COMBINATORIAL TESTING FOR FEATURE MODELS USING CITLAB

Int. Workshop on Combinatorial Testing (IWCT) @ ICST 2013

Angelo Gargantini

Università di Bergamo - Italy

http://cs.unibg.it/gargantini

Joint work with Paolo Vavassori – Università di Bergamo and Andrea Calvagna Università di Catania

SPLs, FM, and CIT

Software Product Lines & Feature Models

- SPLs and FMs are used to represent all the possible products of a software product line in terms of features and relationships among them.
- Combinatorial Interaction Testing
 - Often required for SPLs
- Current approach
 - Adapt CIT algorithms and tools for SPLs
- OUR PROPOSAL FM2CitLa

 - Use a tool for combinatorial testing (CitLab) for test generation starting from Feature Models

Feature models

- In software product line engineering, feature models represent all possible products of a software product line in terms of features and relationships among them.
- Example

Feature IDE

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

Features relationships in FMs

Standard semantics

- Feature models semantics can be rather simply expressed by using propositional logics
 - D. Batory. Feature models, grammars, and propositional formulas.
 Software Product Lines, pages 7–20, 2005.
- Every feature is translated to a **Boolean** input
- +Add constraints for the relations among features (implicit constraints)
 - Alternative features are expressed as exclusive or
- +Add constraints for cross-tree requirements

Disadvantages

10 Boolean variables Model, A, B, a1, ..., a4, b1, ..., b4

Constraints: e.g. A is alternative:

For A: $\begin{array}{c}
(a1 \land \neg a2 \land \cdots \land \neg a4) \\
\lor \\
(\neg a1 \land a2 \land \cdots \land \neg a4) \\
\cdots \\
\lor \\
\checkmark$

FM2CitLab

- A "better" way to translate FMs to combinatorial problems
- The translation to CitLab language is performed in the following steps
- Every feature, starting from the root feature, is translated to an element (variable or literal constant) in the combinatorial problem.
 - Initialize also a function *isChosen* to be used when formalizing the constraints
- Additional constraints are added in order to represent relationships among features as specified by the hierarchies in the future model.
- 3. Cross-tree constraints are translated and added to the model.
- 4. Apply some simplification

1. Parameters

Alternative

2. Implicit constraints

Mandatory

isChosen(p) \Leftrightarrow isChosen(A)

isChosen(A) \Rightarrow isChosen(p)

4. Simplification

- After translation, we simplify the model:
- Simplify the constraints in a semantic preserving way (equivalence)
- 2. Remove unnecessary parameters and constraints.
- The resulting model is equisatisifable as the original one
 - They allow the «same» family of products
 - Since some features are missing, products of the simplified model are more abstract.

It can be applied to any model, not only those coming from FMs

1. Constraints Simplification

Constraint	If already present	Replaced by
$a \Rightarrow b$	а	b
$a \Rightarrow b$	b	- remove
$a \Leftrightarrow b$	а	b
$a \Leftrightarrow b$	b	а

2. Parameter removal

Parameter	If present	action
Boolean A;	A == true	Remove A and the constraint
	A == false	
<pre>Enumerative A {a1 an};</pre>	A == a1	Remove A and the constraint
	A != a1	Remove ai and the constraint

In terms of FMs:
 Some features:
 display, backCamera, Phone are always present, can be ignored

Experiments

- Over 52 feature models from SPLOT repository
- Using the FeatureIde parser
 - We had to skip some models because of its faults
- Implemented the BOOL translation for comparison
- 1. Testing the correctness of the transformation
 - We have not proved that our translation is correct, but tested against the BOOL (by the number of valid products)
- Effect of the simplification over the parameters and the constraints
- 3. Comparison with **BOOL** in terms of model
 - 1. # parameters: we should obtain smaller models
 - 2. # constraints: we should obtain simpler models
 - 3. variability: we should obtain **more compact** models
- 4. Test generation vs BOOL

2. Simplification effect

3 Vs. BOOL

Reduction of: # parameters # CNF clauses in constraints

Increase of variability

4. Test generation time (vs. BOOL)

- Can test generators take advantage of our translation?
- vs BOOL (+ simpl) using

Other results

 Tools for combinatorial testing performed much better than tools specifically developed for SPLs (PACOGEN, OSTER)

Conclusions

- A new better way to translate FMs to combinatorial problems
 - More compact
 - Fewer parameters and constraints
 - Increased variability
- Integrated into CitLab
 - Reuse of test generators

