
A Mixed-Integer Linear Programming Approach for
Congestion-Aware Optimized NFV Deployment
Mohammad Ali Raayatpanah∗, Thomas Weise†, Jocelyne Elias‡, Fabio Martignon§, Andrea Pimpinella§

∗ Mathematical Sciences and Computer, Kharazmi University,Tehran, Iran
† Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University, Hefei, Anhui, China

‡ Department of Computer Science and Engineering, University of Bologna, Italy
§ Department of Management, Information and Production Engineering, University of Bergamo, Italy

Abstract—This paper introduces a novel optimization frame-
work for Network Functions Virtualization (NFV) that addresses
the efficient implementation of end-to-end service requests in
physical networks. Our approach characterizes each server node
by a reliability function reflecting its computational load, which
aids in balancing workloads and mitigating congestion. By
optimizing the reliability metrics along the route, our approach
ensures robust end-to-end service quality. We formulate the
NFV deployment problem as a non-convex mixed-integer non-
linear programming (MINLP) model aimed at minimizing both
deployment and operational costs while maximizing resource
utilization. Given the NP-hard nature of the problem, we develop
efficient linearization techniques and bounding schemes, using
also dynamic programming, to convert the formulation into
a tractable mixed-integer linear programming (MILP) model.
Additionally, a cutting-plane-based heuristic with a warm-start
strategy is proposed to further accelerate convergence. Experi-
mental evaluations on real-world network topologies demonstrate
that our framework offers scalable and cost-effective solutions
compared to existing approaches.

Index Terms—Network Functions Virtualization (NFV), Non-
Convex Optimization, Mixed-Integer Nonlinear Programming
(MINLP), Resource Allocation, Cost Modeling, Cutting-Plane
Heuristic

I. INTRODUCTION

Network Functions Virtualization (NFV) has revolutionized
modern network architectures by decoupling network services
from dedicated hardware and implementing them as software
running on general-purpose servers [1]. This paradigm shift
enables dynamic deployment of Virtual Network Functions
(VNFs) that can be instantiated and executed by Communi-
cation Service Providers (CSPs) to efficiently scale services
based on demand. Beyond optimizing resource utilization,
NFV enhances network flexibility, and reduces both capital
(CAPEX) and operational (OPEX) expenditures. However,
despite its promises, the deployment and optimization of NFV
systems pose complex challenges, particularly in ensuring
efficient resource allocation, network congestion management
and service reliability [2].

In particular, the design of effective NFV systems necessi-
tates robust optimization models to efficiently allocate VNFs
to commercial off-the-shelf server nodes while accounting for
computational capacity, traffic demand, and service reliability
constraints. This problem is inherently complex [3], requiring
advanced mathematical models to balance cost minimization,

efficient resource utilization, and service quality. The non-
convex nature of the problem adds complexity, requiring
specialized techniques for effective decision-making.

In this paper, we address such challenges by introducing
novel, advanced optimization techniques tailored for NFV
deployments. By strategically assigning VNFs to servers based
on their congestion levels and demands, our approach opti-
mizes workload distribution and ensures both high resource
utilization and robust service delivery. Precisely, we provide
the following contributions:

• Mathematical Modeling: we formulate the NFV deploy-
ment problem as a non-convex Mixed-Integer Non-Linear
Programming (MINLP) model [4], incorporating routing
constraints, VNF placement decisions, and network ca-
pacity limitations.

• Linearization Techniques: we introduce a novel approach
to transform non-linear constraints, using also dynamic
programming, obtaining a tractable MILP model, thereby
enabling efficient optimization and solution scalability.

• Heuristic Optimization: to tackle the NP-hard nature
of large-scale NFV optimization, we develop a cutting-
plane-based heuristic algorithm with bounding schemes.
We further enhance computational efficiency by integrat-
ing a warm-start strategy that accelerates convergence.

• Performance Evaluation: we validate our approach us-
ing a real-world network topology, demonstrating its
effectiveness in optimizing VNF placement, improving
network efficiency, and ensuring robust service delivery.

The structure of this paper is as follows: Section II defines
the NFV resource allocation problem, outlining its key com-
ponents. Section III presents the mathematical formulation,
detailing the objective function and constraints governing VNF
placement and traffic routing. Section IV introduces a cutting-
plane heuristic that constructs lower and upper bounding
models to relax complex constraints in the NP-hard NFV
deployment problem. It also incorporates a warm-start strategy
to generate initial tight cuts, enhancing convergence. Section V
analyzes numerical results that demonstrate the model’s ef-
fectiveness in a real network topology. Section VI discusses
related works, and Section VII concludes with future research
directions.

II. PROBLEM STATEMENT

We study network functions virtualization for end-to-end
requests in a physical network where each request, estimated
from service contracts, must be routed reliably. Each server
node is endowed with a reliability function—a concave, non-
increasing function of the computational resources used to pro-
cess Virtual Network Functions. This mechanism distributes
workloads efficiently, thereby mitigating network congestion.
In our model, the probability of successful data transfer from
source to destination is given by the product of the reliability
functions of the servers along the path.

Our objective is to minimize the overall NFV deployment
cost, which comprises capital expenditures (costs of deploy-
ing VNFs on servers), link activation costs (costs associated
with activating links), and server activation costs (costs
associated with activating servers).

Even though the cost function explicitly minimizes these
expenses, it implicitly encourages efficient resource utilization
and ensures that end-to-end request delivery meets a specified
reliability threshold. In particular, for each request k, the
product of the reliability functions along its path must exceed
a threshold τk.

We formulate this problem as a non-convex mixed-integer
nonlinear programming (MINLP) problem, proven to be NP-
hard. To solve it, we introduce an efficient linearization
technique together with lower and upper bounding schemes
used in a cutting-plane algorithm-based heuristic.

The physical network is modeled as an undirected graph
G = (N,L) where each node (server) n has:

• A computational resource capacity (scn)
• A bandwidth capacity (sbn)
• An activation cost (san).
Table I summarizes the notations for the parameters and

variables used throughout this paper. VNFs are of various
types (∀f, f ∈ F) with a processing capacity θf . End-to-end
requests k are described by their source ok, destination tk,
required bandwidth bk, and the VNFs from set F needed to
fulfill the request (the set F k) with instance requirements. The
required number of instances for each VNF f is determined
by mk

f =
⌈
bk

θf

⌉
.

Each VNF instance deployed on a server incurs a deploy-
ment cost αn,f and requires computational resources ηkn,f .
Link capacities lci,j and their costs lai,j are also modeled. The
reliability of each server node is defined as Rn = H

(
Ln

)
,

where Ln is the cumulative computational load from the
VNFs hosted on n. For an end-to-end request, the overall
path reliability is the product of the reliabilities of the nodes
traversed, and must be at least τk.

III. MATHEMATICAL FORMULATION

Our goal is to determine the optimal location of network
function instances while satisfying the following constraints.

Routing Constraints: each request k ∈ K must be routed
through a single physical path, defined by binary variables yki,j

TABLE I: Notations for parameters and variables

Parameter Description
G(N,L) Physical network G with nodes n ∈ N and links L

sbn Bandwidth limit of server n ∈ N
scn Comput. resource (e.g., CPU) capacity of server n ∈ N
san Cost to utilize physical resources on server n ∈ N (Activa-

tion cost)
lai,j Cost to use link (i, j) ∈ L
lci,j Capacity of physical link (i, j) ∈ L
K Set of end-to-end requests k ∈ K

ok, tk Source and destination node for request k ∈ K
bk Required bandwidth for request k ∈ K
τk Smallest acceptable probability to fulfill request k ∈ K

with 0 ≤ τk ≤ 1
F Set of possible VNF types f ∈ F
F k VNFs from set F needed to fulfill request k ∈ K
αn,f Cost to deploy a VNF instance f ∈ F on server node n ∈ N
ηk
n,f Required computational resources for an instance of

VNF f ∈ F deployed at node n ∈ N for request k ∈ K
θf Maximum traffic that one instance of VNF f ∈ F can

process
mk

f Required nbr. of instances of VNF f ∈ F for request k ∈ K

Variable Description
xk
n Binary variable indicating whether request k ∈ k is routed

through switch n ∈ N : if yes, xk
n = 1, otherwise xk

n = 0.
yk
i,j Binary variable indicating whether request k ∈ K is routed

through link (i, j) ∈ L: if yes, yk
i,j = 1, otherwise yk

i,j = 0
ρkfn Integer variable representing the number of instance func-

tions f ∈ F deployed at server n ∈ N for request k ∈ K
Ln Total computational resources consumed on server n ∈ N
Un Bandwidth consumed on server n ∈ N
Rn Reliability of server n ∈ N
pkn Probability that end-to-end request k ∈ K successfully

reaches switch n ∈ N from its source.

for links (i, j) ∈ L and xk
n for nodes n ∈ N . Flow

conservation is ensured by:

∑
j:(i,j)∈L

yki,j−
∑

j:(j,i)∈L

ykj,i =

1, i = ok,

−1, i = tk,

0, otherwise
∀k ∈ K, i ∈ N.

(1)
Node-based routing constraints are given by:

xk
n ≤

∑
{j|(n,j)∈L}

(ykn,j + ykj,n), ∀k ∈ K,n ∈ N, (2)

xk
n ≥ (ykn,j + ykj,n), ∀k ∈ K,n ∈ N, (n, j) ∈ L.

(3)

Capacity Constraints: the total bandwidth used on each
link should not exceed its capacity:

∑
k∈K

yki,j ∗ bk ≤ lci,j , ∀(i, j) ∈ L. (4)

Similarly, the total bandwidth used on a server node is given
by:

Un =
∑
k∈K

∑
f∈Fk

θfρ
k
f,n, ∀n ∈ N, (5)

Un ≤ sbn, ∀n ∈ N. (6)

VNF Placement: instances of VNF f ∈ F for request k
should be deployed on the nodes along the request’s path:

ρkfn ≤ mk
f ∗ xk

n, ∀n ∈ N, k ∈ K, f ∈ F k, (7)∑
n∈N

ρkfn = mk
f , ∀k ∈ K, f ∈ F k. (8)

The total computational resources used on each node must
not exceed its capacity:

Ln =
∑
k∈K

∑
f∈Fk

ηkn,f ∗ ρkfn, ∀n ∈ N, (9)

Ln ≤ scn, ∀n ∈ N. (10)

Reliability Constraints: the reliability of a server node is
modeled as a function of its computational load:

Rn = H(Ln), ∀n ∈ N. (11)

The probability of successful transmission for each request
should meet a minimum threshold:

∏
n∈N

R
xk
n

n ≥ τk, ∀k ∈ K. (12)

A. Cost Modeling

Resource allocation in NFV is balanced against service
performance. Deploying more VNFs can improve performance
but increases cost. We categorize costs as follows:

Capital Expenditures

The deployment of VNF instances on servers incurs costs
due to factors such as standby energy consumption, licensing
fees, image transfer, and booting expenses. The total capital
expenditures are given by:

Ccapex =
∑
k∈K

∑
f∈F

∑
n∈N

ρkfnαn,f .

Link Activation Cost

Based on an on/off power model, each activated link incurs
a cost independent of traffic volume. The total link activation
cost is:

Cbandwidth =
∑
k∈K

∑
(i,j)∈L

yki,j lai,j .

Server Activation Cost

The cost of using server nodes, which varies based on their
specialization and capabilities, is given by:

Cserver =
∑
k∈K

∑
n∈N

xk
nsan.

Total Cost Function

The total cost is the sum of the above components:

Ctotal = Ccapex + Cbandwidth + Cserver,

and the objective is to minimize Ctotal.
This leads to the following MINLP formulation:

min Ctotal s.t. constraints (1)-(12),

which is a specialized version of the integer multicommodity
flow problem incorporating function placement, reliability,
and heterogeneous node capacity constraints. Due to its NP-
hardness, we subsequently reformulate the problem as a
mixed-integer linear program (MILP).

B. Linearization of the Mathematical Model

In this section, we introduce a linearization technique
inspired by [5] to reformulate the nonlinear terms in con-
straint (12). Define pkn, which is the probability that request
k ∈ R successfully reaches switch n ∈ N from its source
(assuming n is on the path). Constraint (12) is thus replaced
by:

pkok = Rok , ∀k ∈ R, (13a)

pkn ≤ pkjRn

+
(
1− ykj,n

)
, ∀k ∈ R, (j, n) ∈ L, (13b)

pkn ≥ τk, ∀k ∈ R, n ∈ N . (13c)

When ykj,n = 1 (i.e., link (j, n) is used), (13b) ensures that
the probability to reach n does not exceed pkjRn. Otherwise,
the constraint is redundant.

Since Rnp
k
j is nonlinear, we exploit the fact that for each

request (routed on a single path) the computational resource
Ln and hence Rn can take only a finite number of values.

Two-Stage Approach:
• First Stage: A reverse depth-first search (DFS) from

server n identifies sources sending flow through n, and a
forward DFS from n checks destination reachability. Let
K ′

n be the set of requests where both conditions hold.
• Second Stage: We compute all possible values for Ln

by considering sums of the form∑
k∈R′

∑
f∈F ′

ηkn,f ,

for all subsets R′ ⊆ K ′
n and F ′ ⊆ F k. Using dynamic

programming, define the binary variable

wn(q1, q2, s),

which equals 1 if there exist subsets of the first q1 requests
and q2 VNFs with sum s. The recursion is:

wn(q1, q2, s) = max
{
wn(q1 − 1, q2, s), wn(q1, q2 − 1, s),

wn(q1 − 1, q2 − 1, s− ηq1n,fq2
)
}
. (14)

Feasible values for Ln are those s for which

wn(|K ′
n|, |F |, s) = 1.

At the end of stage two, define

Γn = {γ0, . . . , γGn
},

and via (11),
Φn = {ϕ0, . . . , ϕGn

}.
The two sets Γn and Φn represent all possible values for
Ln and Rn, respectively. To enforce these discrete values,
introduce binary variables ug

n for g = 0, . . . , Gn with ug
n = 1

if Ln = γg (thus, Rn = ϕg). For ease of presentation, define
the set G = {0, . . . , Gn}. Then, replace (9) and (11) with:

Gn∑
g=0

γg u
g
n =

∑
k∈R

∑
f∈F

ηkn,f ρ
k
fn, ∀n ∈ N , (15a)

Rn =

Gn∑
g=0

ϕg u
g
n, ∀n ∈ N . (15b)

Also, enforce:
Gn∑
g=0

ug
n ≤ 1, ∀n ∈ N , (16a)

ug
n ∈ {0, 1}, ∀n ∈ N , g ∈ G. (16b)

After substitution into (13b), the product becomes ug
np

k
j .

Since this is the product of a binary and a bounded continuous
variable, introduce the continuous variable

wgk
jn = pkj u

g
n,

enforced via:

wgk
jn ≤ ug

n, ∀k, (j, n) ∈ L, g ∈ G, (17a)

wgk
jn ≤ ykj,n, ∀k, (j, n) ∈ L, g ∈ G, (17b)

wgk
jn ≤ pkj , ∀k, (j, n) ∈ L, g ∈ G, (17c)

wgk
jn ≥ pkj − (1− ug

n)− (1− ykj,n),

∀k, (j, n) ∈ L, g ∈ G. (17d)

Let χ denote the set of (Y,X, ρ, U) satisfying constraints
(1)–(6). Then, the MINLP is reformulated as the following
MILP:

min Ctotal = Ccapex + Cbandwidth + Cserver (18a)
s.t. (Y,X, ρ, U) ∈ χ, (18b)

Gn∑
g=0

γg u
g
n =

∑
k∈R

∑
f∈F

ηkn,f ρ
k
fn, ∀n ∈ N , (18c)

Gn∑
g=0

γg u
g
n ≤ scn, ∀n ∈ N , (18d)

Rn =

Gn∑
g=0

ϕg u
g
n, ∀n ∈ N , (18e)

Gn∑
g=0

ug
n ≤ 1, ∀n ∈ N , (18f)

pkok = Rok , ∀k ∈ R, (18g)

pkn ≤
Gn∑
g=0

ϕg w
gk
jn +

(
1− ykj,n

)
,

∀k ∈ R, (j, n) ∈ L, (18h)

pkn ≥ τk, ∀k ∈ R, n ∈ N , (18i)

wgk
jn ≤ ug

n,∀k, (j, n) ∈ L, g ∈ G, (18j)

wgk
jn ≤ ykj,n,∀k, (j, n) ∈ L, g ∈ G, (18k)

wgk
jn ≤ pkj ,∀k, (j, n) ∈ L, g ∈ G, (18l)

wgk
jn ≥ pkj − (1− ug

n)− (1− ykj,n),

∀k, (j, n) ∈ L, g ∈ G, (18m)

ug
n ∈ {0, 1}, ∀n ∈ N , g ∈ G. (18n)

Note that the size of the MILP grows with Gn. For
large values, solving the MILP may be challenging, and an
alternative solution approach is proposed in the next section.

IV. CUTTING PLANE-BASED HEURISTIC

As mentioned earlier, the proposed model is NP-hard and
the exact formulation in Section III-B may be impractical
for large networks. Hence, we use a cutting plane approach
to obtain an optimal solution by first constructing lower and
upper-bounding models that relax the challenging constraints
(11) and (12).

In these models, we replace (12) with the equivalent con-
straints (13a), (13b), and (13c) and substitute estimated values
for Ln and Rn as described next.

Lower and Upper-Bounding Models

For each server node n, we identify µn + 1 possible sums
of the form ∑

k∈K

∑
f∈Fk

ρkfn,

which yield the potential values

{d0, . . . , dµn
},

with d0 = 0 and dµn
equal to the maximum possible load.

Using the reliability function (11), we obtain the corresponding
reliability values

{H0, . . . ,Hµn
},

where H0 = 1 and Hg ≥ Hg+1.
For the lower-bound model, we round down Ln to the

nearest value by introducing a binary variable ũg
n that equals 1

if Ln ≥ dg and 0 otherwise. This is enforced by the forcing
constraint:

ũg
n ≥

Ln − dg + 1∑
k∈K

∑
f∈Fk ρkfn − dg + 1

,

∀n ∈ N , g = 1, . . . , µn. (19)

Then, the estimated reliability is given by

RL
n = 1 +

µn∑
g=1

ũg
n

(
Hg −Hg−1

)
. (20)

The lower bounding formulation is obtained by (i) replacing
Rn in the MINLP model with RL

n , (ii) adding constraint (19),
and (iii) replacing (11) by (20). Because the load is rounded
down, this yields an overestimated reliability, so every solution
feasible for the original model is also feasible for the lower-
bound model.

For the upper-bound model, we define ũg
n to equal 1 if

Ln > dg (and 0 otherwise). The forcing constraint becomes

ũg
n ≥

Ln − dg∑
k∈K

∑
f∈Fk ρkfn − dg

,

∀n ∈ N , g = 1, . . . , µn, (21)

and the estimated reliability is

RU
n = 1 +

µn−1∑
g=0

ũg
n

(
Hg+1 −Hg

)
. (22)

The upper bounding model is then obtained by substituting
Rn with RU

n and adding (21).
Both models are then linearized using the techniques de-

scribed in Section III-B.

Cutting Planes
We next solve the lower-bound model to obtain an integer-

feasible solution
(Y ,X, ρ, U).

An algorithmic implementation of our method is provided in
Algorithm 1. To this end, we define two parameters, LB and
UB, representing the lower and upper bounds of the objective
value, respectively. The initial value of LB, denoted by LB′,
is obtained from the objective function value of the linear
relaxation of the MILP presented in Section (III-B). For UB,
the initial value, denoted by UB′, is derived considering that
the variables yki,j and xk

n are binary and ρkfn is an integer
variable bounded by mk

f . After computing the actual values
of Ln and Rn (via (9) and (11)), we check each end-to-end
request k by computing ∏

n∈N
R

xk
n

n ,

and if this product is below τk, we mark k as violated (i.e.,
k ∈ B̄).

For each violated request, we define:
• L̃k = {(i, j) ∈ L | yki,j = 1},
• P k = {n | xk

n > 0},
• F̄ k = {(n, f, k′) | n ∈ P k, f ∈ F, ρk

′
fn = 1}.

A valid cut is then added to force a change:∑
(n,f,k′)∈F̄k

(1− ρk
′

fn) +
∑

(i,j)∈L

(1− yki,j) ≥ 1, ∀k ∈ B̄. (23)

This inequality eliminates the current (infeasible) solution
from the lower-bound feasible region.

Algorithm 1 Cutting Plane Algorithm-Based Heuristic for the
Proposed Problem

1: Input: All parameters, K̄ = ∅, tolerance ϵ, initial bounds
LB = LB′ and UB = UB′.

2: Output: Optimal reliable design.
3: Formulate lower and upper bounding models using subsets
{d0, . . . , dµn} and {H0, . . . ,Hµn}.

4: Add initial cuts (24)–(25) to both models.
5: while UB − LB ≥ ϵ do
6: for each n ∈ N do
7: Compute Ln and Rn via Eqs. (9) and (11).
8: end for
9: Set B̄ = ∅.

10: for each k ∈ K do
11: if

∏
n∈N R

xk
n

n < τk then
12: B̄ ← B̄ ∪ {k}.
13: end if
14: end for
15: if B̄ = ∅ then
16: Return feasible solution (xk

n, y
k
i,j , ρ

k′
fn) with current

bounds LB,UB.
17: else
18: for each k ∈ B̄ do
19: Add cut (23) to both models.
20: end for
21: end if
22: end while=0

Warm-Start Strategy
To improve convergence, we generate an initial set of tight

cuts. For example:
• Connectivity Constraints: Enforced at any intermediate

node n (i.e., n /∈ {ok, tk}):
ykn,j ≤

∑
h: (h,n)∈L

ykh,n, (24)

ykj,n ≤
∑

h: (n,h)∈L

ykn,h. (25)

• Cover Constraints: Guarantee that the total capacity
leaving the source and entering the destination meets the
bandwidth requirement:∑

j: (ok,j)∈L

lcok,j y
k
ok,j ≥ bk, (26)

∑
j: (j,tk)∈L

lcj,tk y
k
j,tk ≥ bk. (27)

The initial lower bound LB′ is derived from the linear
relaxation of the MILP in Section III-B, while an initial upper
bound UB′ is computed as

Ctotal ≤
∑
k∈K

∑
f∈F

∑
n∈N

mk
f αn,f

+
∑
k∈K

∑
(i,j)∈L

lai,j +
∑
k∈K

∑
n∈N

san. (28)

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed optimization model. The network topology, links ca-
pacities and associated traffic demands (i.e., source-destination
pairs and flow amounts) are extracted from the SNDLib
database [6], a key resource in network design research.
In the following, we describe the experimental setup, the
service reliability model, and the performance metrics used
for evaluation.

1) Experiments Design: From the options available, we
select from the SNDLib database the Abilene topology, which
consists of N = 12 nodes and 15 bidirectional links. We con-
duct several experiments investigating the interplay between
two critical aspects of VNF placement: i) the variation in the
service demand (i.e., the number |K| of service requests in the
network) and ii) the variation in the service requests reliability
threshold τk (i.e., the tightness of constraint (12)). We let |K|
take values in {2, 4, 6, 8}, while τk is set to the same value
for all requests ranging from 0 to 1 in increments of 0.1.
We leave the case of heterogeneous reliability requirements
for future work. We consider three types of network nodes,
characterized by different computational and storage capabil-
ities [1], namely: off-the-shelf server nodes, smart NICs and
PISA switches. Without loss of generality, we assume that
each VNF instance is able to process the same amount of input
traffic (i.e., θf) and requires the same computational resources
(i.e., ηkn,f), leaving to future work the analysis of scenarios
with differentiated VNFs options. Table II summarizes the
values of i) sbn and scn for each considered node type, ii)
θf and ηkn,f for VNF instantiation, and iii) activation costs for
nodes, links, and VNFs (i.e., san, lai,j and αn,f).

2) Reliability Model: The reliability of each server n ∈ N
is modeled as a non-increasing, concave, and continuous
function of its computational load Ln. Specifically, we define:

Rn = 1−
(
Ln

scn

)2

, ∀n ∈ N, (29)

with Ln ≤ scn to ensure that Rn ≥ 0. This formulation
captures the gradual degradation of server performance as
computational load increases, with an accelerated decline as
Ln approaches scn.

3) Performance Metrics: To assess the efficiency of our
model in allocating VNF instances, we analyze the utilization
of server computational resources. For each server n ∈ N , we
define the resource utilization ξn as:

ξn =
Ln

scn
, (30)

which represents the fraction of the computational capacity
consumed at server n. To characterize the distribution of ξn
across the network, we compute the Coefficient of Variation
(CV) and the maximum utilization value ξmax as follows:

CV =
σξn∑
n

ξn/N
, (31)

TABLE II: Summary of Model Parameter Values

Nodes

sbn [Gbps] Server: 40; Smart NIC: 80; PISA Switch: 160
scn [# CPU] Server: 8; Smart NIC: 12; PISA Switch: 16

Links

lai,j U([100, 1200])

lci,j As from [7]

VNFs

αn,f [$] U([50, 1000]) [8]
ηkn,f 2 CPU
θf [Mbps] 900

−130 −110 −90 −70

30

40

50

ATLAM5

ATLAng

IPLSng

CHINng

DNVRng

HSTNng

KSCYng

LOSAng

NYCMng

SNVAng

STTLng

WASHng

Longitude

L
at

itu
de

R1, τk = 0 R2, τk = 0
R3, τk = 0 R4, τk = 0

R3, τk = 0.4

Fig. 1: Example network scenario with service requests routing
paths for |K| = 4. The red line represents how request R3 is
re-routed after increasing τk from 0 to 0.4.

ξmax = max
n∈N

(ξn) , (32)

where σξn is the standard deviation of ξn. In the next
section, we discuss how the proposed model improves per-
formance by (i) reducing the CV, indicating a more balanced
resource allocation, and (ii) lowering ξmax, which mitigates
potential congestion bottlenecks.

A. Impact on Server Resource Utilization

Figure 1 illustrates a solution for a representative scenario
with |K| = 4 and τk = 0. The figure also demonstrates how
stricter reliability requirements affect routing. Specifically,
service request R3 is shown as a blue, dashed line from node
HSTNng to node STTLng when τk = 0. As τk increases to 0.4,
the optimization model re-routes R3—now depicted in red—to
satisfy the higher quality-of-service requirement.

Figure 2 shows the performance results obtained from our
optimization model. The figure plots the CV (green, solid
lines) and ξmax (blue, dashed lines) as functions of τk. The

0.0 0.2 0.4 0.6 0.8
τ

0.4

0.7

1

1.3

1.6
C

V

|K| = 2

|K| = 4

|K| = 6

|K| = 8

20

50

75

100

ξm
a
x

Fig. 2: Left y-axis: CV of server utilization (green, solid lines).
Right y-axis: ξmax (blue, dashed lines). Darker colors indicate
scenarios with fewer service requests (|K| is lower). Note that
for ξmax, data points corresponding to different values of |K|
overlap when τk ≤ 0.4.

line tones indicate the number of service requests in the
network, with darker lines representing lower service loads.
We observe that, for a given set of initial parameters, the
model becomes infeasible beyond certain values of τk. For
example, when |K| = 2, solutions exist up to τk = 0.8;
in contrast, when |K| = 8, no solution is available for
τk ≥ 0.2. Lower CV values indicate a more uniform work-
load distribution, while higher CV values suggest disparities
in server utilization. Regardless of the number of requests,
CV consistently decreases as τk increases, demonstrating the
model’s ability to distribute the load more evenly when higher
reliability is required. In particular, compared to the baseline
case of τk = 0 (i.e., when no requirement is set on reliability),
we observe an improvement in workload distribution between
37% (|K| = 8, τk = 0.1) and 49% (|K| = 6, τk = 0.2) at
the highest feasible reliability thresholds. Reducing ξmax is
equally important, as it helps manage network resources and
reduces the risk of congestion. Similar to CV, ξmax shows a
clear decreasing trend with increasing τk. Our results indicate
that the proposed optimization framework can significantly
lower maximum server utilization—from 25% in the most
heavily loaded scenario (|K| = 8, τk = 0.1) to 63% in the least
loaded scenario (|K| = 2, τk = 0.8). In our final experiment,
we increased the network link capacities (2 × lci,j) and the
computational resource capacities (4 × scn) to examine the
impact on server utilization ξn when the number of service
requests |K| exceeds 8. Table III presents the results for
|K| = 10 and |K| = 15. As observed, both CV and ξmax

exhibit a decreasing trend with respect to τk, consistent with
the trends observed in previous experiments.

B. Cost Components and Running Time

Table IV summarizes the cost components (server and link
activation costs, CAPEX and total cost) and the corresponding
computation times for the proposed optimization model. With
respect to costs, regardless of the number of service requests,

TABLE III: Servers’ utilization statistics with increased link
(2 × lci,j) and computational capacities (4 × scn).

|K| τk CV ξmax [%]

10

0.4 1.21 65.6
0.5 1.12 62.5
0.6 1.03 53.1
0.7 0.88 40.6

15
0 0.92 100

0.1 0.73 79.2
0.2 0.64 75.0

increasing τk leads to non-decreasing CAPEX. This is due
to the potential deployment of additional VNF instances to
meet the reliability requirements. Moreover, the model tends
to prefer deploying new VNF instances on already activated
server nodes rather than re-routing a service request. Con-
sequently, server costs typically remain stable while CAPEX
increases, unless new nodes must be activated to satisfy τk (as
observed for request R3 in Figure 1). In such cases, server
costs may also increase. In some instances, the algorithm can
reduce overall link costs by selecting a cheaper connection to
a new server, even though the total cost always increases with
higher τk. This behavior aligns with the model’s strategy of
balancing the weights of the three cost components.

Regarding computation times, the experiments were con-
ducted on a commodity server equipped with an Intel i5-
5200U and 16 GB of memory. As reported in the Table, the
optimization program typically requires less than 7 minutes
to solve, irrespective of the number of service requests or
the reliability requirement. However, increasing both |K| and
τk generally results in higher computation times. For instance,
when |K| = 8, setting τk = 0.1 requires roughly 400% more
solving time than the case with no reliability requirement.

VI. RELATED WORKS

Many studies in the literature have investigated efficient
solutions for the placement of VNFs, either leveraging the
renewed interest in deep learning approaches [9], [10] or rely-
ing on heuristics and approximation techniques. Regarding the
latter, the placement of virtual middle-boxes is often optimized
with respect to CAPEX and OPEX [11], the balancing of
server nodes’ workload [12], [13], or the routing of service
demands [8], [14], [15]. In [11] the authors consider a hybrid
software defined networking environment and formulate an
ILP problem to jointly optimize VNF placement while mini-
mizing system costs. They then apply various approximation
strategies based on either decomposition theory or hidden
Markov models, to evaluate the trade-off between CAPEX
and OPEX minimization. Differently, [12] examines the effects
of dynamic traffic patterns on VNF placement and proposes
an effective load balancing solution tailored to large size,
long-duration elephant flows. Load balancing is also the focus
of [13], where the authors analyze data center environments to
demonstrate the optimality of Join-the-Idle-Queue, a balancing
scheme able to reduce the average response time of servers

TABLE IV: Impact of τk on cost components and model
runtime (T). Costs are scaled by 103.

|K| τk Server Link CAPEX Total T [s]

2

0.0 39.5 7.5 2.0 49.0 1.73
0.1 39.5 7.5 2.0 49.0 1.15
0.2 39.5 7.5 2.0 49.0 0.94
0.3 39.5 7.5 2.0 49.0 0.64
0.4 39.5 7.5 2.0 49.0 1.60
0.5 39.5 7.5 2.1 49.1 1.12
0.6 39.5 7.5 2.3 49.3 4.66
0.7 39.5 7.5 2.7 49.7 3.03
0.8 43.5 7.6 3.9 55.0 11.32

4

0.0 67.1 14.0 5.0 86.1 0.44
0.1 67.1 14.0 5.4 86.5 1.73
0.2 67.1 14.0 5.8 86.9 1.67
0.3 67.1 14.0 6.7 87.8 73.93
0.4 68.5 13.5 8.0 90.0 72.77

6
0.0 103.8 21.9 7.4 133.1 0.90
0.1 103.8 21.9 8.9 134.6 25.84
0.2 105.2 21.4 10.1 136.7 320.80

8 0.0 130.5 26.4 9.3 166.2 1.46
0.1 132.0 25.9 11.6 169.5 400.56

jobs. Considering path-based formulations, [8] addresses VNF
placement and routing by formalizing a MILP optimization
problem that finds a routing path for each service demand
and optimally associates functions to nodes while minimizing
functions installation and node activation costs. The proposed
formulation is evaluated on a set of realistic telecommunica-
tion instances, and is shown to outperform earlier state-of-the-
art compact MILP formulation. Finally, cost-aware multi-path
routing and candidate path selection in heterogeneous service
chaining scenarios is also the focus of [15], where authors
unify NFV and computational offloading to optimize resource
management. Results on simplified network topologies demon-
strate the algorithm’s ability to minimize system costs while
achieving a high quality of service.

VII. CONCLUSION

This paper addressed the complex challenge of optimizing
Network Functions Virtualization deployments, focusing on
efficient Virtual Network Function placement and resource
allocation. By leveraging advanced optimization techniques,
including novel linearization strategies and a cutting-plane
heuristic with warm-start strategies, we transformed a non-
convex MINLP formulation into a tractable MILP model,
thereby effectively mitigating the inherent computational com-
plexities of NFV systems.

Extensive experimentation on a real-world network topol-
ogy (i.e., the Abilene network) validated the effectiveness of
our approach. In particular, our framework achieved up to
a 49% improvement in workload distribution—as measured
by a reduction in the Coefficient of Variation—and reduced
the maximum server utilization by as much as 63%. These
results show the model’s ability to balance resource usage
and alleviate congestion bottlenecks while maintaining cost

efficiency. Moreover, our optimization model demonstrated
scalability by solving realistic instances in under 7 minutes on
a commodity server, even as the number of service requests
and reliability constraints increased.

These promising findings demonstrate our approach’s po-
tential to deliver scalable, cost-effective, and reliable NFV
deployments. Future work will extend the framework for
dynamic traffic patterns and evolving service requirements,
integrate machine learning to predict congestion and resource
demands, and explore decentralized or distributed optimization
for enhanced scalability.

ACKNOWLEDGMENTS

This work is supported by the University of Montpellier’s MAK’IT
(Montpellier Advanced Knowledge Institute on Transitions) visiting
scientist program, by projects SERICS (PE00000014) under the
NRRP MUR program, funded by the EU - NGEU, and PRIN
NEWTON (2022ZA8T22).

REFERENCES

[1] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[2] S. Yang, F. Li, S. Trajanovski, R. Yahyapour, and X. Fu, “Recent
advances of resource allocation in network function virtualization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
295–314, 2020.

[3] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, “VNF and CNF
Placement in 5G: Recent Advances and Future Trends,” IEEE Trans. on
Netw. and Service Management, vol. 20, no. 4, pp. 4698–4733, 2023.

[4] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear pro-
gramming: A survey,” Surveys in Operations Research and Management
Science, vol. 17, pp. 97–106, 2012.

[5] A. K. Andreas and J. C. Smith, “Mathematical programming algo-
rithms for two-path routing problems with reliability considerations,”
INFORMS Journal on Computing, vol. 20, no. 4, pp. 553–564, 2008.

[6] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0-
Survivable network design library,” Networks: An International Journal,
vol. 55, no. 3, pp. 276–286, 2010.

[7] Y. Zhang, “6 months of abilene traffic matrices.” [Online]. Available:
https://www.cs.utexas.edu/∼yzhang/research/AbileneTM/

[8] A. Mouaci, É. Gourdin, I. LjubiĆ, and N. Perrot, “Virtual network
functions placement and routing problem: Path formulation,” in IFIP
Networking Conference (Networking), 2020, pp. 55–63.

[9] Y. Bi, C. C. Meixner, M. Bunyakitanon, X. Vasilakos, R. Nejabati,
and D. Simeonidou, “Multi-Objective Deep Reinforcement Learning
Assisted Service Function Chains Placement,” IEEE Transactions on
Network and Service Management, vol. 18, no. 4, pp. 4134–4150, 2021.

[10] N. He, S. Yang, F. Li, S. Trajanovski, L. Zhu, Y. Wang, and X. Fu,
“Leveraging Deep Reinforcement Learning With Attention Mecha-
nism for Virtual Network Function Placement and Routing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 4, pp.
1186–1201, 2023.

[11] C. Ren, H. Li, Y. Li, Y. Wang, H. Xiang, and X. Chen, “On efficient
service function chaining in hybrid software defined networks,” IEEE
Transactions on Network and Service Management, vol. 19, no. 2, pp.
1614–1628, 2021.

[12] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware
placement of interdependent NFV middleboxes,” in IEEE Conference
on Computer Communications (INFOCOM), 2017, pp. 1–9.

[13] S. Bhambay and A. Mukhopadhyay, “Optimal load balancing in het-
erogeneous server systems,” in 20th IEEE International Symposium on
Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks
(WiOpt), 2022, pp. 113–120.

[14] M. Gao, B. Addis, M. Bouet, and S. Secci, “Optimal orchestration of
virtual network functions,” Comp. Netw., vol. 142, pp. 108–127, 2018.

[15] Y. Kim, H.-W. Lee, and S. Chong, “Control of multi-resource infrastruc-
tures: Application to NFV and computation offloading,” in 16th IEEE
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt), 2018, pp. 1–8.

