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SPLs, FM, and CIT

• Software Product Lines & Feature Models
• SPLs and FMs are used to represent all the possible products of a 

software product line in terms of features and relationships among 
them. 

• Combinatorial Interaction Testing
• Often required for SPLs 

• Current approach
• Adapt CIT algorithms and tools for SPLs

• Use a tool for combinatorial testing (CitLab) for test generation 
starting from Feature Models
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Feature models

• In software product line engineering, feature models represent 
all possible products of a software product line in terms of 
features and relationships among them.

• Example
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Features

Relations among
features

Cross-tree 
constraints



Feature IDE
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http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/



Features relationships in FMs

MANDATORY

child feature A is
mandatory

ALTERNATIVE

exactly one of 
the sub-features 
must be selected

OPTIONAL

OR

at least one of 
the sub-features 
must be selected
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Standard semantics

• Feature models semantics can be rather simply expressed by 
using propositional logics

• D. Batory. Feature models, grammars, and propositional formulas. 
Software Product Lines, pages 7–20, 2005.

• Every feature is translated to a Boolean input

+Add constraints for the relations among features (implicit 
constraints) 

Alternative features are expressed as exclusive or

+Add constraints for cross-tree requirements 
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Disadvantages
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10 Boolean variables
Model, A, B,

𝑎1,…,𝑎4,𝑏1,…,𝑏4

Constraints:
e.g. A is alternative:

For A:
𝑎1∧¬𝑎2∧⋯∧¬𝑎4

∨
¬𝑎1∧𝑎2∧⋯∧¬𝑎4

…
∨

¬𝑎1∧¬𝑎2∧⋯∧𝑎4



FM2CitLab

• A “better” way to translate FMs to combinatorial problems

• The translation to CitLab language is performed in the following 
steps

1. Every feature, starting from the root feature, is translated to an 
element (variable or literal constant) in the combinatorial 
problem.

• Initialize also a function isChosento be used when formalizing the 
constraints

2. Additional constraints are added in order to represent 
relationships among features as specified by the hierarchies in 
the future model.

3. Cross-tree constraints are translated and added to the model.

4. Apply some simplification
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1. Parameters
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A

a1 an…

Enumerative A {a1 é an NONE};

Skip

A
Boolean A;

isChosen𝐴 ≡ A!=NONE

isChosen𝑎𝑖≡ A==ai

isChosen𝐴 ≡ A==true

Everything else

Alternative



2. Implicit constraints
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A

a1 an…
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p

A

isChosen(𝑝)
⟺ isChosen(𝐴)

isChosen𝐴
⟹ isChosen𝑎1∨…∨isChosen𝑎𝑛

Or

Mandatory Optional

isChosen(𝐴)
⟹ isChosen(𝑝)

i=1..n
isChosen𝑎𝑖⟹ isChosen𝐴

For alternative no 
implicit constraints 
(unless… )



4. Simplification

• After translation, we simplify the model:

1. Simplify the constraints in a semantic preserving way 
(equivalence)

2. Remove unnecessary parameters and constraints.

• The resulting  model is equisatisifable as the original one

• They allow the «same» family of products 

• Since some features are missing, products of the simplified model 
are more abstract.
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It can be applied to any model, not only those coming 
from FMs



1. Constraints Simplification

Constraint
If already
present

Replaced 
by

𝑎⇒ 𝑏 𝑎 𝑏

𝑎⇒ 𝑏 𝑏 - remove

𝑎⟺ 𝑏 𝑎 𝑏

𝑎⟺ 𝑏 𝑏 𝑎

• In terms of FMs:
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2. Parameter removal

• In terms of FMs:

Some features:

display, backCamera, Phone 

are always present, can be ignored

Angelo Gargantini - Combinatorial Testing for Feature Models Using CitLab

Parameter If present action

Boolean A;
A == true

Remove A and the 
constraint

A == false

Enumerative A {a1 é an};
A == a1

Remove A and the 
constraint

A != a1
Remove ai and the 
constraint



Experiments

• Over 52 feature models from SPLOT repository 

• Using the FeatureIde parser 
• We had to skip some models because of its faults 

• Implemented the BOOL translation for comparison

1. Testing the correctness of the transformation
• We have not proved that our translation is correct, but tested 

against the BOOL (by the number of valid products)

2. Effect of the simplification over the parameters and the 
constraints

3. Comparison with BOOL in terms of model
1. # parameters: we should obtain models

2. # constraints: we should obtain models

3. variability: we should obtain models

4. Test generation vs BOOL
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2. Simplification effect
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No reduction

Reduction to 0

In 11% of 
cases 

complete 
reduction of 
constraints

Average:
77% of parameters
43% number of constraints
38% number of clauses in them

Ratio:
𝑥𝑎𝑓𝑡𝑒𝑟

𝑥𝑏𝑒𝑓𝑜𝑟𝑒



3 Vs. BOOL
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Reduction of:
# parameters 
# CNF clauses in constraints 

Increase of variability

𝑣𝑎𝑟=
#𝑣𝑎𝑙𝑖𝑑𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

#𝑎𝑙𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
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4. Test generation time (vs. BOOL)
• Can test generators take advantage of our translation?

• vs BOOL (+ simpl) using
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+ in 5 cases, ACTS 
completed only with our 
traslation without 
memory errors
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Time Size Time Size

0,785 39 2,034 37

Sometimes we had fewer 
test cases BUT more time



Other results

• Tools for combinatorial testing performed 
much better than tools specifically 
developed for SPLs (PACOGEN, OSTER)
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Conclusions

• A new way to translate FMs to 
combinatorial problems

• More compact

• Fewer parameters and constraints

• Increased variability

• Integrated into CitLab

• Reuse of test generators
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