Esercizio 1 - 28 Maggio 2008

<u>Esercizio 1</u>

Si consideri un sistema a code caratterizzato da due serventi (S1 ed S2) e nessun posto in coda. Si supponga che il processo degli arrivi sia Poissoniano con valor medio λ pacchetti/secondo. Il tempo di trasmissione di un pacchetto servito dal servente S1 è una variabile casuale esponenziale negativa con media pari ad $1/\mu_1$ secondi, mentre il tempo di trasmissione di un pacchetto servito dal servente S2 è una variabile casuale esponenziale negativa con media pari ad $1/\mu_2$ secondi. Inoltre sia $\mu_1 > \mu_2$. Quando un pacchetto arriva nel sistema e trova entrambi i serventi liberi, sceglie il più veloce.

1)Si indichi per quali valori di λ , μ_1 e μ_2 il sistema è stabile, ovvero raggiunge uno stato stazionario.

2)Si descriva, tramite una catena di Markov, il sistema in esame.

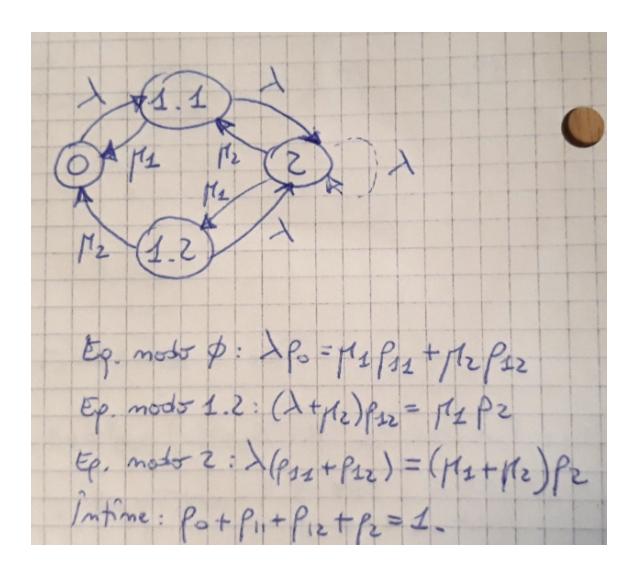
Si consideri quindi il caso $\mu_1 = 2\mu_2$ e $\lambda = \mu_2$. In questa ipotesi:

- 3)Si calcolino, in forma numerica, le probabilità di stato stazionarie.
- 4)Si calcoli la probabilità di blocco del sistema
- 5)Si calcoli il numero medio di pacchetti nel sistema
- 6)Si calcoli il tempo medio speso nel sistema da un pacchetto.

Soluzione:

- 1) Il sistema è sempre stabile (ovvero, raggiunge uno stato stazionario) per ogni valore di λ , $\mu 1$ e $\mu 2$ essendo caratterizzato da una coda finite (pari a nessuno posto in coda).
- **2)** Si descriva, tramite una catena di Markov, il sistema in esame, specificando con precisione gli stati introdotti e le transizioni tra tali stati.

Stato: numero pacchetti nel sistema (da 0 a 2), ma per lo stato 1 specifichiamo se il pacchetto si trova nel servente 1 (stato 1.1) o nel servente 2 (stato 1.2) Ecco la Catena di Markov e le 4 equazioni (3 di equilibrio di flusso + la condizione di normalizzazione) per determinare le probabilità stazionarie:



3) Per calcolare in forma numerica le probabilità stazionaria basta risolvere il sistema qui sopra. Sostituendo $\mu 1 = 2*\mu 2$ e $\lambda = \mu 2$ risulta:

Risulta quindi dalla 1a equazione: $p_0=2p_{11}+p_{12}$

Dalla 2a equazione: $p_{12} = p_2$

Dalla 3a equazione: $p_{11} + p_{12} = 3p_2$

Infine: $p_0 + p_{11} + p_{12} + p_2 = 1$

Con un passaggio e qualche sostituzione (esprimo tutto in funzione di p₂):

Risulta quindi dalla 1a equazione: p₀=5p₂

Dalla 2a equazione: $p_{12} = p_2$ Dalla 3a equazione: $p_{11} = 2p_2$

Infine: $5p_2 + 2p_2 + p_2 + p_2 = 1$, da cui $p_2 = 1/9$

Quindi: $p_0=5/9$

$$p_{11}=2/9$$

 $p_{12}=1/9$
 $p_2=1/9$

- 4) La probabilità di blocco del sistema è pari a p₂=1/9
- **5)** il numero medio di pacchetti nel sistema è pari $N = 0 * p_0 + 1 * p_{11} + 1 * p_{12} + 2 * p_2 = 2/9 + 1/9 + 2/9 = 5/9$
- **6)** Applichiamo il teorema di Little al nostro sistema. Il teorema dice che il numero medio N di pacchetti nel sistema (che raggiunge sempre uno stato stazionario, peraltro), e che abbiamo già calcolato al punto 5), è pari al traffico medio *entrante* nel sistema, che indichiamo con λa (diverso da λ) per T, tempo medio speso nel sistema, che vogliamo appunto calcolare.

Quanto vale λa ? In realtà è calcolabile sapendo che il traffico totale (medio) offerto al sistema, λ , è pari alla somma del traffico totale (medio) entrante, λa , più quello (medio) scartato dal sistema, λr , che è pari a $\lambda * p_2$).

Quindi
$$\lambda a = \lambda - \lambda r = \lambda (1 - p_2) = 8 \lambda / 9$$

Quindi : $N = \lambda a * T$

Ovvero: $T = N/\lambda a = (5/9)/(8\lambda/9) = 5/(8\lambda)$