
ViBBA: A Toolbox for Automatic Model Driven
Animation

Angelo Gargantini ∗

University of Bergamo - Italy
Elvinia Riccobene †

University of Milan - Italy

Abstract

In this paper, we present ViBBA (Visual Bean Based Animator), a toolbox sup-
porting the automatic model driven animation [7] consisting in automatically deriving
scenarios exposing critical system behaviors from requirements specifications, and an-
imating those scenarios through a graphical interface. ViBBA allows visual construc-
tion of graphical animators and scenarios animation. It is integrated with the ATGT [5],
that automatically generates scenarios (in XML format) from Abstract State Machines
(ASMs) by exploiting counter example generation capability of the model checker
Spin. The operation of ViBBA is shown by means of an example of formal specifi-
cation where scenarios are automatically generated from the model and then animated.

1 Introduction
Validation of formal specifications is a typical human intensive activity during system and
software development. It must be performed at the very early stages of the development
process in order to check whether the system, as specified, meets the customer needs, to
better understand models and requirements, to gain confidence that specifications capture
informal requirements, and to detect faults as early as possible with limited effort. Tech-
niques for validation include scenarios generation, development of prototypes, simulation,
and also testing. Validation should precede the application of more expensive and accu-
rate methods, like formal requirements analysis and formal verification of properties, that
should be applied only when designers have enough confidence that specifications are cor-
rect. To be effective, the validation activity should be supported by tools easy to use and
requiring minimum user effort, in particular, visual representations can greatly benefit the
task of this activity.
In [7], the automatic model driven animation is presented as a novel approach to validate
requirements specifications. This approach is based on graphical animation (hereinafter
briefly called animation) [10, 13, 15] which basically consists of simulation, providing the
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user with a graphical interface suitable to show the state of the system by means of icons,
buttons, panels, slides, and so on. An animator might be a prototype ad hoc developed or a
simulator endowed with a complex graphical interface.
Animation offers several advantages both for designers and for customers. Mainly, through
animation designers better understand the requirements specification and can find failures
and faults. For customers, looking at the real behavior shown by the animator is better
than reading mathematical or logical formulas modeling the system behavior (normally
customers do not like mathematical formalisms). Customers can ignore in which notation
the specification has been written and they do not need to learn new (formal) languages.
Moreover animation does not require skills, ingenuity and expertise as those required by
heavy formal methodologies like theorem proving. Therefore, animation is easier to learn,
easier to use, and easier to understand by a broader group of people than formal techniques.
However, animation cannot prove that a specification is correct, but it can only uncover
faults [16]. For this reason, it is very similar to testing.
The main problems of animation are the selection of system behaviors to animate, and
the actual graphical animation of the selected scenarios. Therefore, a toolbox is required
which should be endowed with a system able to build scenarios, possibly in an automatic
way, from the specification with respect to a given critical aspect to analyze, and with a
graphical animator panel that visually represents the real system under animation. This
verisimilar environment is of great help to customers: they do not have to learn a new
environment (like a new tool or IDE or interface), they do not watch variable values only
by means of digits or strings (like in debuggers), they do not have to query system state
by typing commands, and they do not need to guess the meaning of the values in terms of
system behaviors.
In this paper, we present ViBBA (Visual Bean Based Animator), a toolbox for visually
building graphical animator and animate scenarios. ViBBA is integrated with the ATGT
(Automatic Tests Generator Tool) [5], that automatically generates scenarios (in XML for-
mat) from formal specifications written using the ASM notation [9] by exploiting counter
example generation capability of the model checker Spin [12]. Section 2 introduces auto-
matic model driven animation and explains how scenarios are automatically generated and
represented in XML files. ViBBA toolbox is described in Section 3 where we explain how
graphical animator panels are built and how scenarios are animated in ViBBA. The oper-
ation of ViBBA is shown by means of the example of the formal specification of a Safety
Injection System (SIS) [4]. Related work is discussed in Section 4, and future work and
conclusions are given in Section 5. Appendix reports a short description of the case study
and its ASM formal specification given in terms of a signature and a set of transition rules
modeling how variables are updated according to the system requirements.

2 Automatic Model Driven Animation
We distinguish three main ways for selecting scenarios to animate:

• user driven: users (customers or designers) “play” with the animator and check
whether the specification meets customers needs or not. Users select inputs, regard-



less of the specification, by means of buttons, slides, and graphical elements; outputs
are computed according to the specification (that acts as oracle) and shown by means
of other graphical elements. Except for the graphical interface, this approach is very
similar to the classical simulation.

• random: inputs are randomly generated taking into account only their specified con-
straints. Outputs are computed according to the specification and shown through the
graphical animator. In this case, the user observes the system behavior and judges its
correctness. This approach is proposed in [17].

• model driven: inputs are selected starting from requirements specifications in a sys-
tematic way, either manually or automatically. The former is similar to case 1, but
the specification is used as guideline. The latter is the new approach proposed in [7].

In any of these three animation approaches, the judgment of the specification correctness
is left to the human; however, the effort required substantially differs, and model driven
animation is more efficient than user driven or random animation for several reasons. By
animation, designers gain confidence that the specification is correct only if the model has
been extensively simulated and enough scenarios have been checked. Therefore, perform-
ing a good selection of critical scenarios, that can uncover specification faults, is crucial.
Since random animation produces a huge amount of scenarios, the careful review of all the
behaviors is time consuming. Furthermore, only few generated scenarios are able to expose
critical faults.
In user driven, as well as in manual model driven animation, designers have the responsi-
bility to cover all the critical behaviors. Since selection is carried out by hand, they risk to
leave out some particular cases and choose only a small subset of all the specified behav-
iors. The manual selection of scenarios is, therefore, expensive and error-prone, especially
in user driven animation, where specifications are not used as guidelines.
Automatic model driven animation [7] has the advantage to automatically derive scenarios
from specification, and to assure the animation of all the critical behaviors according to the
requirements. It does not require great user skill and ingenuity and is an effective approach
for model validation. Figure 1 shows the process of generation and animation of critical
scenarios, which is explained in the following.

Animation Goals They are predicates over the system state or over the system transitions
representing critical behaviors to animate. They are systematically derived from a formal
specification in an automatic way, selecting the most critical events and behavior by analyz-
ing the structure of the specification as explained in [7]. From ASM specifications, they can
derived from rule guards. For example, for rule R5 of the SIS specification the animation
goal is Reset = on and (Pressure = TooLow or Pressure = Normal).

Generation of Animation Sequences Scenarios achieving the animation goals are com-
puted by exploiting the counter example generation of model checkers. We encode the
formal specification in the language of a model checker. Then, for each animation goal a,
we compute the animation sequence that covers a by trying to prove with the model checker
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Figure 1: Automatic Model Driven Animation

the trap property ¬a. If the model checker finds a state where ¬a is false, it stops and prints
as counter example a state sequence leading to that state. This sequence is the animation
sequence for a. Note that the generation of animation sequence is totally automatic and
the model checker could fail to find the animation sequence for an animation goal. Indeed,
finding a valid sequence to cover a predicate is undecidable.
We have developed a tool, called Automatic Tests Generator Tool (ATGT) [6, 8, 5], that
automatically derives animation goals from ASM specifications [9], encodes ASM models
in PROMELA, the language of the model checker Spin [12], and automatically generates
test sequences which accomplish a desired coverage.

Animation Sequences In our framework, a scenario is a sequence of states and each state
is a function mapping a set of variables into their values. The scenarios to animate, gen-
erated by means of the ATGT tool, are in XML format, whose Document Type Definition
(DTD) is shown in Figure 2. The DTD defines the structure of scenarios. Figure 3 shows an
example of XML scenario where at state 15 the animation goal derived from R5 becomes
true.

<?xml version=’1.0’ encoding=’UTF-8’?>
<!ELEMENT SCENARIO (STATE)*>
<!ELEMENT STATE (var,val)*>
<!ATTLIST STATE NUMBER CDATA #IMPLIED>
<!ELEMENT var (#PCDATA)>
<!ELEMENT val (#PCDATA)>

Figure 2: DTD definition of scenarios

According to the DTD, the XML file has the main element SCENARIO representing the
scenario to animate, which contains 0 or more STATE elements. Each STATE element has



<?xml version="1.0"?>
<!DOCTYPE SCENARIO SYSTEM "http:// www.dmi.unict.it/garganti/vibba/scenarioDTD.dtd">

<SCENARIO>
<STATE NUMBER="1">
<var>Pressure</var><val>Normal</val>

...
<STATE NUMBER="15">
<var>Reset</var><val>off</val>
<var>Block</var><val>off</val>
<var>Overridden</var><val>true</val>

</STATE>
<STATE NUMBER="16">
<var>Reset</var><val>on</val>

</STATE>
<STATE NUMBER="17">
<var>Overridden</var><val>false</val>

</STATE>
....
</SCENARIO>

Figure 3: Example of XML scenario

an attribute (denoted by ATTLIST) showing its number (NUMBER) and contains 0 or more
pairs (var,val) that represent the update of the variable var to the value val. Var and
val are strings, as denoted by PCDATA. In the example, the variables Reset and Block
are off at state 15. At state 16, Reset becomes on, and Overridden becomes false
in the next state.
Note that scenarios may be written by hand through a XML editor following the DTD for
scenarios provided in the package or by another tool or program.

3 ViBBA Toolbox
ViBBA (Visual Bean Based Animator) is a tool for building and animating graphical panels
(also called animator panels). It provides the user with a graphical panel and a toolbox for
adding standard graphical elements to the graphical panel and to visually specify how they
must change during the animation. To perform the animation of desired scenarios, the user
has first to build the animator panel and then to animate the scenarios. ViBBA is based on
the Java Bean technology developed by Sun Microsystems.

3.1 ViBBA Architecture
The tool architecture is depicted in the following Figure 4.We distinguish three main com-
ponents of the animator: (1) the ATGT (Automatic Tests Generator Tool) which generates
scenarios following user requests and exploiting the model checkers, and stores them in a
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Figure 4: ViBBA Architecture

repository; (2) the animator client which retrieves generated scenarios and drives the ani-
mator server by providing the scenario to be animated (i.e. setting the value of variables);
(3) the animator server which shows status and behavior of the system by means of the
animator panel.
Animator client and server have a three layer architecture. At communication level, client
and server communicate through a CORBA ORB. At control level, the animator client
controller and the animator server controller manage their graphical interfaces, start the
processes and connect and register themselves with the ORB. At GUI level, the animator
client controls the animator through the control panel as explained in Section 3.3, while the
GUI part of the animator server is the real graphical panel that shows the system state and
behavior to the user.
Note that during animation we have three active components: a Control Panel, to control
the animation; an Animator Panel, to show the state of the system by means of graphical
elements; and an ORB: to connect the Control Panel with the Animator Panel.
The proposed architecture is highly modular and makes the animator easy to change adding
new graphical elements and new action beans as explained in Section 3.4. The animator
panel can be easily built as described in Section 3.2; this feature is relevant since each
specification requires a new animator panel to be animated. We chose CORBA, a well
established OMG standard, since it allows the animator to work in a distributed way and
the animator server to be easly connected to other software. The animator service may run
on a remote machine, for example a computer of the customer, while the animator client
would be controlled by the designer.

3.2 Building Animators using ViBBA
An animator is compound of two kinds of objects: graphical elements and animation action
objects. To build an animator panel, the user must add (by using drag and drop from a
palette) to the ViBBA animator panel, graphical elements, which can be any Java Bean, but



Figure 5: Building the Animator Panel for SIS

we normally use Swing components. Animation action objects (or animation action beans)
specify the behavior of graphical elements. Depending on the desired behavior, the user
must a) add (by drag and drop) to the animator panel some animation action objects, b)
link (by connecting objects using the mouse) each animation action object to its target that
is a graphical element, and c) set action properties in an appropriate way (depending on
the type of animation action object). Note that a graphical element can be target of many
animation action objects. ViBBA provides the following basic Animation Action beans:

Animation Action Purpose Method invoked on target

ChangeColor change target color setBackground
ChangeText change target text setText
ShowValue show variable value setText
UnChangeColor set/unset target color setBackground

Figure 5 shows the animator panel for SIS. Block, Reset, Overridden, SafetyInjection are
modeled by buttons as graphical elements, whereas WaterPressure is represented by a new
graphical element (defined as explained in Section 3.4) that shows the value by means
of a textual label and a graphical slide (the graphical element for Pressure is not shown



Figure 6: Property of the Change Color bean

for lack of space). The figure also shows the action beans ChangeColor, ChangeText, and
ShowValue and their connections to their targets, denoted by a green arrow.
Each animation action bean has a set of properties that the user can change using the prop-
erty inspector. For example, Figure 6 shows the properties of a ChangeColor bean: color
indicates the color that the bean will set to its target, target indicates its target (set by visu-
ally linking objects in the panel), variable and value indicate the variable name and value
that will cause the animation action bean to act.
When an action bean is added to the panel, it is automatically registered to the event noti-
fier, that is a ViBBA component in the animator panel. During animation, a variable value
change is notified by the event notifier to the registered action objects; the action object
changes the graphical aspect of its target, as specified by the user. The information flow is
shown by the following figure.
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3.3 Animation of Scenarios
After an animator for our application has been built, and a set of scenarios has been gener-
ated, the actual animation of scenarios can be performed.
To animate a scenario, first of all one must start the Object Request Broker Daemon



Figure 7: Control Panel

(ORBD)1. Then, start the server pressing the StartConnection button in the animator panel
(see Figure 5). Finally the user can run the client, that opens the Control Panel shown in
Figure 7. Through the Control Panel, the user selects the scenario to animate pressing the
select scenario button. The first state of the selected scenario is loaded and the animation
starts. The State tot. number label shows the total number of states composing the scenario,
while state number text field shows step by step the number of the state under processing.

There are two different ways to animate a scenario: step by step (the user makes the ani-
mator progress by pressing the next state button) or automatically (setting the time interval
between two subsequent states through the millisecond text field and pressing the update
state every button). The pause button makes the animation stop; the GoToAtLast makes
skip all the states till the selected one and the restart button makes the animation restart
from the first state.
In Figure 8, we show the animation for SIS of three consecutive states (taken from the
scenario of Figure 3): in the first state WaterPressure is 1200 (pressure is normal) and the
system is not blocked and not reset, while in the second state Reset becomes on (and its
button becomes red), and in the last state Overridden becomes false (and its button becomes
blue).

Figure 8: Animation of SIS panel: three consecutive states

3.4 How to Create New Animation Actions and New Graphical Ele-
ments

ViBBA can be extended by creating new animator actions and new graphical elements. A
new animation action NewAction must be defined as Java class that extends the ViBBA Java

1We normally use Java JDK ORB, that starts by typing on the shell the command: orbd -ORBInitialPort
“nameServerPort”, where “nameServerPort” specifies the port on which the bootstrap name server is running.



abstract class AnimationAction. The constructor of NewAction must take two parameters:
the name of the method that is invoked by NewAction on the target (i.e. “setText”) and
the parameters that the target method requires (i.e. String.class). In this way, when the
user links NewAction to a graphical element, ViBBA checks that the graphical element
really has the method invoked by NewAction. Furthermore, NewAction must implement the
method notifyVarChange(String var, String value) that is called by the event notifier when
a variable changes its value. NewAction can define some properties accessed by set and get
methods, that the user can change using the Java bean property inspector. NewAction must
be compiled in a JAR file and loaded.
New graphical elements can be defined as normal Java Beans. For example for SIS, we
define a new graphical element WaterPressureLevel that contains a label “WATER PRES-
SURE”, a text field that shows the textual value of WaterPressure and a slide that indicates
the value of WaterPressure with a blue level indicator. WaterPressureLevel class imple-
ments the method setText(String WaterPressureValue) that updates the text field and the
blue slide. WaterPressureLevel can be set as target of a ShowValue animator action object,
that invokes the setText method of WaterPressureLevel.

4 Related work
There exist several tools and methods for animating formal specifications. [1] uses the
B-Toolkit for animation of B specifications. The B-Toolkit presents the user a symbolic
representation of the system state and allows the invocation of specification operations.
The interface is mainly text based, and the user can perform queries and run commands by
typing suitable instructions in a text console. This approach is more similar to simulation,
because it does not exploit any graphical element. The approach presented in [13] suffers
the same limitation. [13] clearly discusses the benefits of animation in the contest of light
weight approaches to formal methods, in particular Z. The user can perform a set of queries
checking the initialization, verifying the preconditions of schema, and performing a sim-
ple reachability property. The model checker Spin [12] has its own simulator that provides
the user with information about the system state and allows, besides verification of proper-
ties, interactive simulation, simulation driven by counter examples, and random simulation.
Also Spin displays this information mainly in text format. [17] proposes a random anima-
tion for Lustre specifications. Random test inputs are generated taking into account only
the constraints about the environment. Safety requirements are checked using the generated
scenarios. An AsmGofer[18] simulator for UML state machines execution is presented in
[3]. The user has to execute the state machine and to query function values by a textual
shell.
The use of a graphical domain-specific simulator for SCR is presented in [11]. SCR sim-
ulator supports the construction of graphical front-ends, tailored to particular applications.
[11] presents a front-end for a real aircraft attack specification. A pilot, instead of entering
values for monitored variables and seeing the values of the controlled ones, interacts with
the simulator and the results are presented in the graphically simulated cockpit.
A graphical simulator developed for the ASM specification of a light control system is



presented in [2]. It is based on AsmGofer and uses TCL/TK for the animator panel.
A complex and complete graphical animator is presented in [15, 14]. The authors develop
an animator engine called Scenebeans based on Timed Automata semantics. They intro-
duce behavior beans for actions and behaviors (for modeling system operations), as well
as graphical components called SceneGraphs that represent the system state. A script lan-
guage based on XML is introduced and used to build animations. Scenebeans is a flexible
general purpose framework for animations. However, the problem of animation sequence
generation in not tackled. In [14], Scenebeans is applied to an air traffic control case study
(Short Term Conflict Alert), and historical data are used as animation sequences. ViBBA
has functionalities similar to those provided by Scenebeans, but is much easier to use be-
cause it allows visual construction of animator panels.
The tool Possum [16, 10] can be used to animate Z specifications. Graphical interfaces
using TCL/TK can be easily implemented depending on the specification to animate. [16]
presents a systematic approach to plan, document, and maintain animation scenarios start-
ing from Z formal specifications. While in our approach the derivation of animation sce-
narios is automatically performed, by using Possum the user must follow some guidelines
to manually derive animation scenarios.

5 Conclusions and Future Work
In this paper, we have presented a tool supporting automatic model driven graphical ani-
mation, an approach to animate requirements specification. Animation is useful to better
understand requirements and to gain confidence of correctness of their specification. Auto-
matic model driven animation minimizes user effort to build those scenarios able to animate
all the critical system behaviors. We provide a graphical framework to build animator pan-
els with ease. The user chooses graphical animator elements (buttons, lights, etc.) from a
palette, connect them to specification variables, and place them on a pane. Initially, the
palette offers only a limited set of elements, but the user could introduce new graphical
items. Thanks to CORBA, ViBBA allows the animation of scenarios in a distributed man-
ner.
We have started to extend ViBBA for classical software visualization, animating algorithms
like sorting algorithms. In this case scenarios are generated instrumenting the original code
and new graphical elements for displaying array content are defined.
Acknowledgments ViBBA implementation was mainly done by our students Sonia An-
dronaco and Sandra Caprino Campana.
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SIS ASM Specification
SIS is a simplified version of a control system for safety injection in a nuclear plant [4],
which monitors water pressure and injects coolant into the reactor core when the pressure
falls below some threshold (Low). The system operator may override safety injection by
pressing a “Block” switch and may reset the system after blockage by a “Reset". To spec-
ify the requirements of the control system, we use the monitored variables (updated by the
environment) WaterPressure, Block and Reset, and the output controlled variable
(updated by the rules) SafetyInjection to denote the controlled quantity which can
be on, off. To specify the modes the system can be according to the WaterPressure
values, we introduce the internal controlled variable Pressure, which can take val-
ues TooLow, Normal, High. A drop in water pressure below a constant Low causes
the Pressure to become TooLow and the activation of the safety injection if the sys-
tem is not overridden. The controlled variable Overridden is true if safety injection
is blocked, false otherwise. The controller policy is simple: SafetyInjection is on
when Pressure is TooLow and Overridden is false; it is off otherwise.

MONITORED VARIABLES
Block : {off,on}; Reset : {off,on};
WaterPressure: 0..2000;

CONTROLLED VARIABLES
Overridden : boolean;
SafetyInjection : {on,off};
Pressure : {TooLow, Normal, High};

STATIC VARIABLES
Low = 900; Permit = 1500;

RULES
R1: if WaterPressure >= Low and

Pressure = TooLow



then Pressure := Normal
R2: if WaterPressure >= Permit and

Pressure = Normal
then Pressure := High;

Overridden := false
R3: if WaterPressure < Low and

Pressure= Normal
then Pressure := TooLow

R4: if WaterPressure < Permit and
Pressure = High

then Pressure := Normal;
Overridden := false

R5: if Reset = on and
(Pressure = TooLow or
Pressure = Normal)

then Overridden := false
R6: if Block = on and

Reset = off and Pressure = TooLow
then Overridden := true

R7: if Pressure = TooLow
then if Overridden

then SafetyInjection := off
else SafetyInjection := on

R8: if Pressure != TooLow

then SafetyInjection := off


