
COMBINATORIAL TESTING FOR

FEATURE MODELS USING CITLAB

Angelo Gargantini

Università di Bergamo - Italy

http://cs.unibg.it/gargantini

Joint work with Paolo Vavassori – Università di Bergamo

and Andrea Calvagna Università di Catania

Int. Workshop on Combinatorial Testing (IWCT) @ ICST 2013

SPLs, FM, and CIT

• Software Product Lines & Feature Models
• SPLs and FMs are used to represent all the possible products of a

software product line in terms of features and relationships among
them.

• Combinatorial Interaction Testing
• Often required for SPLs

• Current approach
• Adapt CIT algorithms and tools for SPLs

• Use a tool for combinatorial testing (CitLab) for test generation
starting from Feature Models

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Feature models

• In software product line engineering, feature models represent
all possible products of a software product line in terms of
features and relationships among them.

• Example

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Features

Relations among
features

Cross-tree
constraints

Feature IDE

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

Features relationships in FMs

MANDATORY

child feature A is
mandatory

ALTERNATIVE

exactly one of
the sub-features
must be selected

OPTIONAL

OR

at least one of
the sub-features
must be selected

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

p

A

p

A

p

a1 an…

p

a1 an…

Standard semantics

• Feature models semantics can be rather simply expressed by
using propositional logics

• D. Batory. Feature models, grammars, and propositional formulas.
Software Product Lines, pages 7–20, 2005.

• Every feature is translated to a Boolean input

+Add constraints for the relations among features (implicit
constraints)

Alternative features are expressed as exclusive or

+Add constraints for cross-tree requirements

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Disadvantages

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

10 Boolean variables
Model, A, B,

𝑎1,…,𝑎4,𝑏1,…,𝑏4

Constraints:
e.g. A is alternative:

For A:
𝑎1∧¬𝑎2∧⋯∧¬𝑎4

∨
¬𝑎1∧𝑎2∧⋯∧¬𝑎4

…
∨

¬𝑎1∧¬𝑎2∧⋯∧𝑎4

FM2CitLab

• A “better” way to translate FMs to combinatorial problems

• The translation to CitLab language is performed in the following
steps

1. Every feature, starting from the root feature, is translated to an
element (variable or literal constant) in the combinatorial
problem.

• Initialize also a function isChosento be used when formalizing the
constraints

2. Additional constraints are added in order to represent
relationships among features as specified by the hierarchies in
the future model.

3. Cross-tree constraints are translated and added to the model.

4. Apply some simplification

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

1. Parameters

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

A

a1 an…

Enumerative A {a1 é an NONE};

Skip

A
Boolean A;

isChosen𝐴 ≡ A!=NONE

isChosen𝑎𝑖≡ A==ai

isChosen𝐴 ≡ A==true

Everything else

Alternative

2. Implicit constraints

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

A

a1 an…

p

A

p

A

isChosen(𝑝)
⟺ isChosen(𝐴)

isChosen𝐴
⟹ isChosen𝑎1∨…∨isChosen𝑎𝑛

Or

Mandatory Optional

isChosen(𝐴)
⟹ isChosen(𝑝)

i=1..n
isChosen𝑎𝑖⟹ isChosen𝐴

For alternative no
implicit constraints
(unless…)

4. Simplification

• After translation, we simplify the model:

1. Simplify the constraints in a semantic preserving way
(equivalence)

2. Remove unnecessary parameters and constraints.

• The resulting model is equisatisifable as the original one

• They allow the «same» family of products

• Since some features are missing, products of the simplified model
are more abstract.

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

It can be applied to any model, not only those coming
from FMs

1. Constraints Simplification

Constraint
If already
present

Replaced
by

𝑎⇒ 𝑏 𝑎 𝑏

𝑎⇒ 𝑏 𝑏 - remove

𝑎⟺ 𝑏 𝑎 𝑏

𝑎⟺ 𝑏 𝑏 𝑎

• In terms of FMs:

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

2. Parameter removal

• In terms of FMs:

Some features:

display, backCamera, Phone

are always present, can be ignored

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Parameter If present action

Boolean A;
A == true

Remove A and the
constraint

A == false

Enumerative A {a1 é an};
A == a1

Remove A and the
constraint

A != a1
Remove ai and the
constraint

Experiments

• Over 52 feature models from SPLOT repository

• Using the FeatureIde parser
• We had to skip some models because of its faults

• Implemented the BOOL translation for comparison

1. Testing the correctness of the transformation
• We have not proved that our translation is correct, but tested

against the BOOL (by the number of valid products)

2. Effect of the simplification over the parameters and the
constraints

3. Comparison with BOOL in terms of model
1. # parameters: we should obtain models

2. # constraints: we should obtain models

3. variability: we should obtain models

4. Test generation vs BOOL

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

2. Simplification effect

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

PARAMETERS #CONSTRAINTS CNF CLAUSES

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

No reduction

Reduction to 0

In 11% of
cases

complete
reduction of
constraints

Average:
77% of parameters
43% number of constraints
38% number of clauses in them

Ratio:
𝑥𝑎𝑓𝑡𝑒𝑟

𝑥𝑏𝑒𝑓𝑜𝑟𝑒

3 Vs. BOOL

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

PARAMETERS #CONSTRAINTS

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Reduction of:
parameters
CNF clauses in constraints

Increase of variability

𝑣𝑎𝑟=
#𝑣𝑎𝑙𝑖𝑑𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

#𝑎𝑙𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

0,00

0,05

0,10

0,15

0,20

0,25

0,30

BOOLEAN FM2CitLab

Ratio:
𝑥𝑎𝑓𝑡𝑒𝑟

𝑥𝑏𝑒𝑓𝑜𝑟𝑒

4. Test generation time (vs. BOOL)
• Can test generators take advantage of our translation?

• vs BOOL (+ simpl) using

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

0

0,2

0,4

0,6

0,8

1

1,2

1,4

TIME SIZE

ACTS (50 runs)

+ in 5 cases, ACTS
completed only with our
traslation without
memory errors

0

0,2

0,4

0,6

0,8

1

1,2

1,4

TIME SIZE

CASA (50 runs)

BOOL FM2CitLab

Time Size Time Size

0,785 39 2,034 37

Sometimes we had fewer
test cases BUT more time

Other results

• Tools for combinatorial testing performed
much better than tools specifically
developed for SPLs (PACOGEN, OSTER)

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Conclusions

• A new way to translate FMs to
combinatorial problems

• More compact

• Fewer parameters and constraints

• Increased variability

• Integrated into CitLab

• Reuse of test generators

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

THANK YOU

