
Components monitoring through formal specifications

Paolo Arcaini
Dip. di Tecnologie
dell’Informazione

Università degli Studi di
Milano, Italy

paolo.arcaini@unimi.it

Angelo Gargantini
Dip. di Ing. dell’Informazione e

Metodi Matematici
Università di Bergamo, Italy

angelo.gargantini@unibg.it

Elvinia Riccobene
Dip. di Tecnologie
dell’Informazione

Università degli Studi di
Milano, Italy

elvinia.riccobene@unimi.it

ABSTRACT
The paper presents a specification-based approach for run-
time monitoring of components in the field of component-
based software engineering. The conformance of a compo-
nent is checked with respect to a formal specification given
in terms of Abstract State Machines. The validity of the ap-
proach is proved showing how the technique can be used for
the monitoring of web services developed using Axis2. The
theoretical approach is implemented in a technical frame-
work where Java annotations are used to link the web service
with its formal specification, and AspectJ is used to check
the conformance runtime.

1. INTRODUCTION
The aim of runtime monitoring (or runtime verification)

is to check that a software (or even an hardware component)
behaves correctly during its execution. While other formal
verification techniques, such as model checking and theorem
proving, aim to ensure universal correctness, the intention of
runtime monitoring techniques is to determine whether the
observed executions behave as expected. Thus, monitoring
is a lightweight verification technique that can be used when
exhaustive verification can not be executed, because too ex-
pensive or because the environment in which the software is
executed is not reproducible at verification time.

In almost all the techniques proposed in literature for run-
time monitoring of software, the expected behavior of the
system is formalized by means of correctness properties [9]
which are then translated into monitors. The monitors are
used to check if the properties are violated during the exe-
cution of the software. The correctness properties are for-
malized using declarative languages as extended regular ex-
pressions, variants of LTL, JML, etc.

Another approach for describing the expected behavior
would be to use operational specifications that provide a
model implementation (or model program) of the system,
that in general is executable. Examples of operational spec-
ifications are abstract automata and state machines. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

use of operational specifications for runtime monitoring has
not been investigated deeply: In [18] a user-guided runtime
monitoring approach based on the use of Z specifications is
presented, and in [1] we introduced an approach for auto-
matic runtime monitoring of Java programs.

Component-based software engineering (CBSE) is a reuse-
based approach to software systems development [20]. The
aim of CBSE is to produce independent components that
are completely specified by their interfaces. The implemen-
tation of a component should be separated from its interface
so allowing to substitute a component without affecting the
overall system. A problem that arises in CBSE is how to as-
sure that components behave as expected. As stated in [20],
a viable solution is to certify that components conform to a
formal specification. Usually, classical approaches used to
guarantee the component correctness are model based test-
ing, formal verification, etc., that are executed before the
component deployment.

In this paper, instead, we propose a general framework
in which the expected behavior of a component is given
in an operational way in terms of Abstract State Machines
(ASMs), and the assurance that the implementation behaves
as expected is done through runtime monitoring after the
component deployment. Our approach permits to check,
not only the correctness of the implementation, but also that
the component is accessed in the right way (e.g., interface
contracts on the calling order of the interface services are
respected).

Section 2 introduces the necessary background on ASMs.
Section 3 presents the theoretical framework, in which we
explain the syntactical links between a component and its
formal specification, and the semantic relation which repre-
sents the conformance. Section 4 shows how the theoreti-
cal framework of the proposed monitoring approach can be
implemented for the web services scenario using Java an-
notations and AspectJ, and Section 5 presents a small case
study example. Section 6 presents related work, and Section
7 concludes the paper indicating some future directions of
this work.

2. ABSTRACT STATE MACHINES
Abstract State Machines (ASMs), whose complete presen-

tation can be found in [5], are an extension of FSMs, where
unstructured control states are replaced by states with ar-
bitrary complex data. The states of an ASM are multi-
sorted first-order structures, i.e., domains of objects with
functions and predicates defined on them. ASM states are
modified by transition relations specified by “rules” describ-

ing the modification of the function interpretations from one
state to the next one. There is a limited but powerful set
of rule constructors that allow to express guarded actions
(if-then), simultaneous parallel actions (par) or sequen-
tial actions (seq). Appropriate rule constructors also allow
non-determinism (existential quantification choose) and un-
restricted synchronous parallelism (universal quantification
forall).

An ASM state is a set of locations, namely pairs (function-
name, list-of-parameter-values). Locations represent the ab-
stract ASM concept of basic object containers (memory units).
Location updates represent the basic units of state change
and they are given as assignments, each of the form loc := v,
where loc is a location and v its new value.

Functions may be static (never change during any run
of the machine) or dynamic (may change as a consequence
of agent actions or updates). Dynamic functions are dis-
tinguished between monitored (only read by the machine
and modified by the environment), and controlled (read and
written by the machine).

A computation of an ASM is a finite or infinite sequence
s0, s1, . . . , sn, . . . of states of the machine, where s0 is an ini-
tial state and each sn+1 is obtained from sn by executing its
(unique) main rule. An ASM can have more than one ini-
tial state. It is possible to specify state invariants. Because
of the non-determinism of the choose rule and of moves of
the environment, an ASM can have several different runs
starting in the same initial state.

Code 1 reports the ASM specification of a basic e-commerce
web service: the service permits to create a cart and add an
item to the cart. In the ASM model, the operation chosen
by the user is modeled through the monitored function op-
erationCalled that can take value CC if the user wants to
create a cart and ATC if he/she wants to add one item to
the cart. The controlled part of the ASM state is composed
of the boolean cartCreated function, that records if a cart
has been created, and the integer function elementsInCart
that records how many items have been added to the cart.
An invariant checks that items are added to the cart only if
the cart has already been created.

The ASMETA toolset is a set of tools around the ASMs [2].
They can assist the user in developing specifications and
proving model correctness by checking state invariants dur-
ing simulation and temporal logic properties through model
checking. Among the ASMETA tools, those involved in our
runtime monitoring are: the textual notation AsmetaL, used
to encode ASM models, and the simulator AsmetaS [10],
used to execute ASM models.

3. ASM-BASED RUNTIME MONITORING
A runtime software-fault monitor (or simply a monitor)

is a system that observes and analyzes the states of an exe-
cuting software system. The monitor checks the correctness
of the system behavior by comparing an observed state of
the system with an expected state. The expected behavior
is usually given in terms of a formal specification.

We here propose a monitoring approach for component-
based systems where the formal model of a component is
given in terms of ASMs. In our technique the monitor ob-
serves the behavior of the component and determines its
correctness w.r.t. the ASM specification working as an or-
acle of the expected behavior: while the software system
is executing, the monitor checks conformance between the

asm eshop
import StandardLibrary

signature:
enum domain OperationCalledDomain = {CC | ATC}
monitored operationCalled: OperationCalledDomain
controlled cartCreated: Boolean
controlled elementsInCart: Integer

definitions:
rule r createCart =

if (operationCalled = CC) then
cartCreated := true

endif

rule r addToCart =
if (operationCalled = ATC and elementsInCart < 5) then

elementsInCart := elementsInCart + 1
endif

invariant inv calledOperationsOrder over operationCalled:
operationCalled = ATC implies cartCreated

main rule r Main =
par

r createCart[]
r addToCart[]

endpar

default init s0:
function cartCreated = false
function elementsInCart = 0

Code 1: ASM model of an e-commerce web service.

Figure 1: The runtime monitor.

observed state and the expected state. Fig. 1 shows the
structure of the proposed framework:
• a linking between a component and an ASM must be

provided in order to describe the conformance relation;
• the Observer evaluates when the component observed

state is changed (1), and leads the corresponding ASM to
perform a machine step (2);
• the Analyzer evaluates the conformance between the

component execution and the ASM behavior (3). If a con-
formance violation is detected, a trace in form of counterex-
ample can be recorded for debugging.

In the following, we introduce the theoretical foundation
of our monitoring approach. We define what is an observed
component state, how to describe the linking between the
component and its formal specification and, finally, how to
describe the conformance relation between the component
and the ASM.

3.1 Observable components
In order to mathematically represent a component and

and formally describe its relation with its formal specifica-
tion, we introduce the following definitions. We adapt the
definitions introduced in [1] for Java programs.

Definition 1. Component According to the definition
given in [20], a component C is a couple 〈R,P 〉 where R

denotes a possible empty set of services required by C, and
P the non empty set of services provided by C. If C has an
internal state that can change as a result of the invocation of
one of its services, the component is said stateful, otherwise
it is said stateless.

Definition 2. Pure service Pure services Ppure ⊆ P
are services provided by the component that are side effect
free with respect to the component state, that is they pro-
vide a result but they do not modify the internal state of the
component.

Pure services are similar to pure methods [8] in object-
oriented programs. Pure methods are very useful in verifi-
cation since they can be invoked runtime, without affecting
the program state. Some languages that support the use of
pure methods in pre and post-conditions are Eiffel [19] and
JML for Java [16].

If P = Ppure , that is all the services provided by the com-
ponent are pure, the component is stateless, otherwise is
stateful.

Our approach can handle both stateless and stateful com-
ponents.

Definition 3. Observed State We define external state,
ES(C) = JPpureK, as the description of the component state
that results from the invocation of its pure services. We de-
fine observed state, OS(C) ⊆ ES(C), as the subset of the
external state consisting of all the pure services of the com-
ponent C that the user wants to observe.

So, OS(C) describes the portion of the state that the user
wants to monitor at runtime.

The values returned by the services in OS(C) can change,
as time goes by, as the result of the execution of any not
pure service (in P¬pure = P − Ppure).

Definition 4. Changing service We define changing
services, CS(C) ⊆ P¬pure , all services provided by C whose
execution can change the interpretation of OS(C) and the
user wants to monitor.

Definition 5. Observed input We define observed in-
puts, OI (C) ⊆ R, all the services required by C that the user
wants to monitor.

Linking a component with an ASM.
Our approach requires that a component C, in order to be

runtime monitored, must have a corresponding ASM model
ASM C that abstractly specifies the expected behavior of an
instance IC of the component.

The observable state OS(C) must be linked to the con-
trolled functions ContrFuncs(ASMC) of the model ASM C .
The function

linkOS : OS(C)→ ContrFuncs(ASMC)

establishes the link between the observable pure services be-
longing to OS(C) and some ASM controlled functions. The
function linkOS is not surjective because there are controlled
functions that are not used in the conformance analysis, and
neither injective because different pure services can be linked
to the same ASM function.

The observed inputs OI(C) must be linked to the moni-
tored functions MonFuncs(ASMC) of the ASM model. The
function

linkOI : OI (C)→ MonFuncs(ASMC)

establishes the link. Monitored functions are suitable to
represent the required services of the component since, in
an ASM, they represent the part of the dynamic state that
is determined by the external environment and not by the
machine.

Execution step in the component and in the ASM.
We borrow from the Unifying Theories of Programming

(UTP) [14] the definitions of machine step and last state of
an execution sequence.

A state of a component C is the set of the actual values
of its internal fields.

Definition 6. Change Step Let p be a service provided
by a component. A component step is defined as the relation
(s, p, s′) where s is the starting state of the execution of p and
s′ the last state of this execution. A change step is defined
as a component step for p ∈ CS(C).

ASM state and ASM computation step have been defined
in Section 2.

3.2 State, Step and Runtime Conformance
In Section 3.1 we have provided all the elements necessary

to link a component with its formal specification given in
terms of ASMs.

We now report some definitions useful to define the con-
formance relation. Let C be a component and ASMC its
corresponding ASM abstract model.

The function valC(e, s) yields the value returned by a ser-
vice e ∈ ES(C) of C in a given state s of C. The value of
an ASM function f in a state S is given by valA(f, S). We

assume that a conformance relation
conf
= exists between the

values returned by any service and the ASM function values.

Definition 7. State Conformance We say that a state
s of C conforms to a state S of ASMC if all observed ele-
ments of C have values conforming to the values of the con-
trolled functions in ASMC linked to them, i.e.,

conf (s, S) ≡ ∀p ∈ OS(C) : valC (p, s)
conf
= valA(linkOS(p), S)

Definition 8. Step Conformance We say that a change
step (s, cs, s′) of C, with cs ∈ CS(C), conforms with a step
(S, S′) of ASMC if conf (s,S) ∧ conf (s ′,S ′).

ASMC S
simulation step // S′

C s

conf

OO

cs // s′

conf

OO

Definition 9. Runtime Conformance Given an ob-
served computation of a component C, we say that C is
runtime conforming to its specification ASMC if the follow-
ing conditions hold:
• the initial state s0 of the computation of C conforms

to the initial state S0 of the computation of ASMC , i.e., it
yields conf (s0, S0);

package org.ecommerce;
import org.asmeta.monitoring.Asm;
import org.asmeta.monitoring.MethodToFunction;
import org.asmeta.monitoring.RunStep;
import org.asmeta.monitoring.StartMonitoring;

@Asm(asmFile=”models/eshop.asm”)
public class Eshop {

private static int counter = 0;
private String clientID;
private int numberOfElements;

@StartMonitoring
public Eshop() {

clientID = ”client ” + counter;
counter++;
numberOfElements = 0;

}

@Operation(setFunction = ”operationCalled”, toValue = ”CC”)
public String createCart() {

//creation of the cart (not reported here)
return clientID + ”− cart created”;

}

@Operation(setFunction = ”operationCalled”, toValue = ”ATC”)
public String addItem() {

numOfEls++;
return clientID + ”− item added − ” +

”# elements = ” + numberOfElements;
}

@PureService(func = ”elementsInCart”)
public int getNumberOfElements() {

return numberOfElements;
}

}

Code 2: E-shop web service.

• every observed change step (s, cs, s′) with s the current
state of C, conforms with the step (S, S′) of ASMC with S
the current state of ASMC ;
• no specification invariant of ASMC is ever violated.

4. MONITORING WEB SERVICES
We here describe how our monitoring approach can be

implemented in a particular component-based scenario, the
web services scenario.

In our experiments the web services have been developed
using Apache Axis21, a framework for the development of
web applications in Java.

4.1 Providing the linking by Java Annotations
In order to link a web service with its formal specification

we use Java annotations, that are metadata tags that can
be used to add some information to code elements as class
declarations, field declarations, etc. Annotations can be de-
fined by the user similarly as classes. It is possible to define
annotations that can be accessed runtime using reflection.

For our purposes, we have defined a set of annotations:
• @Asm is used to link a web service with its corresponding

ASM model; it has a string attribute that contains the path
of the ASM. It must annotate the Java class that implements
the web service. Code 2 reports the Java class Eshop linked
to the ASM eshop.asm (see Code 1).
• @PureService is used to establish the mapping defined

by the function linkOS. It annotates each observed pure ser-

1http://axis.apache.org/axis2/java/core/

vice p ∈ OS(C); the annotation has a string attribute yield-
ing the name of the corresponding controlled ASM function.
In the example, the observed state is composed just by the
pure method getNumberOfElements.
• @Operation annotates the services in CS(C)2. The an-

notation has two string attributes, func that permits to spec-
ify the name of a monitored function of the ASM model, and
value that specifies the value to whom the monitored func-
tion must be set. This information is used by the runtime
monitor that, when the operation is called, sets the value of
the monitored function in the simulation of the ASM. In the
example, there are two changing services, createCart and
addItem, that are the two operations provided by the web
service; in the ASM the monitored function operationCalled
records which service has been invoked.
• @StartMonitoring is used to select a proper (not empty)

set of constructors; when the runtime monitor detects that
an annotated constructor has been called, it starts the moni-
toring (i.e., it starts a simulation of the corresponding ASM);
• @Param is used to link a parameter of a changing service

with a monitored function, specified by the string attribute
func. It is used to establish the mapping defined by the
function linkIS. The runtime monitor, when the operation
is called, sets the value of the monitored function using the
value of the actual parameter.

4.2 Runtime monitoring using AspectJ
AspectJ3 permits to integrate the principles of Aspect-

Oriented Programming (AOP) in Java. We used AspectJ
to implement the runtime monitor (see Fig. 1). Indeed As-
pectJ permits to easily observe the execution of Java ob-
jects: it allows programmers to define special constructs
called aspects where to specify some code to be executed
when the program under monitoring executes some given
actions. Pointcuts are points of the program execution one
wants to capture (e.g., execution of methods with a given
signature); for each pointcut it is possible to specify an ad-
vice, that is the actions that must be executed when the
pointcut is reached. The advice can be executed before or
after the execution of the code specified by the pointcut.

In our framework we developed just one aspect that per-
mits to runtime monitor all the components that must be
monitored. Indeed the pointcuts are general enough to cap-
ture the component creation and method executions that
must be monitored, and the advices are able to dynamically
inspect the Java and the ASM states in order to do the con-
formance checking.

Monitor implementation.
The Observer is implemented using two pointcuts that

permit to detect, respectively, the creation of a service (when
a constructor annotated with @StartMonitoring is called)
and the execution of a changing service (we do not consider
nested calls of services):

pointcut serviceCreated(): call(@StartMonitoring ∗.new(..));
pointcut operationCalled(): call(@Operation ∗ ∗.∗(..)) &&

!cflowbelow(call(@Operation ∗ ∗.∗(..)));

When the creation of a web service is detected (the pointcut

2The name @Operation is due to the fact that in web ser-
vices the provided interfaces are called operations.
3http://www.eclipse.org/aspectj/

http://axis.apache.org/axis2/java/core/
http://www.eclipse.org/aspectj/

serviceCreated is reached), an advice creates a simulator for
the ASM and connects it with the created web service.

When the call of an operation cs is detected (the pointcut
operationCalled is reached):

1. before the execution of cs, an advice (the Analyzer in
Fig. 1) checks the state conformance between the Java and
the ASM state (conf (s, S) in Def. 8);

2. cs is executed and an advice performs a step of simu-
lation of the ASM by AsmetaS (the ASM Simulator in Fig.
1); before the simulation step, the values of the monitored
functions are set according to the values provided by the
@Operation and @Param annotations;

3. after the execution of cs, the advice Analyzer checks
again the state conformance (conf (s′, S′) in Def. 8).

5. CASE STUDY
We have evaluated our technique on a small example, an

e-commerce web service (shown in Code 2). The web service
exposes just two operations, createCart to create a cart, and
addItem to add an item to the cart.

A correct usage of the web service requires that:
PROP1: the operation addItem is called only if the oper-

ation createCart has already been called, i.e., one item can
be added to the cart only if the cart exists;

PROP2: no more than 5 items are added to the cart.
The assurance of both correctness properties is not guar-

anteed by the web service implementation. However their
violations can be discovered if the web service is runtime
monitored using as formal specification the ASM shown in
Code 1.

In order to test the web service, we have developed an
application client for the Android platform4: the applica-
tion is composed of two buttons that invoke the operations
addItem and createCart, and a text box where the result of
an operation execution is shown. As suggested in [13], the
developed client is faulty since its usage can lead to the vio-
lation of the two correctness properties required by the web
service. Indeed, we do not hide a button when it should not
be called: in such way it is possible that the conversation
with the web service is executed wrongly (e.g., an item is
added to the cart before the cart has been created).

Figure 2 shows the client application when a connection
with the web service has been established (in the following
figures we do not show the two buttons).

Figure 2: Client application loaded.

Figures 3 and 4 show the application when, respectively,
the creation of the cart has been executed and an item has
been added to the cart. In both cases the web service is
invoked correctly and no correctness property is violated.

The violation of both correctness properties can be dis-
covered through runtime monitoring.

4http://www.android.com/

Figure 3: Correct creation of the cart.

Figure 4: Correct insertion of an item to the cart.

Violation of PROP1. The ASM has a boolean function
cartCreated that records if a cart has been created, that is if
the operation createCart has been called. The invariant con-
tained in the machine checks that, when an item is added to
the cart, the cart has already been created. Figure 5 shows
the error message that is shown when the ”Add Item to the
cart” button is selected firstly: the message is generated by
the invariant violation during the ASM simulation.

Figure 5: Invariant exception.

Violation of PROP2. The violation of PROP2 can be
discovered when the runtime monitor checks for the state
conformance after the execution of an operation. Figure 6
shows the error message that is obtained if, after the correct
creation of the cart, the ”Add Item to the cart” button is
selected 6 times. The web service does not bound the value
of numberOfElements, whereas in the ASM the function ele-
mentsInCart is not incremented if it is greater than or equal
to 5.

6. RELATED WORK
Surveys on runtime verification can be found in [7, 17, 9].
In [1] we presented an approach for runtime monitoring

of Java programs. That work has been inspired by the work
presented in [18], in which the authors describe a formal spe-
cification-based software monitoring system. In their system
they check that the behavior of a concrete implementation
(a Java code) complies with its formal specification (a Z
model). Another approach that, like ours, uses ASMs as
formal specifications for system monitoring purpose is pre-
sented in [4].

Several approaches uses Aspect-oriented programming for
implementing the monitor [6, 15, 12].

One of the properties that our approach can check is
that the operations are called in the correct order (e.g.,
PROP1 in our example). Web Services Conversation Lan-
guage (WSCL 1.0) [3] is a conversation definition language
based on XML that permits to specify what are the con-
versations (i.e., sequences of operation calls) supported by
a web service. It permits to define the documents to be
exchanged and the order in which they can be exchanged.
WSCL is responsible of checking just the interface of the
web service, the business payload and the the choreography
of the messages, not its implementation. In [13] a runtime

http://www.android.com/

Figure 6: Conformance exception.

monitor for Ajax applications is presented. It permits to
check contracts expressed in LTL − FO+, an extension of
LTL. In their case study, based on the Amazon Web Ser-
vices, they show how contracts related to the order in which
the operations are called can be specified and checked.

In our work we monitor the behavior of single web ser-
vice. Other research works focus their attention on checking
web services orchestration, by runtime monitoring BPEL
processes [11].

7. CONCLUSIONS AND FUTURE WORK
We have presented a theoretical framework for the execu-

tion of runtime monitoring of component in a component-
based software scenario. We claim that our definitions are
generic enough to be applied to all the settings that can be
described as instantiations of CBSE. As a proof of concept
we have applied the proposed approach to the web services
scenario.

The advantage of using executable specifications for run-
time monitoring is that they can be executed in isolation,
even before their implementations exist. Our approach fos-
ters the reuse of specifications for further purposes, thanks
to its integration in the ASMETA framework [2], which sup-
ports editing, type checking, simulation, model review, for-
mal verification, and test case generation for ASMs.

Moreover, although disputable, we claim that operational
specifications are sometimes easier to write than declarative
ones.

On the basis of these advantages and our experience in the
context of monitoring of Java programs, we think that using
operational specification for runtime monitoring is a research
area that is worth investigating. Currently we can monitor
only single components, and we cannot perform monitor-
ing of a composition of components and the communication
among components. As future work we plan to extend our
approach to deal with these aspects of CBSE.

8. REFERENCES
[1] P. Arcaini, A. Gargantini, and E. Riccobene. CoMA:

Conformance Monitoring of Java programs by
Abstract State Machines. In 2nd international
conference on Runtime verification, RV’11, Berlin,
Heidelberg. Springer-Verlag.

[2] P. Arcaini, A. Gargantini, E. Riccobene, and
P. Scandurra. A model-driven process for engineering
a toolset for a formal method. Softw., Pract. Exper.,
41(2):155–166, 2011.

[3] A. Banerji, C. Bartolini, D. Beringer, V. Chopella,
and Et. Web services conversation language (wscl) 1.0.
Technical report, March 2002.

[4] M. Barnett and W. Schulte. Runtime verification of
.NET contracts. The Journal of Systems and Software,
65(3):199–208, Mar. 2003.

[5] E. Börger and R. Stärk. Abstract State Machines: A
Method for High-Level System Design and Analysis.
Springer Verlag, 2003.

[6] F. Chen, M. D’Amorim, and G. Roşu. A formal
monitoring-based framework for software development
and analysis. In J. Davies, W. Schulte, and
M. Barnett, editors, Formal Methods and Software
Engineering, volume 3308 of LNCS, pages 357–372.
Springer Berlin / Heidelberg, 2004.

[7] S. Colin and L. Mariani. Run-time verification. In
M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors, Model-Based Testing of
Reactive Systems, volume 3472 of LNCS, pages
525–555. Springer Berlin / Heidelberg, 2005.

[8] A. Darvas and K. R. M. Leino. Practical reasoning
about invocations and implementations of pure
methods. In Proc. of FASE’07, pages 336–351, Berlin,
Heidelberg, 2007. Springer-Verlag.

[9] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy
and catalog of runtime software-fault monitoring tools.
IEEE Transactions on Software Engineering,
30(12):859–872, 2004.

[10] A. Gargantini, E. Riccobene, and P. Scandurra. A
metamodel-based language and a simulation engine for
Abstract State Machines. Journal of Universal
Computer Science (JUCS), 14(12):1949–1983, 2008.

[11] C. Ghezzi and S. Guinea. Run-time monitoring in
service-oriented architectures. In Test and Analysis of
Web Services, pages 237–264. 2007.

[12] Z. Haiteng, S. Zhiqing, and Z. Hong. Runtime
monitoring Web services implemented in BPEL. In
Uncertainty Reasoning and Knowledge Engineering
(URKE), 2011 International Conference on, volume 1,
pages 228 –231, aug. 2011.

[13] S. Halle, T. Bultan, G. Hughes, M. Alkhalaf, and
R. Villemaire. Runtime verification of web service
interface contracts. Computer, 43(3):59 –66, march
2010.

[14] C. A. R. Hoare and J. He. Unifying Theories of
Programming. Prentice-Hall International, Englewood
Cliffs, NJ, 1998.

[15] K. Kähkönen, J. Lampinen, K. Heljanko, and
I. Niemelä. The LIME interface specification language
and runtime monitoring tool. In S. Bensalem and
D. A. Peled, editors, Runtime Verification, volume
5779, chapter 7, pages 93–100. Springer, Berlin,
Heidelberg, 2009.

[16] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: a behavioral interface specification
language for Java. SIGSOFT Softw. Eng. Notes,
31:1–38, May 2006.

[17] M. Leucker and C. Schallhart. A brief account of
runtime verification. Journal of Logic and Algebraic
Programming, 78(5):293 – 303, 2009.

[18] H. Liang, J. Dong, J. Sun, and W. Wong. Software
monitoring through formal specification animation.
Innovations in Systems and Soft. Eng., 5:231–241,
2009.

[19] B. Meyer. Eiffel: the language. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1992.

[20] I. Sommerville. Software Engineering. Addison Wesley,
9th edition, 2010.

	Introduction
	Abstract State Machines
	ASM-based Runtime monitoring
	Observable components
	State, Step and Runtime Conformance

	Monitoring web services
	Providing the linking by Java Annotations
	Runtime monitoring using AspectJ

	Case study
	Related Work
	Conclusions and Future work
	References

