenendo conto che nel nostro caso N = 1 (protezione 1:1)

e segue, tenendo conto che nel nostro caso N = 1 (
$$U(N,\lambda,\mu) = \sum_{n=2}^{N+1} \frac{(n-1)}{N} p(n)$$

- Nello stato n, per n > = 2, ci sono infatti (n-1) connessioni non protette sul totale delle N connessioni
- La probabilità che, nello stato n, una connessione scelta a caso fra le N sia proprio tra le (n-1) non protette è data dal rapporto (n-1)/N

Quindi nel nostro caso $U_{1:1} = p_2$. Del resto è ovvio: l'unico stato in cui la connessione principale NON risulta protetta è proprio quando entrambe le connessioni (principale e di backup) sono guaste, ovvero lo stato "2", che si verifica con probabilità p_2 .

Di conseguenza l'affidabilità media del nostro sistema di protezione 1:1, che indichiamo come $A_{1:1}$, sarà data da $A_{1:1}$ = 1- $U_{1:1}$.

Numericamente $U_{1:1}=p_2=7.465137806*10^{-6}$ Quindi: $A_{1:1}=1-U_{1:1}=0.99999253$, che è la risposta alla nostra domanda numero 2).

Nota: in questo caso molto semplice (due sole connessioni, una primaria e una di backup) si puo' anche ragionare semplicemente partendo dalla risposta al punto 1. Abbiamo infatti due connessioni (la principale e quella di backup), identiche, caratterizzate ciascuna da una affidabilità A = MTTF/(MTTF+MTTR)= 2190/2196=0.99727

Ma allora, l'unavailability (probabilità di guasto) per ciascuna di esse risulta pari a 1-A, e la probabilità che <u>entrambe</u> siano guaste contemporaneamente risulta (si tratta di eventi disgiunti): $(1-A)^*$ $(1-A) = (1-A)^2$

Quindi l'affidabilità del nostro sistema 1:1, $A_{1:1}$, è calcolabile come : $A_{1:1}$ = 1 - (1-A) ² = 0.99999253

Domanda 3)

	Premium	Gold	Silver	Bronze
Unavailability	< 10 ⁻⁵	< 10 ⁻⁴	< 10 ⁻³	< 10 ⁻²

Nel caso della connessione non protetta di cui al punto 1), l'Unavailability risulta essere pari a 1-0.9966 = 0.00273, che risulta essere $<10^-2$ ma $non<10^-3$. La classe di servizio è dunque **Bronze**.

Nel caso di connessione protetta di cui al punto 2), si ha $U_{1:1} = 1.16483593 *10^-5$ e guardando la tabella risulta <10^-5. La classe di servizio è dunque **Premium.**