
Introduction to OPL

Fabio Martignon

https://www.ibm.com/docs/en/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/opl_languser.pdf

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_intro.html

1

Sources:

https://www.ibm.com/docs/en/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/opl_languser.pdf

Introduction

• OPL is a modeling language

• It can be used, as we will do, to model several
networking scenarios, for example:

– 5G Networks (Multi Connectivity etc…)

– Network planning

– Routing with different constraints

– …

2

Linear programming

• The production planning problem
• It describes a linear programming problem.
• Consider a Belgian company, Volsay, which specializes in producing

ammoniac gas (NH3) and ammonium chloride (NH4Cl).
• Volsay has at its disposal

– 50 units of nitrogen (N),
– 180 units of hydrogen (H), and
– 40 units of chlorine (Cl).

• The company makes a profit of 40 Euros for each sale of an ammoniac gas
unit and 50 Euros for each sale of an ammonium chloride unit.

• Volsay would like a production plan maximizing its profits given its
available stocks.

• The following OPL statement formalizes this problem.

3

Linear programming

- The following OPL statement formalizes this problem.

- A simple Production Problem (volsay.mod)

dvar float+ Gas;

dvar float+ Chloride;

maximize 40 * Gas + 50 * Chloride;

subject to {

ctMaxTotal:

Gas + Chloride <= 50;

ctMaxTotal2:

3 * Gas + 4 * Chloride <= 180;

ctMaxChloride:

Chloride <= 40;

}

This statement declares two real decision variables, gas and chloride, representing the production of
ammoniac gas and ammonium chloride. These variables are of type float. 4

Linear programming
• This statement declares two real decision variables, gas and chloride, representing the

production of ammoniac gas and ammonium chloride. These variables are of type float.

• The objective function

maximize 40 * Gas + 50 * Chloride;

states that the profit must be maximized.

• The constraints ensure that the production plan does not exceed the available stocks of
nitrogen, hydrogen, and chlorine, respectively.

– The constraint gas + chloride <= 50 represents the capacity constraint for nitrogen, since
each unit of ammoniac gas and of ammonium chloride uses one unit of nitrogen.

– The next two constraints, for hydrogen and chlorine respectively, are similar in nature.

• A solution to an optimization problem is typically an assignment of values to the variables that
satisfies the constraints and optimizes the objective function.

• Note that in A simple production problem (volsay.mod), the constraints are identified with so-
called “labels”. It is recommended to label constraints in a model.

5

dvar float+ Gas;
dvar float+ Chloride;

Linear programming
• A solution to volsay.mod

• For the Volsay production-planning problem, OPL returns the optimal solution

Final Solution with objective 2300.0000:

gas = 20.0000;

chloride = 30.0000;

6

Elements od the Production Model

• We now describe the details of this Linear Programming (LP) model.

• The Volsay model shown above is a linear programming model.

• Linear programming is the class of problems that can be expressed as the
optimization of a linear objective function subject to a set of linear
constraints (i.e., linear equations and inequalities) over real numbers.

• Linear programming models can be solved for large numbers of variables
and constraints and are, from a computational standpoint, the simplest
applications we will consider.

7

Elements od the Production Model

• In the following we will examine:
– Arrays

– Data declarations

– Aggregate operators and quantifiers

– Isolating the data

– Data initialization

– Tuples

– Displaying results

– Setting CPLEX parameters

– Integer programming: the knapsack problem

– Mixed integer-linear programming: a blending problem

8

Arrays

• The previous model formulation is very specific to
the application at hand.

• In general, it is desirable to write generic models that
can be extended, modified easily, and applied in
different contexts.

• We will now describe a number of OPL concepts to
simplify the process of creating such models.

• A first step towards more genericity is the use of
arrays, which makes it easier, for instance, to
accommodate new products in the future.

9

Arrays

• The Volsay production planning model can be rewritten using
arrays as:

The volsay production model with arrays

{string} Products = {"gas","chloride"};

dvar float production[Products];

maximize

40 * production["gas"] + 50 * production["chloride"];

subject to {

production["gas"] + production["chloride"] <= 50;

3 * production["gas"] + 4 * production["chloride"] <= 180;
production["chloride"] <= 40;

}
10

Arrays

• This new statement illustrates several features of the language. First, the
instruction

{string} Products = {"gas","chloride"};

declares a set of strings Products that represents the set of products of the
company. The declaration

• dvar float production[Products];

declares an array of 2 decision variables, production["gas”] and
production["chloride"], to represent the optimal production of ammoniac gas
and ammonium chloride.

These decision variables are used in the rest of the statement, which remains
essentially the same as the previous model.

One of the key features of OPL is the generality of its arrays: OPL arrays can
have an arbitrary number of dimensions and their index sets can be arbitrary
finite sets, possibly involving complex data structures. 11

Data Declarations

• A second fundamental step towards more genericity in the
model amounts to representing the problem data explicitly.

• In addition to the products, the problem data obviously
consists of the (1) components (nitrogen, hydrogen, and
chloride), the (2) demand of each product for each
component, the (3) profit of each product, and the (4) stock
available for each component.

• The following example, gas.dat, declares and initializes the
data.

• Declaring and initializing data (gas.dat)
Products = { "gas" "chloride" }; Components = { "nitrogen"
"hydrogen" "chlorine" }; Demand = [[1 3 0] [1 4 1]]; Profit =
[30 40]; Stock = [50 180 40];

12

Data Declarations

• The data element Components is a set of strings that
defines the chemical components necessary for the
products,

• Demand is a two-dimensional array whose
element Demand[p][c] represents the demand of
product p for component c, and

• Profit and Stock are two arrays representing the profit
of each product and the stock available for each
component.

• The rest of the statement can be obtained easily by
replacing the numbers by the relevant data items.

For instance, the objective function is simply written as

13

maximize
sum(p in Products)

Profit[p] * Production[p];

Aggregate Operators and Quantifiers

• The previous statement contains much redundancy. All constraints, and all arithmetic terms
in these constraints and in the objective function, are similar: they differ only in their indices.

• OPL has two features to factorize these commonalities, aggregate operators and quantifiers,
as shown in the following model, gas1.mod.

A simple production model (gas1.mod).

{string} Products = { "gas", "chloride" };
{string} Components = { "nitrogen", "hydrogen", "chlorine" };

float Demand[Products][Components] = [[1, 3, 0], [1, 4, 1]];
float Profit[Products] = [30, 40];
float Stock[Components] = [50, 180, 40];

dvar float+ Production[Products];

maximize
sum(p in Products)

Profit[p] * Production[p];
subject to {

forall(c in Components)
ct:

sum(p in Products)
Demand[p][c] * Production[p] <= Stock[c];

}
14

Aggregate Operators and Quantifiers

• The objective function
maximize

sum(p in Products)
Profit[p] * Production[p];

illustrates the use of the aggregate operator sum to take the summation of the individual profits. A
variety of aggregate operators are available in OPL, including sum, prod, min, and max.

• The instruction
subject to {

forall(c in Components)
ct:

sum(p in Products)
Demand[p][c] * Production[p] <= Stock[c];

}

shows how the universal quantifier forall can be used to state closely related constraints.
It generates one constraint for each chemical component, each constraint stating that the total demand
for the component cannot exceed its available stock. OPL supports rich parameter specifications in
aggregate operators and quantifiers (see Expressions in the Language Reference Manual).

15

Isolating the Data

• Another fundamental step in making models reusable is to separate
the model and the instance data. OPL supports this clean
separation through the notion of projects.

• A project is the association of a model file, one or more data files
(optional), and one or more settings files (optional), associated in
run configurations. A minimal project has one run configuration
containing only one model.

• Model files use the file name extension .mod while data files use
the file name extension .dat. The model declares the data but does
not initialize it. The data files contain the initialization instructions
for each declared data item.

(See Understanding OPL projects in Quick Start.)
• Here we do not describe the details of IBM ILOG OPL, but generally

describe applications by giving the model and the instance data
separately

16

Isolating the Data

• For instance, the following model, gas.mod, and the instance data, gas.dat, together make
up a project for the Volsay production-planning problem. The model part is essentially the
same as the one presented earlier, except that it declares the data but does not initialize it.

• The production model (gas.mod)
{string} Products = …;
{string} Components = …;

float Demand[Products][Components] = …;
float Profit[Products] = …;
float Stock[Components] = …;

dvar float+ Production[Products];

maximize
sum(p in Products)

Profit[p] * Production[p];
subject to {

forall(c in Components)
ct:

sum(p in Products)
Demand[p][c] * Production[p] <= Stock[c];

}

17

Isolating the Data

• A declaration of the form
float profit[Products] = ...;

declares the array profit and specifies that its initialization is given in a
data file. The data file simply associates an initialization with each non-
initialized piece of data.
• Instance data for the production model (gas.dat)
Products = { "gas" "chloride" };
Components = { "nitrogen" "hydrogen" "chlorine" };

Demand = [[1 3 0] [1 4 1]];
Profit = [30 40];
Stock = [50 180 40];

18

Data Initialization

• OPL offers a variety of ways of initializing data. One particularly useful
feature is the possibility of associating indices with values to avoid various
kinds of errors. The following instance data, gasn.dat, illustrates this
feature on the instance data for the Volsay production model.

• Instance data with indices for the production model (gasn.dat)
Products = { "gas", "chloride" };
Components = { "nitrogen", "hydrogen", "chlorine" };

Profit = #["gas":30, "chloride":40]#;
Stock = #["nitrogen":50, "hydrogen":180, "chlorine":40]#;
Demand = #[

"gas": #["nitrogen":1 "hydrogen":3 "chlorine":0]#,
"chloride": #["nitrogen":1 "hydrogen":4 "chlorine":1]#

]#;

19

Data Initialization

• The initialization
profit = #["gas":30 "chloride":40]#;

• describes the initialization of array profit by associating
the value 30 with index gas and the value 40 with
index chloride. (Of course, the order of the pairs has no
importance in these initializations.)

• When using index:value pairs, the
delimiters #[and]# must be used instead of [and].

• Note also that, in data files, the items can be initialized
in any order and the commas can be omitted freely.

20

Tuples

• OPL offers a variety of data structures in addition to arrays and sets of strings.
Tuples, a fundamental tool for structuring the application data, offer an alternative
to the traditional approach of representing data in parallel arrays.

• To see the use of tuples in OPL, consider the following production-planning model.
To meet the demands of its customers, a company manufactures its products in its
own factories (inside production) or buys them from other companies
(outside production).

• Inside production is subject to some resource constraints: each product consumes
a certain amount of each resource. In contrast, outside production is theoretically
unlimited.

• The problem is to determine how much of each product should be produced
inside and outside the company while minimizing the overall production cost,
meeting the demand, and satisfying the resource constraints.

• The following example, production.mod, depicts an OPL model for this problem
that uses only the concepts introduced so far, and production.dat presents the
data for a specific instance.

21

Tuples
• A production-planning problem (production.mod)

22

{string} Products = ...;
{string} Resources = ...;

float Consumption[Products][Resources] = ...;
float Capacity[Resources] = ...;
float Demand[Products] = ...;
float InsideCost[Products] = ...;
float OutsideCost[Products] = ...;

dvar float+ Inside[Products];
dvar float+ Outside[Products];

minimize
sum(p in Products)
(InsideCost[p] * Inside[p] + OutsideCost[p] * Outside[p]);

subject to {
forall(r in Resources)

ctCapacity:
sum(p in Products)
Consumption[p][r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:

Inside[p] + Outside[p] >= Demand[p];
}

Tuples

• An instance of the problem must specify the products, the resources, the capacity
of the resources, the demand for each product, the consumption of resources by
the different products, and the inside and outside costs of each product.

• These various data items are specified in the standard way
in production.dat below. The model contains two arrays of variables:
element Inside[p] (respectively Outside[p]) represents the inside (respectively
outside) production of product p. The objective function specifies that the
production cost must be minimized.

Data for the production-planning problem (production.dat)
Products = { "kluski", "capellini", "fettuccine" };
Resources = { "flour", "eggs" };

Consumption = [[0.5, 0.2], [0.4, 0.4], [0.3, 0.6]];
Capacity = [20, 40];
Demand = [100, 200, 300];
InsideCost = [0.6, 0.8, 0.3];
OutsideCost = [0.8, 0.9, 0.4];

23

Tuples

• The production cost is simply the sum of the
individual production costs, which are obtained
by multiplying the inside and outside productions
of the given product by their respective costs.

• Finally, the model has two types of constraints.
The first set of constraints expresses the capacity
constraints, the second set states the demand
constraints.

• The model is once again a linear programming
problem.

24

A solution to production.mod

• For the instance data given in Data for the production-planning problem
(production.dat), OPL outputs the following solution:

Final Solution with objective 372.0000:
inside = [40.0000 0.0000 0.0000];
outside = [60.0000 200.0000 300.0000];

• Although the model is simple, it is inconvenient in separating the data associated
with each product in different arrays: for instance, array demand stores the
demand for the products, while array insideCost stores their inside costs.

• This technique, sometimes called parallel arrays, may be error-prone and less
readable for more complicated models.

• Tuples provide a simple way to cluster related data and impose more structure on
a model.

• This is illustrated in the revisited example below, product.mod, and the revised
data product.dat, which exhibit an alternative model for the production-planning
problem.

25

A solution to production.mod

• The production-planning problem revisited (product.mod)
{string} Products = ...;
{string} Resources = ...;
tuple productData {

float demand;
float insideCost;
float outsideCost;
float consumption[Resources];

}
productData Product[Products] = ...;
float Capacity[Resources] = ...;

dvar float+ Inside[Products];
dvar float+ Outside[Products];

execute CPX_PARAM {
cplex.preind = 0;
cplex.simdisplay = 2;

}

26

A solution to production.mod

• The production-planning problem revisited (product.mod)
minimize

sum(p in Products)
(Product[p].insideCost * Inside[p] + Product[p].outsideCost *

Outside[p]);
subject to {

forall(r in Resources)
ctInside:

sum(p in Products)
Product[p].consumption[r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:

Inside[p] + Outside[p] >= Product[p].demand;
}

27

Data for the revised production-
planning problem (product.dat)

Products = { "kluski", "capellini", "fettuccine" };

Resources = { "flour", "eggs" };

Product = #[

kluski : < 100, 0.6, 0.8, [0.5, 0.2] >,

capellini : < 200, 0.8, 0.9, [0.4, 0.4] >,
fettuccine : < 300, 0.3, 0.4, [0.3, 0.6] >

]#;

Capacity = [20, 40];

28

Data for the revised production-
planning problem (product.dat)

• The instruction
tuple productData {
float demand;
float insideCost;
float outsideCost;
float consumption[Resources];
}
• declares a tuple type with four fields. The first three fields,

of type float, are used to represent the demand and costs
of a product; the last field is an array representing the
resource consumptions of the product. These fields are
intended to hold all the data related to a given product.

29

Data for the revised production-
planning problem (product.dat)

• The instruction
ProductData product[Products] = ...;
• declares an array of these tuples, one for each product.

• The initialization …
Product = #[

kluski : < 100, 0.6, 0.8, [0.5, 0.2] >,
capellini : < 200, 0.8, 0.9, [0.4, 0.4] >,
fettuccine : < 300, 0.3, 0.4, [0.3, 0.6] >

]#;

30

Data for the revised production-
planning problem (product.dat)

• … from “Data for the revised production-planning problem”
(product.dat) specifies these various data items: tuples are initialized by
giving values for each of their fields. It is of course possible to use a named
initialization for the tuple, as shown in ”Named data for the revised
production-planning problem” (productn.dat), in which case the
initialization is enclosed with #< and >#.

• Tuple fields can be obtained by suffixing the tuple with a dot and the field
name. For instance, in the objective function

minimize
sum(p in Products)

(Product[p].insideCost * Inside[p] +
Product[p].outsideCost * Outside[p]);

the expression product[p].insideCost represents the field insideCost of the
tuple product[p].

31

Data for the revised production-
planning problem (product.dat)

• Similarly, in the constraint
forall(r in Resources)

sum(p in Products) product[p].consumption[r] * inside[p] <= capacity[r];

the expression product[p].consumption represents
the field consumption of tuple product[p].

This field is an array that can be subscripted in the
traditional way.

32

Displaying the results

• We now describe how to display results by writing an execute IBM ILOG
Script block.

• The statements presented so far did not specify what elements of the
solution should be displayed. OPL offers a way to display the results of an
application. An interesting feature of OPL is the ability to display tuples of
expressions.

• Procedure

• To display results using an execute block:

1) Add the following IBM ILOG Script execute block to the product.mod file
(see The production-planning problem revisited (product.mod))

tuple R { float x; float y; };

{R} Result = { <Inside[p],Outside[p]> | p in Products };

execute { writeln("Result=",Result); }

33

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_LP_elements.html#usropllangtut.uss_langtut_shortTour.1005660__usropllangtut.uss_langtut_shortTour.1005765

Displaying the results

You see the following output:

Optimal solution found with objective: 372

result= {<40.0000 60.0000> <0.0000 200.0000> <0.0000 300.0000>}

• Run the product model with the productn.dat data file shown in Named
data for the revised production-planning problem (productn.dat).

• You can visualize the inside and outside productions of a product
simultaneously.

Final Solution with objective 372.0000:

inside = [40.0000 0.0000 0.0000];

outside = [60.0000 200.0000 300.0000];

34

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_LP_results.html#usropllangtut.uss_langtut_shortTour.1005820__usropllangtut.uss_langtut_shortTour.1062374

Displaying the results
• Named data for the revised production-planning problem (productn.dat)

35

Products = { "kluski", "capellini", "fettuccine" };
Resources = { "flour", "eggs" };

Product = #[
kluski :

#< demand:100
insideCost:0.6
outsideCost:0.8
consumption:[0.5 0.2]
>#,

capellini :
#< demand:200

insideCost:0.8
outsideCost:0.9
consumption:[0.4 0.4] >#,

fettuccine :
#< demand:300

insideCost:0.3
outsideCost:0.4
consumption:[0.3 0.6]

>#
]#;

Capacity = [20, 40];

Displaying the results

• Add the following IBM ILOG Script postprocessing lines
to the product.mod file

execute {
for(p in Products)
writeln("inside[",p,"].reducedCost = ", inside[p].reducedCost);

}

• You can see both the inside production of a product
and its reduced cost.

Optimal solution found with objective: 372
inside[kluski].reducedCost = 0
inside[capellini].reducedCost = 0.06000000000000005
inside[fettuccine].reducedCost = 0.02000000000000002

36

Integer Programming

• Integer programming expresses the optimization of a linear
function subject to a set of linear constraints over integer
variables.

• The statements presented in Linear programming: a
production planning example are all linear programming
models. However, linear programs with very large numbers
of variables and constraints can be solved efficiently.

• Unfortunately, this is no longer true when the variables are
required to take integer values.

• Integer programming is the class of problems that can be
expressed as the optimization of a linear function subject
to a set of linear constraints over integer variables.

37

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_LP.html

Integer Programming

• It is in fact NP-hard.

• More important, perhaps, is the fact that the
integer programs that can be solved to provable
optimality in reasonable time are much smaller in
size than their linear programming counterparts.

• There are exceptions, of course, and several
important classes of integer programs can still be
solved efficiently, but users of OPL should be
warned that discrete problems are in general
much harder to solve than linear programs.

38

The Knapsack problem

• A typical example of integer program is the knapsack problem,
which can be intuitively understood as follows.

• We have a knapsack with a fixed capacity (an integer) and a
number of items. Each item has an associated weight (an integer)
and an associated value (another integer).

• The problem consists of filling the knapsack without exceeding its
capacity, while maximizing the overall value of its contents.

• A multi-knapsack problem is similar to the knapsack problem,
except that there are multiple features for the object (e.g., weight
and volume) and multiple capacity constraints.

• The following example, knapsack.mod, depicts a model for the
multi-knapsack problem, while Data for the multi-knapsack
problem (knapsack.dat) describes an instance of the problem

39

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_IP_typical.html#usropllangtut.uss_langtut_shortTour.1082101__usropllangtut.uss_langtut_shortTour.1055687

The Knapsack problem
A multi-knapsack model (knapsack.mod)

int NbItems = ...;

int NbResources = ...;

range Items = 1..NbItems;

range Resources = 1..NbResources;

int Capacity[Resources] = ...;

int Value[Items] = ...;

int Use[Resources][Items] = ...;

int MaxValue = max(r in Resources) Capacity[r];

dvar int Take[Items] in 0..MaxValue;

maximize

sum(i in Items) Value[i] * Take[i];

subject to {

forall(r in Resources)

ct:

sum(i in Items)

Use[r][i] * Take[i] <= Capacity[r];

}
40

The Knapsack problem

• This model has several novel features. It represents items and
resources not by string sets but rather by integers. In other words,
the items (respectively the resources) are represented by
successive integers starting at 1.

• The instructions
int NbItems = ...;
int NbResources = ...;
range Items = 1..NbItems;
range Resources = 1..NbResources;

declare the number of items and the number of resources, as well as two
ranges, Items and Resources, to represent the set of items and the set of
resources.

41

The Knapsack problem

• The next three instructions
int Capacity[Resources] = ...;
int Value[Items] = ...;
int Use[Resources][Items] = ...;

are similar to the data declarations presented in Data
declarations and the subsequent sections.
The array Capacity represents the capacity of the
resources, the array Value the value of each item,
and Use[r][i] the use of resource r by item i.

42

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_LP_elements.html#usropllangtut.uss_langtut_shortTour.1005545

The Knapsack problem

• The next instruction
int MaxValue = max(r in Resources) Capacity[r];

is more interesting.
• It declares an integer MaxValue whose value is given by

an expression.
• OPL and IBM ILOG Script have many features for

computing and preprocessing data, since this is
fundamental in simplifying and improving the
efficiency of many models.

43

The Knapsack problem

• The instruction
dvar int Take[Items] in 0..MaxValue;

declares the problem variables: take[Items] represents
the number of times item i is selected in the solution. The
variable is of type integer and is restricted to range
in 0..MaxValue.
• The rest of the statement is rather standard and should

raise no difficulty.
• Data for the multi-knapsack problem

(knapsack.dat) describes an instance of the problem.

44

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_IP_typical.html#usropllangtut.uss_langtut_shortTour.1082101__usropllangtut.uss_langtut_shortTour.1055687

The Knapsack problem - Dat

• Data for the multi-knapsack problem (knapsack.dat)
NbResources = 7;
NbItems = 12;
Capacity = [18209, 7692, 1333, 924, 26638, 61188, 13360];
Value = [96, 76, 56, 11, 86, 10, 66, 86, 83, 12, 9, 81];
Use = [

[19, 1, 10, 1, 1, 14, 152, 11, 1, 1, 1, 1],
[0, 4, 53, 0, 0, 80, 0, 4, 5, 0, 0, 0],
[4, 660, 3, 0, 30, 0, 3, 0, 4, 90, 0, 0],
[7, 0, 18, 6, 770, 330, 7, 0, 0, 6, 0, 0],
[0, 20, 0, 4, 52, 3, 0, 0, 0, 5, 4, 0],
[0, 0, 40, 70, 4, 63, 0, 0, 60, 0, 4, 0],
[0, 32, 0, 0, 0, 5, 0, 3, 0, 660, 0, 9]];

45

The Knapsack problem - Solution

• For the instance of the problem specified in Data for the multi-
knapsack problem (knapsack.dat), here are the final solution and
the solutions that satisfy all the constraints but are not the best
with respect to the objective function:

Feasible solution with objective 261890.0000:
take = [0 0 0 154 0 0 0 912 333 0 6505 1180];

Feasible solution with objective 261916.0000:
take = [0 0 0 153 0 0 0 912 333 0 6499 1180];

Final solution with objective 261916.0000:
take = [0 0 0 154 0 0 0 913 333 0 6499 1180];

46

https://perso.ensta-paris.fr/~diam/ro/online/cplex/cplex1271/OPL_Studio/opllanguser/topics/opl_languser_shortTour_IP_typical.html#usropllangtut.uss_langtut_shortTour.1082101__usropllangtut.uss_langtut_shortTour.1055687

The Knapsack problem - Solution

• Although integer programs are, in general,
substantially harder to solve than linear
programs, they have also been the topic of
intensive investigation. OPL recognizes when a
statement is an integer programming model
and uses CPLEX algorithms to solve it.

• Note: The results of objectives may vary,
according to the machine and the version of
CPLEX used.

47

Mixed integer-linear programs

• Mixed integer-linear Programs (MILP) include
both integer and real variables.

• OPL can also solve models that include both
integer and real variables, generally known as
mixed integer-linear programs (MILP).

• OPL approaches them in essentially the same way
as integer programs. A branch-and-bound
algorithm can exploit the linear relaxation except,
of course, that branching takes place only on
integer variables.

48

The blending problem

• The following blending problem is taken from W. Winston’s book
(see the Bibliography).

• Consider the following application involving mixing some metals
into an alloy. The metal may come from several sources: in pure
form or from raw materials, scraps from previous mixes, or ingots.

• The alloy must contain a certain amount of the various metals, as
expressed by a production constraint specifying lower and upper
bounds for the quantity of each metal in the alloy. Each source also
has a cost and the problem consists of blending the sources into the
alloy while minimizing the cost and satisfying the production
constraints.

• Similar problems arise in other domains, e.g., the oil, paint, and the
food processing industries. The following example shows the two
parts of the model for the blending problem.

49

The blending problem

int NbMetals = ...;
int NbRaw = ...;
int NbScrap = ...;
int NbIngo = ...;

range Metals = 1..NbMetals;
range Raws = 1..NbRaw;
range Scraps = 1..NbScrap;
range Ingos = 1..NbIngo;

float CostMetal[Metals] = ...;
float CostRaw[Raws] = ...;
float CostScrap[Scraps] = ...;
float CostIngo[Ingos] = ...;
float Low[Metals] = ...;
float Up[Metals] = ...;
float PercRaw[Metals][Raws] = ...;
float PercScrap[Metals][Scraps] = ...;
float PercIngo[Metals][Ingos] = ...;

int Alloy = ...;

50

• Blending problem: blending.mod file

The blending problem

dvar float+ p[Metals];
dvar float+ r[Raws];
dvar float+ s[Scraps];
dvar int+ i[Ingos];
dvar float m[j in Metals] in Low[j] * Alloy .. Up[j] * Alloy;

minimize
sum(j in Metals) CostMetal[j] * p[j] +
sum(j in Raws) CostRaw[j] * r[j] +
sum(j in Scraps) CostScrap[j] * s[j] +
sum(j in Ingos) CostIngo[j] * i[j];

subject to {
forall(j in Metals)
ct1:

m[j] ==
p[j] +
sum(k in Raws) PercRaw[j][k] * r[k] +
sum(k in Scraps) PercScrap[j][k] * s[k] +
sum(k in Ingos) PercIngo[j][k] * i[k];

ct2:
sum(j in Metals) m[j] == Alloy;

}

51

• Blending problem: blending.mod file

Elements of the Blending problem

• Problem data
• The model is described in terms of a number of constants specifying the various

types of metals, raw materials, scrap, and ingots.
• In the instance data shown in Instance data for the blending problem

(blending.dat), there are three metals, two raw materials, two kinds of scrap, and
one kind of ingot.

• The model also defines ranges for each of the components. It then defines the
cost of the various components in costMetal, costRaw, costScrap, costIngo. In the
instance data, for example, the second raw material has a cost of 5.

• The data items Low and Up specify the production constraints and give lower and
upper bounds on the quantity of each sort of metal in the alloy. For example, in
the instance data, between 30% and 40% of the alloy must be the second metal.

• The next data items, percRaw, percScrap, and percIngo, specify the percentage of
each metal in the sources. In Instance data for the blending problem
(blending.dat), the second type of scrap contains 1% of the first metal, none of the
second metal, and 70% of the third metal.

• Finally, the data alloy specifies the amount of alloy to be produced.

52

The blending problem – Dat file

NbMetals = 3;
NbRaw = 2;
NbScrap = 2;
NbIngo = 1;

CostMetal = [22, 10, 13];
CostRaw = [6, 5];
CostScrap = [7, 8];
CostIngo = [9];
Low = [0.05, 0.30, 0.60];
Up = [0.10, 0.40, 0.80];
PercRaw = [[0.20, 0.01], [0.05, 0], [0.05, 0.30]];
PercScrap = [[0 , 0.01], [0.60, 0], [0.40, 0.70]];
PercIngo = [[0.10], [0.45], [0.45]];
Alloy = 71;

53

• Blending problem: blending.dat file

The blending problem – Decision Variables

The decision variables specify how much of each source is used in the alloy: the array p
specifies the quantities of pure metals, array r specifies the quantities of raw materials,
array s specifies the quantities of scrap, array i specifies the number of ingots. All variables
are of type float except number of ingots, which are integers.

The problem is thus a mixed integer-linear program. The instruction

dvar float m[j in Metals] in low[j] * alloy .. up[j] * alloy;

is particularly interesting, since it shows how to specify the range of decision variables in a
generic fashion. More precisely, the range of variables m[j] is given by the expression:

low[j] * alloy .. up[j] * alloy

Note also that the model uses the variables in array m as intermediary variables to
represent the quantity of each metal produced.

54

• Decision variables

The blending problem - Constraints
There are two types of constraints in this problem.

The forall constraint

subject to {

forall(j in Metals)

ct1:

m[j] ==

p[j] +

sum(k in Raws) PercRaw[j][k] * r[k] +

sum(k in Scraps) PercScrap[j][k] * s[k] +

sum(k in Ingos) PercIngo[j][k] * i[k];

ct2:

sum(j in Metals) m[j] == Alloy;

}

makes sure that the right amounts of metal are produced. The amount m[j] of metal j must be equal to the amount of pure metal
p[j] added to the quantity of metal j contained in the raw materials, the scrap, and the ingots. The correct amount of metals are
computed using the percentage of metals contained in the sources.

The sum constraint

sum(j in Metals) m[j] == alloy;

makes sure that the various metals produced give the correct amount of alloy. The objective function in this model is rather
simple. It consists of computing the price of each source from its unit price (e.g., costMetal) and the amount produced (e.g., p[j]).

55

A solution for the blending problem
For the instance data given in Instance data for the blending problem (blending.dat), OPL returns
the solution

Final Solution with objective 653.6100:

p = [0.0467 0.0000 0.0000];

r = [0.0000 0.0000];

s = [17.4167 30.3333];

i = [32];

m = [3.5500 24.8500 42.6000];

56

