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Abstract—Cellular networks worldwide are currently experi-
encing a significant surge in service demand, forcing operators to
focus on the accurate modeling of network dynamics as a key task
to enhance efficiency. Besides being useful for optimizing network
functioning, mobile data analytics have unleashed unforeseen
opportunities to address several social and urban issues on a
large scale. In this work, we seize such opportunities and propose
a framework capable of profiling urban settlements based on the
interplay between their attractiveness and the characteristics of
the built environment. Focusing on the impact of the COVID-19
pandemic on mobile users’ behavior, we conduct a comprehensive
case study in Italy. Leveraging real-world mobile radio access
data, we investigate the spatial variations in people’s visiting
patterns, providing insights into how these changes correlate with
the social and urban context characterizing the reference area.

Index Terms—Cellular Data Analysis, Data-driven Modeling,
Mobile Network Signatures, Clustering.

I. INTRODUCTION

Cellular networks worldwide are witnessing a significant
surge in both cellular traffic volumes, projected to exceed
325 exabytes (1018 B) per month by 2028, and number of
subscriptions, estimated to surpass 9 billion in 2028 [1]. This
increase in complexity has raised Mobile Network Operators’
(MNOs) awareness that the efficiency of numerous network
operations (e.g., planning, dimensioning, monitoring, etc.)
relies on how well mobile network dynamics can be analyzed
and modeled in both urban and peripheral scenarios.

In addition to optimizing mobile network functionality,
mobile data analytics has opened unforeseen opportunities to
address various social (e.g., spatial investigations [2], effects
of the pandemic on people’s behaviours [3]–[5], etc.) and
urban (e.g., hot-spot detection [6], city design performance
assessment [7], etc.) related issues at large scale. Call Detail
Records (CDRs) data are often leveraged: in a nutshell, a
record is generated each time a connected device interacts with
the network for communication (call, text, Internet sessions,
etc.) or operational (e.g., handover, etc.) purposes.

Given the ubiquity of mobile radio access, the connection
between people’s habits and the characteristics of their envi-
ronment applies to cellular users as well: for example, mobile
traffic demand near users’ residences differs substantially from
demand in business areas or urban transportation hot-spots [8],
[9]. To leverage this relationship, clustering algorithms are

commonly designed to group radio access sites based on the
spatio-temporal characteristics of their network activity. Sites
are typically grouped according to the dynamics of the served
traffic, an option that offers advantages to service providers
for easing management tasks [9].

In this work, we employ mobile data analytics to investigate
social life dynamics and study the effects of the COVID-19
pandemic on the presence of cellular users in Italian inland
areas, focusing on the Valtellina region. Using a real-world
dataset collected from Vodafone’s cellular network, we cluster
radio access sites based on temporal changes in the relative
share of mobile users served before and after the pandemic.
Finally, we provide insights into the relationship between the
attractiveness of the selected area and the characteristics of the
built and natural environment.

Results indicate that: i) mobile users’ visiting behavior in
Valtellina has changed after the pandemic and ii) this change
is spatially heterogeneous, signifying a modification in the
attractiveness of urban settlements based on post-pandemic
needs. These insights can be valuable for both public entities
and urban planners to profile urban settlements according
to their attractiveness (quantified here using data related to
mobile users’ presence) and the characteristics of the built
environment: we provide a glimpse of how clustering could
be exploited with such a perspective.

This paper is organized as follows. Section II reviews the
related literature, while Section III details the dataset and the
methodological approach. Results are provided in Section IV,
whereas Section V concludes the paper and outlines directions
for future work.

II. RELATED WORKS

The study of the correlation between cellular service con-
sumption and the characteristics of the geographical areas
where cellular activities occur has gained significant attention
in the past decade [2], [6]–[11]. A well-established approach to
spatially characterize the utilization of cellular infrastructures
is to group radio access sites based on either application-
specific [8] or cumulative [9] traffic demand using clustering
algorithms. Results consistently demonstrate a high correlation
between the urbanization level of an area, the type of services
provided to citizens, and cellular service consumption patterns.



Fig. 1: Block diagram of the Profiling Framework: AE learns
a set of attractiveness profiles K, SP returns a model p(·) that
associates a given environment with a specific profile k ∈ K.

Indeed, mobile network metadata are often leveraged to
address various urban-design related issues, including the
modeling and estimation of people mobility [10], the char-
acterization of human hotspots in a city or region [6], and the
study of the relationship between people’s habits and specific
city design choices [7], [11]. In particular, identifying hot-
spots in a geographical area is crucial for understanding how
and for how long that area attracts citizens, and whether such
attractiveness changes in response to modifications of citizens’
needs [6], [11]. In [7], authors perform a multivariate linear
regression analysis to identify associations between clusters
of citizens’ activity and several urban features, to foster an
evidence-based approach to urban design and planning.

Beyond urban design, several recent works have leveraged
mobile data analytics to investigate the impact of COVID-19
pandemic on people’s mobility and social life [3]–[5]. In [3],
the authors study the space-time variability of human presence
before and during COVID-19 lockdown in selected inner areas
of Italy. They observed a shift in the presence of people from
dense urban cities, attributing remote working and near-home
tourism as likely drivers of such phenomenon.

Merging the interests in both urban design and the study
of people social habits, this work leverages experimental data
collected at the access of a cellular network to: i) design a
settlement profiling framework capable of correlating cellular
data information with features related to the built and natural
environment of a given geographical region; ii) cluster radio
access sites based on the spatial and temporal variation of the
share of connected cellular users, concerning the COVID-19
pandemic; iii) provide insights about the relationship between
the clustering output and the characteristics of the underlying
geographical area.

III. METHODOLOGY

This Section outlines the methodology used to cluster
mobile radio network sites based on the changes in the
distribution of mobile users during the COVID-19 pandemic
in the Valtellina region. Firstly, we introduce the focus and the
context of this study. Secondly, we describe the dataset, and
finally we provide details about the clustering approach.

A. Overview

a) Profiling Framework: The framework comprises two
building blocks (Figure 1). Firstly, the Attractiveness Estima-
tor (AE) learns a set K of attractiveness profiles using an

unsupervised learning algorithm denoted as a(·). It takes S
vectors h1×H as input, each measuring the attractiveness of
the corresponding settlement during a selected time horizon
such as a week or a month. Note that H can be either equal
to 1 (indicating a vector with only one entry, e.g., the weekly
or monthly number of tourists in a settlement) or greater than
1 (indicating a vector with multiple entries, e.g., the hourly
number of people visiting the settlement for each hour of
the reference time window). Secondly, the Settlement Profiler
(SP) employs a supervised learning approach to generate a
classification model denoted as p(·); this model associates a
settlement with given built and natural environment configu-
ration, represented by a vector of U indicator values u1×U ,
with a specific attractiveness profile k ∈ K. The vector u1×U

provides information that include, for example, the extension
of the settlement’s urban footprint, the type of available
physical and digital infrastructures, the type of landscape, the
distribution of cultural heritage sites, and other related aspects.

b) Focus: In the next sections, we detail the operations
of the AE, designing an algorithm capable of profiling a settle-
ment based on a measure of its attractiveness. To illustrate, we
take the Italian region of Valtellina as a case study and leverage
k-means clustering, a well-known unsupervised learning ap-
proach [9]. However, instead of directly profiling settlements
in the area, we cluster the set of eNodeBs deployed there.
The input for clustering is derived from the temporal changes
in the relative share of connected mobile users served before
and after the COVID-19 pandemic. Although we acknowledge
that the service area of each eNodeB may cover more than
one settlement, we address the issue of mapping a physical
location to the most likely serving cell through the use of
coverage maps, that are often available to MNOs [12]. This
issue is thus not considered in our work.

c) Case Study: Geographically situated in northern Italy
and administratively ruled by the province of Sondrio, Val-
tellina is characterized by small, rural villages experiencing a
gradual depopulation phenomenon [13]. Given the renaissance
opportunities for inland territories and communities prompted
by the pandemic, an analysis of people’s habits can contribute
to defining strategies for enhancing such areas. The next
section introduces the dataset used in this work.

B. Dataset

We leverage a dataset of Key Performance Indicators (KPIs)
measured at the access of the LTE network of Vodafone, a
popular European mobile operator1. The dataset comprises in-
formation from 61 eNodeBs serving the Valtellina region. The
selected reference KPI is the number of users that are Radio
Resource Control (RRC) connected to each cell site, available
in hourly sampled time series. Consequently, we exclude
users employing fixed Internet access infrastructures from the
discussion. Given that most connections from mountainous
inland areas, such as Valtellina, rely on mobile networks

1Vodafone covers more than 25% of the market share in Italy, and
distributes uniformly across different users age and economic segments
(AGCOM, 2023).



Fig. 2: Normalized hourly number of connected users during
T1 (blue) and T2 (orange).

for better overall performance (as fiber optics availability is
typically limited), this exclusion has a negligible impact on
our analysis.

We focus on two 3-week periods: T1={20/01/2020,
10/02/2020}, immediately before the pandemic outbreak in
Italy2 and T2={24/01/2022, 13/02/2022}, after the national
government removed most COVID-19 related restrictions. Let
r(1, e, t) and r(2, e, t) represent the number of users connected
to the e-th eNodeB at hour t during T1 and T2, respectively.
The total hourly number of connections is computed as:

r(i, t) =
∑
e

r(i, e, t), i = 1, 2. (1)

Figure 2 illustrates r(1, t) (blue) and r(2, t) (orange), with
data normalised for privacy reasons. In both cases the number
of connections increases from workdays to week-ends within
each week, and from the first to the third week. This is partly
attributed to a seasonality effect, as Valtellina is a popular
destination for winter sports practitioners. Additionally, we
observe that the overall weekly presence of mobile users in
Valtellina has increased after the pandemic: on average, the
hourly number of connections in T2 is 30% higher than in T1.
This trend contrasts with the long-term depopulation process
experienced by most settlements in Valtellina over the last
decades [13]. In the following, we describe how we process
the data to cluster eNodeBs.

C. Clustering Procedure

We employ the k-means algorithm to cluster radio access
sites based on the Euclidean distance among what we refer to
as change signals. The change signal c(e, t) of eNodeB e is
defined as follows:

1) Firstly, we compute the Median Weekly Signatures
m(1, e, t) and m(2, e, t) of r(1, e, t) and r(2, e, t). In
essence, a median weekly hourly sample represents the
median value of samples at the same hour on the same
day (Monday, Tuesday, etc.) measured in the reference
period. For more computational details, refer to [9].

2) Secondly, we normalize hourly-wise both m(1, e, t) and
m(2, e, t) to r(1, t) and r(2, t). We refer to them as
mn(1, e, t) and mn(2, e, t), respectively.

2First recognized COVID-19 case in Italy dates to 9/02/2020.

Fig. 3: Median weekly share of served users during T1 (top)
and T2 (middle), and the change signal (bottom) resulting from
their difference for the generic eNodeB e.

Fig. 4: Values of inertia obtained after the grid search proce-
dure over the set k = [1, . . . , 8].

3) Finally, we compute c(e, t) as the hourly-wise difference
between mn(2, e, t) and mn(1, e, t), i.e.:

c(e, t) = mn(2, e, t)−mn(1, e, t). (2)

Therefore, c(e, t) represents the median variation from T1

to T2 of the share of the number of cellular users taken
by eNodeB e at every hour t.

We provide in Figure 3 a representative example of
mn(1, e, t), mn(2, e, t) and c(e, t) for one selected eNodeB.
Repeating this process for each eNodeB in the network permits
to perform k-means clustering with the change signals c(e, t)
as input. The only hyper-parameter used by the algorithm,
the number k of expected clusters, is determined through
a data-driven approach involving a grid search over the set
of candidate values k = [1, . . . , 8]. For each candidate, the
algorithm is run with 1000 different initialization seeds, and
the clustering configuration corresponding to the best obtained
inertia value is saved. There is a trade-off between the inertia
of a configuration (lower inertia indicates better robustness of
the clustering output) and the number of expected clusters.
Since the k-means algorithm is reliable for small numbers
of clusters, a good model has low inertia and few clusters.
Figure 4 displays the values of the inertia obtained after the
grid search procedure. Considering that inertia decreases with



increasing values of k, we set k = 4 according to the well-
known Helbow criterion [9].

In conclusion, we remark that our approach takes into
account both spatial and temporal dimensions of the problem.
On the one hand, c(e, t) embeds spatial domain information
by construction, as it represents the variation of the (spatial)
share of the total number of users connected every hour to each
network site serving Valtellina. On the other hand, each change
signal c(e, t) is normalised to mean and variance (i.e., in the
time domain) before being used, as our interest is to group
eNodeBs regardless of the amplitude of the users’ presence
variation. We discuss the clustering results in the following
Section.

IV. EXPERIMENTAL RESULTS

This section analyzes clustering outcomes, investigating
cluster centroids (Subsection A). We study the driving fac-
tors of the clustering algorithm using Principal Components
Analysis (PCA) on change signals (B). Further, we charac-
terize clusters by exploring hourly user distributions during
T1 and T2 (C). Lastly, we visualize the spatial distribution
across Valtellina, using a color-coded map, depicting eNodeB
locations and their coverage areas (D).

A. Clustering Output

In Figure 5 we display the centroids of the identified
clusters, each one representing the change signals of all the
eNodeBs in the corresponding cluster. For each centroid,
a positive/negative value at a given hour indicates that the
number of users served at that hour is greater/smaller than
the centroid’s average change in the week, represented by
the black horizontal dashed line. Moving from the top to the
bottom plot of Figure 5, we interpret the profiles as follows:

1) The red cluster encompasses 20 eNodeBs (33% of the to-
tal of 61 eNodeBs), and is the largest of our configuration.
The centroid samples are positive during the night (from
0:00 a.m. to 8:00 a.m.), while they are slightly below
the average during the day, for both workdays and week-
ends. Thus, eNodeBs of this cluster have (on average)
acquired more users at night than during the day, and we
label them as Nightly Gainers (NG).

2) The blue centroid represents 19 eNodeBs (31%), which
we name as Daily Gainers (DG). In contrast to the red
centroid, this centroid lies above the average line from
8:00 a.m. to 11:00 p.m. both in workdays and week-ends,
while negative values are shown during the night.

3) The green centroid represents 14 out of 61 eNodeBs
(21%) and shows a profile slightly above the average
during workdays. Conversely, values turn negative during
the week-end, indicating that the eNodeBs of this cluster
have more likely lost users from T1 to T2 during the
week-end than on workdays. Therefore, we label such
eNodeBs as Week-End Loosers (WEL).

4) The orange cluster contains 8 eNodeBs (14%), and is
the smallest of our configuration. This centroid lies
mostly below the average during work-days and shows

Fig. 5: Weekly profiles of the identified centroids.

Fig. 6: Scatterplot of the 61 eNodeBs along the first two
principal components (PC1 and PC2).

a slightly positive upward trend approaching the week-
end, when change values turn positive. Hence, we name
the eNodeBs in this cluster as Week-End Gainers (WEG).

Overall, DG served almost 43% of the overall users con-
nected during T2, making it the most-serving cluster with a
10% higher share than the second-ranked NG. As far as WEL
and WEG clusters are concerned, they served during T2 a
similar fraction of users (13% and 11%, respectively) despite
the former cluster being almost twice as large as the latter.

B. Drivers of the Clustering Process

To gain a deeper understanding of how the algorithm learnt
the clustering configuration, we represent the set of vectors
c(e, t) for e = {1, . . . , 61} as an E × H matrix. In this
matrix, each row vector corresponds to a given c(e, t) and
H = 168 corresponds to the number of hours composing
a week. We use such matrix to perform PCA3: Figure 6
presents a color-coded scatterplot illustrating the first principal
component versus the second one, while Figure 7 reports the
time series of the first 3 principal components, that together
explain approximately 55% of the data variance. Note that
in Figure 6 each point represents a specific eNodeB in the

3PCA is a well-known unsupervised approach capable of reducing the
dimensionality of large datasets while minimizing information loss.



Fig. 7: Time series of the first three principal components.

Fig. 8: Distribution of the hourly share of served users, during
Work Days (WD, top) and Week-Ends (WE, bottom).

network, while crosses denote the locations of each cluster’s
centroid in the principal Euclidean space . Figure 6 reveals
four different groups of points, accurately identified by the
clustering algorithm. Additionally, looking at Figure 7, we
observe that:

• the first component (PC1) captures eNodeBs that gained
users during daily hours in T2, particularly on workdays
rather than week-ends;

• In contrast, the second PCA component (PC2) is asso-
ciated to higher positive variations observed during the
week-end;

• Lastly, the third PCA component (PC3) correlates with
eNodeBs that acquired users during the evening (after
8.00 pm) compared to T1.

Fig. 9: Box-plot of the hourly change of served users from
T1 to T2, for Work Days (WD, top) and Week-Ends (WE,
bottom).

Examining the identified centroids, it is evident that the
algorithm combined information from each PCA component
and appropriately clustered eNodeBs accordingly.

C. Characterization of the Generated Clusters

To investigate the characteristics of the clusters, we illustrate
in Figure 8 the cluster-wise distributions of the hourly share
of served users during the period T2. For our analysis, we
categorize hours between 8.00 a.m. and 8.00 p.m as daily
hours, and the opposite as nightly hours. As depicted, during
workdays (top plot), the median share of hourly served users
is higher during nightly hours for all clusters. While this holds
true for NG and WEL clusters even for the 75-th percentile
values, DG and WEG clusters experience an opposite trend,
with higher values during daily hours. A similar pattern
emerges during the week-ends (bottom plot), except for the
WEL cluster where the median share of hourly served users
during daily hours is nearly equal to that observed at night.

It is important to note that the designed algorithm does not
consider the amplitude and sign of the change signals when
clustering eNodeBs, but solely focus on their shape. In other
words, a given cluster might group sites that have experienced
either an overall decrease or increase in the total number of
users from T1 to T2, given that their error signals share similar
temporal dynamics. To elaborate on this aspect, we plot in
Figure 9 the (non-normalized) hourly change values from T1

to T2. Notably, 75% of the eNodeBs labelled as nightly gainers
have not lost users compared to the pre-pandemic scenario,
both during workdays (top plot) and week-ends (bottom plot).



Fig. 10: Map of Valtellina: it is part of Lombardy, and borders
on Switzerland and Trentino-South Tyrol to the north and east,
respectively. Voronoi polygons in Valtellina are color-coded
according to the cluster of the corresponding eNodeB.

This contrasts with the DG cluster, where negative median
changes are observed irrespective of the day and hour type.
Regarding the WEL and WEG clusters, median change values
are close to 0, but the distributions for workdays and week-
ends are displaced towards negative changes (for both day
and night), suggesting that, in general, the members of these
clusters are more likely to have lost users from 2020 to 2022.

D. How Do Clusters Physically Distribute?

Figure 10 displays a colour-coded map of Valtellina, with
black markers indicating the eNodeBs’ location and thicker
black boundaries outlining their radio coverage areas, approx-
imated here by Voronoi polygons4. Each polygon is colored
based on the corresponding eNodeB’s cluster. Additionally,
thinner black lines represent the administrative boundaries of
municipalities in the valley. Observing the map, most DG (blue
polygons) are concentrated in the middle of Valtellina. In fact,
municipalities in this area have recently upgraded their digital
infrastructures thanks to public investments, a development we
believe significantly enhances users’ experiences, especially in
facilitating remote working options. It is noteworthy that DG
also acquire users during the week-end, possibly influenced
by various initiatives undertaken by local public entities to
promote tourism in these areas. Turning attention to NG
(red polygons), they are predominantly situated in lateral
valleys. This distribution may be attributed to the limited
availability of digital infrastructures and services, as well as
job opportunities, prompting citizens to commute during daily
hours and return home at night. Lastly, we emphasize that
Grosio, administratively overlapping with the Voronoi polygon
pinpointed by an arrow on the map, is categorized as WEG.
Since 2020, it has served as a central hub for optical fiber
distribution to surrounding districts.

V. CONCLUSIONS AND FUTURE WORKS

This work envisions a framework to profile urban settle-
ments based on their attractiveness and model its relationship

4How to represent the coverage area of a radio access point without
resorting to coverage maps is still a topic of literature debate [14].

with built and natural environment characteristics. Using the
Italian region of Valtellina as a case study, we detail the design
of the attractiveness estimator. Leveraging real-world cellular
network data, we apply k-means to cluster eNodeBs based
on the median variation of RRC-connected user shares pre-
and post-COVID-19. Interestingly, we observe a 30% increase
in cellular users in Valtellina post-pandemic, contrary to the
depopulation trend in the region. Results indicate that 33%
of eNodeBs gained users at night compared to T1, while 31%
increased their shares during daytime. Conversely, 14% gained
users on week-ends, with 21% experiencing a decline. We
present a color-coded map illustrating the clusters, offering
insights and rationale for these variations. In conclusion, be-
yond improving living spaces, modeling cellular user presence
variations based on geographical environment types can guide
MNOs in energy-aware management strategies. Future work
includes i) designing the Settlement Profiler and ii) extending
the approach to other settlements, considering diverse regions,
including metropolitan cities.
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