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Abstract—Smart meter networks play a crucial role in mod-
ern utility management, supporting efficient and reliable data
transmission for monitoring energy, water, and gas consumption
across urban and rural areas. However, ensuring reliable com-
munication poses challenges related to signal quality, coverage,
and load balancing. This paper introduces QLiCk, a novel
max-min optimization model that enhances network resilience
and scalability by optimizing relay placement and support-
ing multi-hop routing. By maximizing minimum link quality
and minimizing installation costs, the model provides reliable
communication while ensuring fairness in load distribution, a
key aspect for achieving energy consumption efficiency. Using
real-world data from 35,000 meters and 100 concentrators,
numerical results show QLiCk’s ability to improve network
performance, offering practical solutions for scalable, cost-
effective and energy-efficient smart meter networks.

Index Terms—Smart Meter Network Optimization, Relay
Placement and Routing, Load balancing and Fairness, Link
Quality Maximization.

I. INTRODUCTION

The deployment of smart meters has revolutionized utilities
management enabling real-time data transmission for efficient
monitoring, dynamic billing and anomaly detection [1]. How-
ever, they require robust communication networks capable of
operating reliably across varied terrains and environmental
conditions. Challenges include ensuring signal quality and
stability in both urban and rural areas [2], while overcoming
obstacles like vegetation, buildings, and weather, particularly
for meters deployed in underground or hard-to-reach locations
[3]. These factors complicate the creation and maintenance
of resilient and reliable smart meter networks.

A widely adopted solution for smart meter deployments
is the wireless M-Bus (wM-Bus) protocol, which governs
communication at the physical and data link layers. The
latest version (EN 13757-4:2019) defines various modes of
operation with differing carrier frequencies (434 MHz, 868
MHz, or 169 MHz), data rates, duty cycles, encryption
options, and communication types. Many European countries,
including Italy and France, favor the narrow-band mode N at
169 MHz, which offers reduced noise, extended range (up to
1 km in urban areas), and improved signal sensitivity (−115
dBm), albeit at lower data rates. In typical deployments,
smart meters broadcast data that can be received by multiple
concentrators, which forward the data to a central data man-
agement center via either wired (i.e., fiber optics) or wireless
(e.g., LTE, 5G, LoraWAN) backhaul technologies [4].

While incremental deployment strategies dominate, they
make it challenging to optimize meter and concentrator
placements. To address connectivity gaps in a cost-effective
and energy-efficient way, relay nodes are increasingly utilized
to extend coverage to remote areas, enhance network relia-
bility, and balance load among concentrators. Determining

the optimal number and placement of these relays, however,
involves trade-offs between cost and performance.

This paper makes the following contributions:
• We present QLiCk (Quality Links with Cost-efficient

relays), a novel max-min optimization framework that
explicitly integrates relay placement and routing into
the network design process. The model identifies the
optimal number and location of relays, performs traffic
routing and smart meter assignment to concentrators,
maximizing network coverage, reliability and minimum
link quality.

• By introducing fairness concerns explicitly, the model
ensures equitable load distribution among concentrators,
improving resource utilization while mitigating bottle-
necks and enhancing network stability.

• We integrate a pathloss-based model to estimate link
quality based on physical distances and environmental
conditions. This ensures that the optimization process
reflects real-world propagation characteristics and ac-
counts for the variability in signal strength.

• We provide a thorough performance evaluation on real
network topologies, generated using a dataset measured
at the access of a currently operative smart meters
network, consisting of 35, 000 meters and 100 concen-
trators.

This paper is structured as follows: Section II reviews
related work, focusing on approaches to planning and opti-
mizing smart meter networks. Section III introduces the math-
ematical formulation of the optimization model that addresses
both relay placement and traffic routing, ensuring high link
quality, load balancing and fairness. Section IV describes the
generation of realistic network topologies using real-world
data, topology sampling and link quality estimation. Section
V provides numerical results and analysis. Finally, Section VI
concludes this work and outlines direction for future research.

II. RELATED WORK

Wireless communication systems have been extensively
studied to improve the efficiency and reliability of smart
grid and smart meter networks. Research has addressed key
challenges in deployment, data aggregation, and network
optimization [5], [6], [7], often leveraging data-driven and
machine learning techniques [8], [9], [10].

Wireless Sensor Networks offer a practical solution for
smart grid communication, particularly in buildings. For
example, [5] used integer programming to optimize relay
placement for electricity metering and environmental mon-
itoring, validating the method through simulations. Similarly,
effective Neighborhood Area Network deployment is crucial
for smart metering. Research in [7] introduced a network
partitioning framework to minimize distances between Data



Aggregation Points (DAPs) and smart meters. Additionally,
[9] demonstrated the effectiveness of machine learning-based
clustering for optimal DAP placement in urban and rural
environments.

Providing smart meters with multi-hop transmission capa-
bilities is another key area of research. In [6], a heuristic
optimization method integrates clustering and routing to
minimize installation and delay costs, enabling meters to act
as both data sources and relay nodes. An advanced approach
is presented in [10], where a deep neural network selects
relays based on real-time channel-state information, achieving
higher throughput with reduced computational complexity.

Regarding wM-Bus protocol-based networks, challenges
like backhauling congestion and computational overload at
concentrators have been addressed. For instance, [8] intro-
duces a data-driven framework to balance concentrator loads
using forwarding whitelists, reducing backhauling traffic by
80% while maintaining high network quality. However, most
works, including [11], focus on isolated aspects such as load
balancing. In contrast, our research integrates relay placement
and routing into a unified optimization model to enhance scal-
ability, efficiency, and reliability, and is easily extendable to
multi-access environments (e.g., where nodes utilize multiple
transmission technologies with distinct pathloss curves and
power levels).

III. MATHEMATICAL MODEL

In this section we present QLiCk, a mathematical model
for planning a smart meter network to optimize relay node
placement (considering installation costs) and determine rout-
ing paths between smart meters, relays, and concentrators.
This model addresses both planning (relay installation) and
operations (traffic routing).

Each smart meter generates packets that must reach a con-
centrator. A key feature of our model is that any concentrator
can serve any smart meter, subject to load balancing con-
straints limiting the number of smart meters per concentrator.
This flexibility distinguishes our approach from traditional
multi-commodity flow models, which typically assume fixed
source-destination pairs.

Routing can be either single-hop, a direct connection
between the smart meter and a concentrator, or multi-hop,
involving intermediate relays before reaching the concentra-
tor.

Problem setup

Sets and parameters: Let M be the set of smart meters,
C the set of concentrators, P the set of candidate sites for
relay installation; N = P ∪ C, a combined set of relay sites
and concentrators (for model simplification). Each candidate
relay site p ∈ P has an installation cost cIp. To ensure load
balancing, each concentrator can serve a maximum of Nmax

smart meters.
The following decision variables are defined:
• Relay Installation: zp (binary) indicates whether a relay

is installed at site p ∈ P .
• Traffic Routing:

– ymjn (binary), indicates whether traffic from smart
meter m is routed over the link between relay nodes
or relay-concentrator (j, n), j ∈ P, n ∈ N . Traffic
routing is contingent on the installation of relays,
i.e. zj , zl = 1.

– xm,n (binary) indicates whether smart meter m is
connected to node n ∈ N .

– wm,c (binary) indicates direct connectivity between
smart meter m and concentrator c ∈ C. This
variable, defined for ease of implementation, com-
plements xm,n, ensuring that traffic is either routed
via a relay (multi-hop) or directly sent to a con-
centrator (single-hop). The two variables coincide
when n ∈ C.

• Link quality: Lb (continuous in [0, 1]), represents the
minimum link quality across the entire network.

The following parameters capture network constraints and
link capabilities:

• qi,j (in [0, 1]) indicates the link quality between node i
and j, where (i, j) ∈ M ∪N (see Section IV for details
on its setting).

• am,p (binary) indicates whether relay p is within the
coverage range of smart meter m.

• bj,l (binary) indicates whether relays j and l are within
each other’s coverage range.

• em,c indicates whether smart meter m is within the
coverage range of concentrator c.

• hp,c indicates whether relay p is within the coverage
range of concentrator c.

• Nmax: maximum number of smart meters a concentra-
tor can serve, enabling load balancing and fair traffic
distribution, as we will show in Section V.

A. Problem formulation

The optimization problem, hereafter referred to as QLiCk
(Quality Links with Cost-efficient relays), aims to maximize
the minimum quality experienced across all links while
accounting for the installation costs of relays. The objective
function is given by:

max(Lb − β
∑
p∈P

cIp · zp) (1)

where Lb is the minimum link quality to be maximized, β
is a weight balancing link quality and installation cost, and
cIp is the installation cost of relay p.

The model is subject to the following constraints:
1. Connectivity constraint: each smart meter m ∈ M

must connect to exactly one node (a concentrator or a relay):

s.t.
∑
n∈N

xm,n = 1 ∀m ∈ M. (2)

2. Flow balance for traffic originating from smart
meters: at any relay j, the incoming and outgoing traffic
balance is maintained:

xm,j =
∑
l∈P

ymjl −
∑
l∈P

ymlj +
∑

l∈P,c∈C

ymlc ∀j ∈ P,m ∈ M.

(3)
3. Flow balance for smart meters: when a smart meter m

transmits directly to a concentrator c (wm,c = 1), traffic
bypasses relays:∑

c∈C

wm,c +
∑

l∈P,c∈C

ymlc = 1 ∀m ∈ M. (4)



When smart meter m transmits its measured data directly
to concentrator c, wm,c = 1, then in this case the traffic will
not be forwarded through relays and hence variables ymlc are
all null and

∑
l∈P,c∈C ymlc is equal to zero.

4. Coverage constraints:
- Between smart meters and relays:

xm,p ≤ zp · amp ∀m ∈ M,p ∈ P (5)

- Between any two relays:

ymj,l ≤ bj,l · zj ∀j, l ∈ P,m ∈ M (6)

ymj,l ≤ bj,l · zl ∀j, l ∈ P,m ∈ M (7)

- Between smart meters and concentrators:

wm,c ≤ em,c ∀m ∈ M, c ∈ C (8)

- Between relays and concentrators:

yj,c ≤ hj,c · zl ∀j ∈ P, c ∈ C. (9)

5. Load balancing constraint: each concentrator can
support a maximum of Nmax smart meters (this helps in-
troducing fairness concerns and load balancing among con-
centrators, which will be quantified in the numerical analysis)

∑
m∈M,l∈P

ymlc +
∑
m∈M

wm,c ≤ Nmax ∀c ∈ C. (10)

6. Quality constraints: the quality qm,n of a chosen link
(over all network links) must exceed the lower bound Lb:

qm,n ≥ xm,n · Lb, ∀m ∈ M,n ∈ N (11)

qj,n ≥ ymj,n · Lb, ∀m ∈ M, j ∈ P, n ∈ N. (12)

When a link is chosen by the model to route traffic
(xm,n = 1 or ymj,n = 1), its quality (qm,n or qj,n) should be
greater or equal to the lower bound Lb since the model aims
at maximizing the minimum quality experienced across all
links. These coupled constraints can be linearized as follows:

qm,n ≥ Lb − (1− xm,n), ∀m ∈ M,n ∈ N (13)

qj,n ≥ Lb − (1− ymj,n), ∀m ∈ M,n ∈ N. (14)

B. Example Network

We present in Figure 1 a toy example that illustrates the
objectives and the operation of the optimization approach
proposed in this paper. A Smart Meter needs (SM) to be
connected to a Concentrator (C), and no direct connection is
available. In this situation, when no relays are installed in the
network (the solution currently adopted by many operators)
no packet delivery is possible between SM and C. If on the
other hand relays can be deployed in the network, let us
consider two possible paths to connect a SM to C: (1) SM →
R1 → R2 → C, and (2) SM → R3 → C. Link qualities, as
defined hereafter, are reported above each link. If the cost for
installing relays is sufficiently low, the optimal path will be
the ”longer one” (SM → R1 → R2 → C), with a minimum
assured link quality of 0.8 and 2 installed relays. If installation
cost is a concern, the shortest path would be chosen (SM →
R3 → C) with only one relay installed in the network (R3)

and a minimum quality over the pat of 0.6. Parameter β in the
objective function (1) of our model permits to tune the trade
off between minimum quality and relay installation cost. For
example, if β = 0.1 and the installation cost of each relay
is 1 monetary unit, the objective function value (1) would be
0.6−0.1 = 0.5 for path SM → R3 → C and 0.8−0.1·2 = 0.6
for SM → R1 → R2 → C, which will hence be chosen. If,
on the other hand, we give more weight to relay installation
costs (e.g., β = 0.5), then the costs would be 0.6−0.5 = 0.1
for SM → R3 → C and 0.8− 0.5 · 2 = −0.2 for SM → R1
→ R2 → C, hence only relay R3 would be installed and the
shortest path will be chosen.

SM R1 R2 C

R3

0.8 0.9 0.8

0.8 0.6

Fig. 1. Example network with two possible paths to connect a Smart Meter
(SM) to a Concentrator (C) through Relays (R): (1) SM → R1 → R2 →
C, and (2) SM → R3 → C. Link qualities are indicated on edges.

IV. NETWORK TOPOLOGIES AND INSTANCE GENERATION

We leveraged a real-world dataset collected from a smart
meter network in a suburban area of northern Italy to design
and evaluate our optimization framework. The dataset spans
14 days and includes approximately 35,000 smart gas meters
transmitting data twice daily to 100 concentrators, all oper-
ating on the wireless M-Bus protocol in narrowband mode N
at 169 MHz. The dataset provides critical metadata such as
the geographic locations of meters and concentrators and the
average Received Signal Strength (RSS) rm,c for meter-to-
concentrator (m, c) links. However, it does not include data
on meter-to-meter or relay-to-relay links.

Using this data-driven approach, we generated a diverse
set of network topologies. Let C and M denote the sets of
concentrators and smart meters, respectively. Each topology,
referred to as a k-th instance, was generated through the
following process:

1) Select a Root Concentrator: Randomly select one
concentrator ck ∈ C.

2) Spatial Sampling of Concentrators: select C-1 ad-
ditional concentrators within a maximum distance R
from ck, forming a set Ck of C concentrators. The
parameter R controls the geographical extent of the
instance.

3) Select Smart Meters: from M select M smart meters
that successfully transmitted at least 10 frames to at
least one concentrator among those selected at step 2.

4) Assign Candidate Relays: Randomly designate P of
the selected smart meters as candidate relay nodes,
forming the set of relays P .

5) Instance Definition: Construct the instance with C
concentrators, M -P smart meters, and P candidate
relay sites.

To characterize the quality qi,j of the generic link (i, j),
we utilized RSS measurements from the dataset. For links
between meters and concentrators (m, c) or candidate relays
and concentrators (p, c) the dataset provides direct RSS
values. However, for meter-to-relay (m, p) and relay-to-relay
(p1, p2) links, no measurements were available.



TABLE I
FAIR SHARE AND ADJUSTED NMAX VALUES FOR DIFFERENT

TOPOLOGIES

Topology M P C M/C Nmax
20% 50% 100% ∞

Small 50 5 5 10 12 15 20 ∞
Medium 100 10 10 10 12 15 20 ∞
Large-1 300 10 10 30 36 45 60 ∞
Large-2 300 17 17 18 22 27 36 ∞

Fig. 2. Example topology in set S. Green triangles correspond to relay nodes
installed by the optimization model.

We addressed this gap using a regression approach based
on the log-distance pathloss model:

r̂i,j = q0 + 10 · η log10
(
di,j
d0

)
(15)

where di,j is the distance between nodes i and j; q0 is the
RSS at a reference distance d0 = 1m and η the pathloss
exponent. The parameters q0 and η were estimated via least
squares using RSS measurements for links with at least
10 successful transmissions (reliability > 40%1). If fewer
transmissions were observed for a link, we assumed the link
was blocked and assigned the RSS a power floor value of
−120 dBm. This threshold was also applied to predicted RSS
values below −120 dBm for other link types. Finally, we
set qi,j = r̂i,j . We underline that a new model is estimated
at each new run of the topology generation process, to
better capture the characteristics of the sampled propagation
environment.

Topology Configurations

We created 4 sets of 30 topology configurations — Small
(S), Medium (M), Large-1 (L1), and Large-2 (L2) — de-
signed to represent typical smart city scenarios of varying
sizes and complexities. These configurations were defined
by parameters such as the number of concentrators (ranging
from 5 to 17), meters (from 50 to 300), and relays (from 5
to 17) within radii of 800 m to 1500 m. This diversity allowed
for an in-depth assessment of the optimization framework
across different deployment conditions. Table I summarizes
the values of C, M , and P for the considered topologies,
along with the fair share value for each concentrator (M/C)
and the Nmax settings that will be used in the numerical
evaluation section.

Figure 2 illustrates an example of a Small (S) topology,
while Figure 3 presents the relationship between RSS ri,c

1Each meter transmits 2 frames per day, corresponding to a maximum of
24 transmissions in 2 weeks of operation.

Fig. 3. Scatterplot of distance di,c between meter or relay i and concentra-
tor c versus true (blue) and estimated (orange) RSS.
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Fig. 4. Distribution of the number of concentrators within a meter’s radio
coverage area, in the case of No Relay installed.

and distance di,c for all links involving meters or relays and
concentrators. These measurements highlight significant RSS
variance at fixed distances due to environmental factors like
obstacles. To address this, all RSS values were regenerated
using the path-loss model from equation (15), preserving the
database’s information about blocked meter-to-concentrator
links. This approach ensures consistent link quality indicators
across different link types.

Figure 4 further details the characteristics of the generated
topologies, showing the average number of concentrators
within each meter’s radio coverage for the S, M, L1, and
L2 scenarios. Notably, every smart meter connects to at least
one concentrator, irrespective of the topology size. Over 40%
of meters connect to a single concentrator, while another
40% establish connections with 2–4 concentrators. These
insights provide a foundation for the subsequent analysis of
the optimization model’s performance.

V. NUMERICAL RESULTS

This section presents the results of the numerical analysis
conducted using the proposed optimization model. The model
was implemented in OPL and solved with IBM ILOG CPLEX
v. 22. For each network topology, we tested the model under
various parameter settings: Nmax was varied as MAximum,
while β (the weight balancing link quality and relay installa-
tion cost) was set to 1, 0.1, and 0.01. Each scenario consisted
of 30 network instances randomly generated from the dataset
described earlier.



As a baseline (referred to as No Relay), we analyzed sce-
narios without relay installations, a configuration commonly
used by many operators. This approach involves solving
model (1)-(14) with zp = 0,∀p ∈ P , effectively excluding
relays. Comparing this baseline with the optimized model
highlights the advantages of integrating relay placement with
smart meter assignment and routing. Specifically, we assessed
the improvements in terms of: 1) maximizing the percentage
of smart meters reliably connected to a concentrator, 2)
improving link quality, thereby reducing packet error rates
and increasing the number of successfully delivered packets,
ultimately enhancing measurement accuracy, and 3) improv-
ing fairness ensuring load balancing among concentrators.

A. Impact of Relays on Coverage and Fairness

We first evaluated the percentage of scenarios in which
the optimization model achieved full coverage, possibly in-
stalling relays and using multi-hop routing. The results were
compared to the baseline approach.

QLiCk consistently provided feasible solutions ensuring
100% coverage across all topologies and scenarios. This
is noteworthy compared to the baseline approach, which
frequently failed to achieve full coverage in demanding sce-
narios, especially under strict load-balancing constraints (i.e.,
for low Nmax values), as reported in Table II. For example,
the Table shows that the No Relay approach achieved 0%
coverage in some cases (viz., the Large-2 topology with
Nmax = 20). Note that full coverage is mandatory in our
considered scenario, since the operator needs to collect data
gathered by all smart meters installed at customer’s premises.
While relaxing load-balancing constraints (i.e., higher Nmax

values) improved baseline performance, this often led to
unfair traffic distribution. To quantify fairness, we used Jain’s
Fairness Index [12], defined as:

J(n) =
(
∑

c∈C nc)
2

|C|
∑

c∈C n2
c

where nc is the number of smart meters connected to
concentrator c, and |C| is the total number of concentrators.
The index ranges from 1

|C| (least fair, where all smart meters
are connected to one concentrator) to 1 (perfect fairness).

Table III summarizes the Jain’s index achieved by the
QLiCk model for different Nmax values. All results were
obtained setting β = 0.01, hence minimizing the impact
of the installation cost and therefore allowing the model
to install the maximum number of relays to increase load
balancing.

Results indicate that as Nmax increases, fewer relays are
installed (see also Fig. 5 and the discussion below), leading
to decline in fairness, with a smaller number of concentrators
handling most connections.

As for the No Relay approach, it obtained lower fairness
values, in some cases with a net decrease with respect to the
optimal solution computed by QLiCk. For example, for the
Large-2 and Medium topologies with Nmax = ∞, No Relay
obtained 0.4849 and 0.5651, that is, a significantly less fair
solution, with reductions of around 39% and 25%, compared
to the values achieved by QLiCk (0.7973 and 0.7577).

B. Number of Installed Relays

The number of relays installed by QLiCk was then ana-
lyzed. Figures 5 and 6 illustrate the distribution of installed

TABLE II
PERCENTAGE OF INSTANCES THAT HAVE A SOLUTION (I.E., FULL
COVERAGE OF ALL SMS) FOR THE NO RELAY APPROACH, FOR
DIFFERENT Nmax VALUES AND ALL CONSIDERED TOPOLOGIES

(β = 0.01)

Nmax Small Medium Large-1 Large-2
20% 46.67 13.33 16.67 0
50% 76.67 56.67 66.67 3.33
100% 96.67 73.33 66.67 80
∞ 100 100 100 100

TABLE III
JAIN’S FAIRNESS INDEX OBTAINED BY QLICK FOR DIFFERENT Nmax

VALUES AND ALL CONSIDERED TOPOLOGIES (β = 0.01)

Nmax Small Medium Large-1 Large-2
20% 0.9871 0.9728 0.9706 0.9591
50% 0.9733 0.8970 0.8996 0.9152
100% 0.9578 0.8362 0.8196 0.8827
∞ 0.9365 0.7577 0.7734 0.7973

relays for Medium and Large-2 topologies, respectively. For
β = 0.01 (low installation cost), the model tends to install
more relays (up to 4 for Nmax = 20% and up to 3 for
Nmax = 50%).

Conversely, higher β values (β = 1) reduce relay installa-
tions to 2 and 1, respectively, due to increased cost sensitivity,
as shown in the same figures.

Even under relaxed constraints (Nmax = 100% and ∞),
up to 5 relays were installed in challenging scenarios. Across
all topologies and scenarios, installing ≤ 5 relays led to
full coverage and improved fairness (as discussed before, see
Tables II and III), demonstrating the model’s efficiency.

C. Link quality (Lb)

Figure 7 presents the average Lb values, representing the
minimum link quality across all selected paths. Compared to
the baseline, the QLiCk model consistently achieved higher
Lb values. For instance, in the Large-1 topology, the model
improved Lb in average by 20%, with single-instance gains
exceeding 45%. Notably, in scenarios like Large-2 with
Nmax = 20%, the baseline approach failed to provide
feasible solutions, while the proposed model ensured full
coverage with improved link quality.

D. Computation Time

Table IV reports the average computation times for QLiCk
and the baseline approach. The results were obtained on a
server equipped with an Intel i9-12900KF and 128 Gbytes of
memory. While No Relay required only fractions of a second,
solving QLiCk took longer, ranging from under a second for
Small topologies to more than 30 minutes for the largest ones.

To reduce computational overhead, a heuristic strategy
could involve pre-installing a limited number of relays based
on topological analysis or clustering methods, then solving
the routing and assignment problems. Given that QLiCk
rarely installs many relays (≤ 5 in our evaluation), this
approach appears feasible and will be explored in future
research.

VI. CONCLUSION

This paper presented QLiCk, a max-min optimization
model addressing critical challenges in smart meter networks,
including signal quality, coverage, and cost-efficiency. By
integrating relay placement, multi-hop routing, and fairness



Fig. 5. Distribution of the number of installed relays for the Medium topology with different values of the parameters Nmax and β.

Fig. 6. Distribution of the number of installed relays for the Large-2 topology with different values of the parameters Nmax and β.

Fig. 7. Lb values for the 4 topologies as a function of Nmax, for β = 0.01.

TABLE IV
AVERAGE COMPUTING TIME (SECONDS) FOR ALL CONSIDERED

TOPOLOGIES (β = 0.01)

Model Small Medium Large-1 Large-2
QLiCk 0.238 19.12 194.14 1889.97
No Relay 0.0063 0.0322 0.1018 0.2074

in load distribution, the model offers a scalable and practical
solution for robust deployments.

Numerical evaluations on real-world data demonstrated
QLiCk’s ability to enhance network resilience and energy
efficiency by maximizing minimum link quality. Even under
stringent load-balancing conditions (Nmax = 20%), it con-
sistently achieved 100% coverage, outperforming the baseline
approach that failed in complex topologies like Large-2. The
model improved average link quality (Lb) by up to 20%, with
gains exceeding 45% in some cases, while maintaining high
fairness metrics (Jain’s Index > 0.95) and requiring at most 5
relays per instance.

These results highlight the model’s potential to improve
resource utilization and adapt to modern utility network
requirements. Future work could optimize additional ob-
jectives, such as reducing latency or incorporating diverse
transmission technologies, contributing to the advancement
of robust, efficient, and sustainable utility networks.
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