

Optimization Framework for Resource Management of Mobile Edge Computing Networks

Bin Xiang, Jocelyne Elias, Fabio Martignon, Elisabetta Di Nitto

Outline

Introduction

- ² System Architecture
- 3 Joint Slicing Network and Edge Computing Resources
- Joint Resource Planning and Slicing for Network and Edge Computing
- Resource Calendaring for Mobile Edge Computing
- Conclusion

Outline

Introduction

- ² System Architecture
- ³ Joint Slicing Network and Edge Computing Resources
- 4 Joint Resource Planning and Slicing for Network and Edge Computing
- ⁵ Resource Calendaring for Mobile Edge Computing

Conclusion

- *Mobile Edge Computing* (MEC) provides an IT service environment and cloud-computing capabilities at the edge of mobile network.
- ^{*} MEC make it possible to simultaneously address the stringent latency requirements of critical services and ensure efficient network operation and service delivery.
 - $^{\circ}$ workload offloading, network planning, network slicing, service placement, etc.
 - Users' demands show certain flexibility in terms of tolerable starting and ending service time.

W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications. Sprin

- *Mobile Edge Computing* (MEC) provides an IT service environment and cloud-computing capabilities at the edge of mobile network.
- ^{*} MEC make it possible to simultaneously address the stringent latency requirements of critical services and ensure efficient network operation and service delivery.
 - \cdot workload offloading, network planning, network slicing, service placement, etc.
 - Users' demands show certain flexibility in terms of tolerable starting and ending service time.

W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications. Springe

- *Mobile Edge Computing* (MEC) provides an IT service environment and cloud-computing capabilities at the edge of mobile network.
- MEC make it possible to simultaneously address the stringent latency requirements of critical services and ensure efficient network operation and service delivery.
 - workload offloading, network planning, network slicing, service placement, etc. Users' demands show certain flexibility in terms of tolerable starting and ending service time.

Resource Management of MEC Networks

- *Mobile Edge Computing* (MEC) provides an IT service environment and cloud-computing capabilities at the edge of mobile network.
- MEC make it possible to simultaneously address the stringent latency requirements of critical services and ensure efficient network operation and service delivery.
 - workload offloading, network planning, network slicing, service placement, etc.
- Users' demands show certain flexibility in terms of tolerable starting and ending service time.

¹W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications. Springer,

- *Mobile Edge Computing* (MEC) provides an IT service environment and cloudcomputing capabilities at the edge of mobile network. <u>autonomous driving: < 1ms¹</u>
- [•] MEC make it possible to simultaneously address the <u>stringent latency</u> requirements of critical services and ensure efficient network operation and service delivery.
 - workload offloading, network planning, network slicing, service placement, etc.
- [•] Users' demands show certain flexibility in terms of tolerable starting and ending service time.

¹W. Xiang, K. Zheng, and X. S. Shen, *5G mobile communications*. Springer, 2017.

Resource Management of MEC Networks

- Mobile Edge Computing (MEC) provides an IT service environment and cloudcomputing capabilities at the edge of mobile network.
 autonomous driving: < 1ms¹
- ^{*} MEC make it possible to simultaneously address the <u>stringent latency</u> requirements of critical services and ensure efficient network operation and service delivery.
 - workload offloading, network planning, network slicing, service placement, etc.
- [•] Users' demands show certain flexibility in terms of tolerable starting and ending service time.

W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications. Springer, 2017.

- Mobile Edge Computing (MEC) provides an IT service environment and cloudcomputing capabilities at the edge of mobile network.
 autonomous driving: < 1ms¹
- MEC make it possible to simultaneously address the <u>stringent latency</u> requirements of critical services and ensure efficient network operation and service delivery.
 - workload offloading, network planning, network slicing, service placement, etc.
- · Users' demands show certain flexibility in terms of tolerable starting and ending service time.

W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications. Springer, 2017.

- * provides limited computational and storage resources by design;
- does not guarantee the latency requirements of services during peak hours when serving large amount of tasks from users with high demands;
- requires significant investments from both network operators and service providers in terms of deploying, operating and managing edge clouds.

- provides limited computational and storage resources by design;
- does not guarantee the latency requirements of services during peak hours when serving large amount of tasks from users with high demands;
- requires significant investments from both network operators and service providers in terms of deploying, operating and managing edge clouds.

- provides limited computational and storage resources by design;
- does not guarantee the latency requirements of services during peak hours when serving large amount of tasks from users with high demands;
- requires significant investments from both network operators and service providers in terms of deploying, operating and managing edge clouds.

- provides limited computational and storage resources by design;
- does not guarantee the latency requirements of services during peak hours when serving large amount of tasks from users with high demands;
- requires significant investments from both network operators and service providers in terms of deploying, operating and managing edge clouds.

- provides limited computational and storage resources by design;
- does not guarantee the latency requirements of services during peak hours when serving large amount of tasks from users with high demands;
- requires significant investments from both network operators and service providers in terms of deploying, operating and managing edge clouds.

Proposals:

- leverage the cooperation among interconnected multiple MEC units;
 - jointly optimize resources considering multiple aspects of network operations to minimize latency, costs, and maximize profit.

- provides limited computational and storage resources by design;
- does not guarantee the latency requirements of services during peak hours when serving large amount of tasks from users with high demands;
- requires significant investments from both network operators and service providers in terms of deploying, operating and managing edge clouds.

Proposals:

- leverage the cooperation among interconnected multiple MEC units;
- jointly optimize resources considering multiple aspects of network operations to minimize latency, costs, and maximize profit.

- Workload Offloading:²
 - \cdot They consider the contexts of single MEC or multiple MECs without
 - \cdot interconnection We consider multiple MECs with arbitrary topology
- Network Planning:³
 - \cdot They study nodes placement and the resource configuration
 - \cdot We study joint offloading of workloads, slicing and planning of resources
- Request/Resource Scheduling:⁴
 - \cdot They focus on the problems without processing or routing
 - aspects We jointly optimize admission, offloading, scheduling and routing

²C.-F. Liu, M. Bennis, M. Debbah, *et al.*, "Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing," *IEEE Trans. Commun.*, 2019.

³A. Santoyo-Gonz´alez and C. Cervello´-Pastor, "Latency-aware cost optimization of the service infrastructure placement in 5G networks," *J. Netw. Comput. Appl.*, vol. 114, pp. 29–37, 2018.

⁴J. Meng, H. Tan, X.-Y. Li, *et al.*, "Online deadline-aware task dispatching and scheduling in edge computing," *IEEE* Resource Management of MEC Networks 5/37

Joint Slicing Network and Edge Computing Resources

B. Xiang, J. Elias, F. Martignon, E. Di Nitto, "Joint network slicing and mobile edge computing in 5G networks," in *IEEE International Conference on Communications (ICC)*, 2019

Joint Resource Planning and Slicing for Network and Edge Computing

B. Xiang, J. Elias, F. Martignon, E. Di Nitto, "Joint planning of network slicing and mobile edge computing: Models and algorithms," *IEEE Transactions on Cloud Computing, August 2021*

Resource Calendaring for Mobile Edge Computing

- B. Xiang, J. Elias, F. Martignon, E. Di Nitto, "Resource calendaring for mobile edge computing in 5G networks," in *IEEE International Conference on Communications (ICC)*, 2021
- B. Xiang, J. Elias, F. Martignon, E. Di Nitto, "Resource calendaring for mobile edge computing: Centralized and decentralized optimization approaches," *Elsevier Computer Networks, Aug. 2021*B. Xiang, J. Elias, F. Martignon, E. Di Nitto, "A Dataset for Mobile Edge Computing Network Topologies," *Elsevier Data in Brief, November 2021*

Outline

¹ Introduction

2 System Architecture

³ Joint Slicing Network and Edge Computing Resources

- 4 Joint Resource Planning and Slicing for Network and Edge Computing
- ⁵ Resource Calendaring for Mobile Edge Computing

Conclusion

MEC Networks

Assumptions

- Traffic is aggregated by types associated with different requirements and can be split and processed on all
- edge nodes;

Network, computation and storage resources can be sliced to host

traffic segments.

Network, link and processing latency are modeled based on M/M/1 queueing process.

Assumptions

 Traffic is aggregated by types associated with different requirements and can be split and processed on all edge nodes;

Network, computation and storage resources can be sliced to host

traffic segments.

Network, link and processing latency are modeled based on M/M/1 queueing process.

Assumptions

- Traffic is aggregated by types associated with different requirements and can be split and processed on all
- edge nodes;

Network, computation and storage resources can be sliced to host

traffic segments.

Network, link and processing latency are modeled based on M/M/1 queueing process.

Assumptions

- Traffic is aggregated by types associated with different requirements and can be split and processed on all
- edge nodes;

Network, computation and storage resources can be sliced to host

traffic segments.

Network, link and processing latency are modeled based on M/M/1 queueing process.

Resource management in MEC networks

	Edge Slicing	Edge Planning	Edge Scheduling
Resource:			
Wireless network (C_V) Computation (D_V)	$\sqrt[]{}$	\bigvee_{\checkmark}	$\sqrt[]{\sqrt{\sqrt{1-1}}}$
Link (B_e)	\checkmark	\checkmark	v √
Time domain Ingress node Topology G(V, E)	Single Hierarchical	Multiple Arbitrary	Multiple Arbitrary
Operation:			
Slicing Offloading Routing Planning Admission Scheduling	C_{v}, D_{v} $\sqrt[]{}$ $\sqrt[]{}$	C _V , D _V √ √ √	$\begin{vmatrix} B_e, D_v, S_v \\ \sqrt{v} \\ v$
Optimization:			V
Object	Traffic	Traffic	Reques
Target	Latency	Latency, operation costs	t Profit
Constraints	Capacities, latency	Capacities, latency, budget	Capacities, life cycle
Approach	Centralized	Centralized	Centralized + Decentralized

Outline

¹ Introduction

² System Architecture

Joint Slicing Network and Edge Computing Resources

- 4 Joint Resource Planning and Slicing for Network and Edge Computing
- ⁵ Resource Calendaring for Mobile Edge Computing

Conclusion

Problem Formulation

$\mathcal{P}0$:

$$\min_{c_n, b_{n,v}, q_{n,v}, r_{n,v}} \sum_{n \in \mathcal{N}} \left\{ T_n^{Network} + \max_{v \in \mathcal{V}} \left\{ T_{n,v}^{Processing} + T_{n,v}^{Link} \right\} \right\},$$
s.t. Tolerable latency for each traffic type $(\tau_n, n \in \mathcal{N})$. Wireless network capacity $(C_v, v = ingress)$, Computation capacity of each node $(D_v, v \in \mathcal{V})$, Link capacity $(B_e, e \in \mathcal{E})$.

Decision variables:

- c_n : Slice of the network capacity C for traffic type $n \in \mathcal{N}$ (slicing)
- $b_{n,v}$: Indicator of whether traffic $n \in \mathcal{N}$ is processed on node $v \in \mathcal{V}$ (offloading)
- $q_{n,v}$: Percentage of traffic $n \in \mathcal{N}$ processed on node $v \in \mathcal{V}$ (offloading)
- $r_{n,v}$: Percentage of computation capacity D_v , $v \in \mathcal{V}$ sliced for traffic $n \in \mathcal{N}$ (provisioning)

Branch and Bound method can be exploited, but:

Po contains many difficult indicator constraints; Computing time exponentially increases w.r.t. problem

Reformulation + Heuristic + B&B:

 Transform P0 into a mixed-integer quadratically constrained programming (MIQCP) problem (P1).

Propose Sequential Fixing and Greedy to accelerate B&B.

⁵R. Kannan and C. L. Monma, "On the computational complexity of integer programming problems," in *Optimization and Operations Research*, Springer, 1978, pp. 161–172.

Branch and Bound method can be exploited, but:

P0 contains many difficult *indicator* constraints; Computing time exponentially increases w.r.t. problem size;

Reformulation + Heuristic + B&B:

• Transform P0 into a mixed-integer quadratically constrained programming (MIQCP) problem (P1).

⁵R. Kannan and C. L. Monma, "On the computational complexity of integer programming problems," in *Optimization and Operations Research*, Springer, 1978, pp. 161–172.

Branch and Bound method can be exploited, but:

P0 contains many difficult *indicator* constraints; Computing time exponentially increases w.r.t. problem size;

Reformulation + Heuristic + B&B:

• Transform P0 into a mixed-integer quadratically constrained programming (MIQCP) problem (P1).

Propose <u>Sequential Fixing</u> and <u>Greedy</u> to accelerate B&B.

⁵R. Kannan and C. L. Monma, "On the computational complexity of integer programming problems," in *Optimization and Operations Research*, Springer, 1978, pp. 161–172.

Branch and Bound method can be exploited, but:

P0 contains many difficult indicator constraints; Computing time exponentially increases w.r.t. problem size;

```
Reformulation + Heuristic + B&B:
```

 Transform P0 into a mixed-integer quadratically constrained programming (MIQCP) problem (P1).
 Propose <u>Sequential Fixing</u> and <u>Greedy</u> to accelerate B&B.

⁵R. Kannan and C. L. Monma, "On the computational complexity of integer programming problems," in *Optimization and Operations Research*, Springer, 1978, pp. 161–172.

Main procedures of Sequential Fixing:

Algorithm 1 Sequential Fixing

- 1: **Relax** $b_{n,v}$ to continuous $\tilde{b}_{n,v}$ in $\mathcal{P}1$, then **solve** $\tilde{b}_{n,v}^*$;
- 2: Rank nodes (\mathcal{V}) by descending $\sum_{n \in \mathcal{N}} \tilde{b}_{n,v}$, and keep top $\mathcal{K} \subset \mathcal{V}$;
- 3: Rank traffic types (\mathcal{N}) by descending rate and tolerable latency;
- 4: Allocate nodes (\mathcal{K}) to types (\mathcal{N}) in order and repeatedly;
- 5: Set on/off the corresponding variables $b_{n,v}$ in original $\mathcal{P}1$.
Network Topologies:

Scaling computation capability D_v , tolerable latency τ_n

capacity

2.

5

Computing time

¹ Introduction

- ² System Architecture
- ³ Joint Slicing Network and Edge Computing Resources
- Joint Resource Planning and Slicing for Network and Edge Computing
- ⁵ Resource Calendaring for Mobile Edge Computing

Problem Formulation

 c^{kn}

$\mathcal{P}0$:

$$\begin{split} \min_{\substack{b_v^{kn}, q_v^{kn}, \\ \sigma_v^{\delta}, \pi_v^{kn}}} & \sum_{n \in \mathcal{N}} \max_{k \in \mathcal{K}} \left\{ T_{kn}^{Network} + T_{kn}^{Process+Link} \right\} + w \sum_{v \in \mathcal{V}} J_v^{Operation}, \\ s.t. & \text{Tolerable latency for each traffic type } (\tau_n, n \in \mathcal{N}), \\ & \text{Wireless network capacity } (C_k, k \in \mathcal{K}), \\ & \text{Computation capacity and planning budget } (D_v, v \in \mathcal{V}, P), \\ & \text{Link capacity } (B_e, e \in \mathcal{E}). \end{split}$$

Decision variables:

- c^{kn} : Slice of the network capacity for traffic kn (slicing)
- b_v^{kn} : Whether traffic kn is processed on node v (offloading)
- q_v^{kn} : Percentage of traffic kn processed on node v (offloading)
- r_v^{kn} : Percentage of v's computation capacity sliced for processing traffic kn (provisioning)
- δ_v^a : Decision for planning computation capacity on node v (planning)
- \mathcal{R}_v^{kn} : Set of links for routing the traffic piece q_v^{kn} from ingress k to node v (routing)

- $\mathcal{P}0$ is a mixed-integer nonlinear programming (**MINLP**) problem, which is \mathcal{NP} -hard⁵.
 - $\mathcal{P}0$ contains many difficult indicator constraints;
 - \bullet Variables in $\mathcal{P}0$ are "intertwined", e.g., routing and offloading;
- Reformulation + Heuristic + B&B:
 - Transform $\mathcal{P}0$ into a mixed-integer quadratically constrained programming (**MIQCP**) problem ($\mathcal{P}1$).
 - Propose Neighbor Exploration and Sequential Fixing to accelerate B&B.

⁵R. Kannan and C. L. Monma, "On the computational complexity of integer programming problems," in *Optimization and Operations Research*, Springer, 1978, pp. 161–172.

Neighbor Exploration and Sequential Fixing

Neighbor Exploration and Sequential Fixing

Algorithm 1 Attempt of serving traffic with ingress nodes

1: $D_k^e = D^m - \sum_{n \in \mathcal{N}} \lambda^{kn}, \forall k;$ 2: $\mathcal{K}^u = \{k \in \mathcal{K} \mid D_k^e \leq 0\}; \triangleright$ Unable to host traffic 3: for $k \in \mathcal{K}^u$ do 4: Find neighbor ingress nodes to *cover* $D_k^e;$ 5: if *found* then Add them to Q_k by ascending hop; 6: Rank \mathcal{N} as \mathcal{N}_k by descending $(\lambda^{kn}, \tau_n), \forall k;$ 7: if $\mathcal{K}^u = \emptyset$ or $\Lambda_{k \in \mathcal{K}^u}(|Q_k| > 1)$ then 8: Allocate Q_k to \mathcal{N}_k in order and repeatedly, $\forall k;$ 9: Solve $\mathcal{P}1$ to obtain objective function value $\mathcal{O}_{\mathcal{P}1};$

10: if
$$O_{P1} > 0$$
 then $O_t = O_{P1}$;

Neighbor Exploration and Sequential Fixing

Algorithm 2 Priority searching of computation candidates

- 1: **Rank** ingress nodes as \mathcal{K}^s , $\hat{k} = \mathcal{K}^s(0)$;
- 2: while $|\bigcup_{k\in\mathcal{K}}Q_k| < \left\lfloor \frac{P}{\min(L_s)} \right\rfloor$ and $\mathcal{K}^s \neq \emptyset$ do
- 3: Search candidates \mathcal{B} for \hat{k} from multi-hop neighbors considering estimated computation capacity;
- 4: Rank \mathcal{B} , $v' = \mathcal{B}(0)$;
- 5: Spread v' to help other $\mathcal{K}^s \setminus \{\hat{k}\}$ and update Q_k ;
- 6: **Update** next searching target \hat{k} ;
- 7: **if** \hat{k} needs *help* **then continue**;
- 8: Run (Algorithm 3) to obtain O_t ;
- 9: Return O_t;

Neighbor Exploration and Sequential Fixing

Algorithm 3 Allocating resources and obtaining solution

1: Relax $b_v^{kn}, \delta_v^a, \gamma_e^{kn,v}$ to continuous ones $(\mathcal{P}1 \to \tilde{\mathcal{P}}1);$

2: Allocate Q_k to \mathcal{N}_k partially and solve $\tilde{\mathcal{P}}_1$ to obtain \tilde{b}_v^{kn} ;

3: if $O_{\tilde{\mathcal{P}}_1} > 0$ then

4: **Rank** candidates as Q_k^s by descending $\sum_{n \in \mathcal{N}} \tilde{b}_v^{kn}$;

5: **Revert** to the original problem \mathcal{P}_1 ;

6: **if** $O_t > 0$ **then** set O_t as $\mathcal{P}1$'s upper bound;

7: Allocate Q_k^s to \mathcal{N}_k and solve $\mathcal{P}1$;

8: if $0 < O_t \& (O_t < O_{\mathcal{P}1} || O_{\mathcal{P}1} < 0) \& \overline{skip}$ then break;

9: **if** $0 < O_{\mathcal{P}1} \& (O_{\mathcal{P}1} < O_t || O_t < 0)$ then $O_t = O_{\mathcal{P}1}$;

10: else if $O_t > 0 \& \overline{skip}$ then break;

Network Topologies: Random Graphs⁶

⁶P. Erdos and A. Renyi, "On Random Graphs I," *Publicationes Mathematicae Debrecen*, vol. 6, pp. 290–297, 1959.

Network Topologies: A Real Network Scenario

Figure: Città Studi topology with 30 nodes, 35 edges and 6 ingress nodes (marked with gray shadow).

⁷https:/www.opencellid.org/

Scaling network capacity, tolerable latency and computation L_3

Computing time

Outline

¹ Introduction

- ² System Architecture
- ³ Joint Slicing Network and Edge Computing Resources
- 4 Joint Resource Planning and Slicing for Network and Edge Computing
- Resource Calendaring for Mobile Edge Computing

Conclusion and Future Work

MEC Network & Request

MEC Network & Request

Request

An aggregated communication-computation demand (e.g., web, video, game, etc.,) requiring bandwidth, storage and computation resources of the network.

MEC Network & Request

Request

An aggregated communication-computation demand (e.g., web, video, game, etc.,) requiring bandwidth, storage and computation resources of the network.

Parameter	Definition
s ^k λ ^k η ^k m ^k	Source node of request $k \in K$ Average arrival rate of request k Processing density of request k Storage required to serve request k Revenue gained
μ ^k	from serving request k

Request Calendaring Example

Request Calendaring Example

Request Calendaring Example

Request Calendaring Example

Shifted starting time

Request Calendaring Example

Shifted starting time

Problem Formulation

$\mathcal{P}0$:

$$\max_{\substack{z^{kt}, q^{kv}, p^{kvt}\\ \rho^{kvt}, p^{kvt}_{e}}} \sum_{t \in \mathcal{T}} \sum_{k \in \mathcal{K}} \left\{ \mu^{k} z^{kt} - \sum_{v \in \mathcal{V}} \left\{ r^{kvt} D_{v} \theta_{v} + \rho^{kvt} m^{k} \phi_{v} + \sum_{e \in \mathcal{E}} p^{kvt}_{e} B_{e} \psi_{e} \right\} \right\},$$

s.t. Life cycle of requests $(\alpha^{k}, \beta^{k}, d^{k}, k \in \mathcal{K}),$
Processing latency and storage provisioning $(D_{v}, S_{v}, v \in \mathcal{V}),$
Network routing and link latency $(B_{e}, e \in \mathcal{E}).$

Decision variables:

- z^{kt} : Whether request k starts at time slot $t \in \mathcal{T}$ (Scheduling)
- q^{kv} : Fraction of request k processed on node v (Offloading)
- r^{kvt} : Fraction of node v's computation capacity sliced to k at t (*Provisioning*)
- ρ^{kvt} : Whether node v processes request k at t (Provisioning)
- p_e^{kvt} : Fraction of link e's bandwidth sliced to request q^{kv} at t (Provisioning & Routing)

Problem Formulation

P0 is a mixed-integer nonlinear programming (MINLP) problem, which is NP-hard⁵.

- P0 contains many difficult indicator constraints;
- Variables in P0 are "intertwined", e.g., routing and
- offloading;

Constraints for the life cycle of requests;

- Reformulation + Heuristic + B&B:
 - Transform P0 into a mixed-integer quadratically constrained programming (MIQCP) problem (P1).
 - Propose <u>Sequential Fixing and Scheduling</u> to accelerate B&B.

⁵R. Kannan and C. L. Monma, "On the computational complexity of integer programming problems," in *Optimization and Operations Research*, Springer, 1978, pp. 161–172.

Algorithm 1 Sequential fixing and scheduling

1: Sort
$$\mathcal{K}$$
 in descending order by $\frac{\mu^{k}}{d^{k}\lambda^{k}m^{k}n^{k}}, k \in \mathcal{K}$;

- 2: for $k \in \mathcal{K}$ do
- **Find candidate** nodes set Q^k to compute k, considering request overlap; 3:

4: **if**
$$\mathcal{Q}^k \neq \emptyset$$
 then

5: for
$$\mathcal{V}_i \in \mathcal{Q}^k$$
 do

- **Set** $b^{kv} = 1$, $\forall v \in \mathcal{V}_i$; **Fix** route (γ_e^{kv}) using *Dijkstra*; 6:
- 7: **Optimize** $\mathcal{P}1$ to get profit \mathcal{O} and solution \mathcal{S} ; 8

if
$$\mathcal{O} \ge 0$$
 then break;

9: **if**
$$\mathcal{O} \ge \mathcal{O}^* \& \mathcal{Q}^k \neq \emptyset$$
 then

- Update $\mathcal{O}^{\star} \leftarrow \mathcal{O}, \ \mathcal{S}^{\star} \leftarrow \mathcal{S};$ 10:
- Admit k and allocate resources based on S^* : 11:
- 12: else Reject k;

Network Topologies: Random Graphs⁶

⁶P. Erdos and A. Renyi, "On Random Graphs I," Publicationes Mathematicae Debrecen, vol. 6, pp. 290–297,

Resource Management of MEC Networks

Network Topologies: A Real Network Scenario

Figure: Città Studi topology with 30 nodes, 35 edges and 6 ingress nodes (marked with gray shadow).

⁷https://www.opencellid.org/

Scaling request rate λ^k , link bandwidth B_e , and computation capacity D_v

Scaling simultaneously (request rate λ^k and revenue μ^k)

Outline

¹ Introduction

- ² System Architecture
- ³ Joint Slicing Network and Edge Computing Resources
- 4 Joint Resource Planning and Slicing for Network and Edge Computing
- ⁵ Resource Calendaring for Mobile Edge Computing

- We proposed an optimization framework for resource management in MEC networks.
- We investigated three aspects: slicing, planning, and scheduling of MEC network resources to serve aggregated mobile traffic and user requests with different QoS requirements.
- The framework was targeted at reducing the total latency, saving network operation costs and improving profit of both mobile operators and service providers.
- It jointly optimized edge resources in terms of communication, computation and storage under constraints of latency, capacity, budget and request's life cycle, which are N P -hard.
- To tackle them efficiently, centralized and decentralized approaches were designed to recycle any recycled received a central solutions in short computing time.

- We proposed an optimization framework for resource management in MEC networks.
- We investigated three aspects: slicing, planning, and scheduling of MEC network resources to serve aggregated mobile traffic and user requests with different QoS requirements.
- * The framework was targeted at reducing the total latency, saving network operation costs and improving profit of both mobile operators and service providers.
- * It jointly optimized edge resources in terms of communication, computation and storage under constraints of latency, capacity, budget and request's life cycle, which are N P -hard.
- To tackle them efficiently, centralized and decentralized approaches were designed to provide approximate resource allocation solutions in short computing time.

- We proposed an optimization framework for resource management in MEC networks.
- We investigated three aspects: slicing, planning, and scheduling of MEC network resources to serve aggregated mobile traffic and user requests with different QoS requirements.
- The framework was targeted at reducing the total latency, saving network operation costs and improving profit of both mobile operators and service providers.
- [•] It jointly optimized edge resources in terms of communication, computation and storage under constraints of latency, capacity, budget and request's life cycle, which are N P -hard.
- To tackle them efficiently, centralized and decentralized approaches were designed to provide approximate resource allocation solutions in short computing time.

- We proposed an optimization framework for resource management in MEC networks.
- We investigated three aspects: slicing, planning, and scheduling of MEC network resources to serve aggregated mobile traffic and user requests with different QoS requirements.
- The framework was targeted at reducing the total latency, saving network operation costs and improving profit of both mobile operators and service providers.
- It jointly optimized edge resources in terms of communication, computation and storage under constraints of latency, capacity, budget and request's life cycle, which are N P -hard.
- * To tackle them efficiently, centralized and decentralized approaches were designed to provide approximate resource allocation solutions in short computing time.

- We proposed an optimization framework for resource management in MEC networks.
- We investigated three aspects: slicing, planning, and scheduling of MEC network resources to serve aggregated mobile traffic and user requests with different QoS requirements.
- The framework was targeted at reducing the total latency, saving network operation costs and improving profit of both mobile operators and service providers.
- It jointly optimized edge resources in terms of communication, computation and storage under constraints of latency, capacity, budget and request's life cycle, which are N P -hard.
- To tackle them efficiently, centralized and decentralized approaches were designed to provide approximate resource allocation solutions in short computing time.