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Abstract. Combinatorial interaction testing aims at revealing errors
inside a system under test triggered by unintended interaction between
values of its input parameters. In this context we defined a new greedy
approach to generate a combinatorial interaction test suites in the pres-
ence of constraints, based on integration of an SMT solver, and ordered
processing of test goals. Based on the observation that the processing
order of required combinations determines the size of the final test suite,
this approach has been then used as a framework to evaluate a set of
deterministic ordering strategies, each based on a different heuristic op-
timization criteria. Their performance has been assessed and contrasted
also with those of random and dummy ordering strategies. Results of
experimental assessment are presented and compared with well-known
combinatorial tools.

1 Introduction

Verification and validation of highly-configurable software systems, such as those
supporting many optional or customizable features, is a challenging activity. In
fact, due to its intrinsic complexity, formal specification of the whole system may
require a great effort. Modeling activities may become extremely expensive and
time consuming, and the tester may decide to model (at least initially) only the
inputs and require they are sufficiently covered by tests.

To this aim, combinatorial interaction testing (CIT) techniques [11,19,25]
can be effectively applied in practice [1,29,24]. CIT consists in employing com-
bination strategies to select values for inputs and combine them to form test
cases. The tests can then be used to check how the interaction among the in-
puts influences the behavior of the original system under test. The most used
combinatorial testing approach is to systematically sample the set of inputs in
such a way that all t~way combinations of inputs are included. This approach
exhaustively explores t-strength interaction between input parameters, generally
in the smallest possible test executions. For instance, pairwise interaction testing
aims at generating a reduced size test suite which covers all pairs of input values.
Significant time savings can be achieved by implementing this kind of approach,



as well as in general with #wise interaction testing. As an example, exhaustive
testing of a system with a hundred boolean configuration options would require
2100 test cases, while pairwise coverage for it can be accomplished with only
10 test cases. Similarly, pairwise coverage of a system with twenty ten-valued
inputs (10%° distinct input assignments possible) requires a test suite sized less
than 200 tests cases only.

CIT requires just specification of the input model, thus it could be defined as
an input-based testing technique. Since it is also possible to model the output of
a system under test as a boolean variable describing only the (success or failure)
outcome of each applied test. It is then clear that CIT actually implements a
particular type of functional (I/O based) testing [26], focused just on the coverage
of interactions between the inputs, at various degrees of depth. The importance
of such functional testing criteria is more evident if we think at the inputs as
actually modelling interactions between system components, as it is the case
for testing of GUIs or protocols, where we aim at testing just combinations of
possible interaction sequences. Nevertheless, several case studies [25,33] have
proved the general effectiveness of such functional approach by showing that
unintended interaction between optional features can lead to incorrect behaviors
which may not be detected by traditional testing.

CIT is also widely recognized as effective in revealing software defects [23]. In
particular, experimental research work [25] showed that usually 100% of faults in
a software system are already triggered by just a relatively low degree of feature
interaction, typically 4-way to 6-way. Dalal et al. [12], showed that testing of all
pairwise interactions of a set of software system was able to detect a significant
percentage of the existing faults (between 50% and 75%). Dunietz et al. [13]
compared t-wise coverage to random input testing with respect to structural
(block) coverage achieved, with results showing higher reliability of the former
in achieving block coverage if compared to random test suites of the same size.
Burr and Young [3] report 93% code coverage as a result from applying pairwise
testing of a commercial software system. For these reasons combinatorial testing,
besides being an active research area, is largely used in practice and supported
today by many tools (see [27] for an up to date listing).

Combinatorial testing is applied to a wide variety of problems: highly con-
figurable software systems, software product lines which define a family of soft-
wares, hardware systems, and so on. As an example, Table 1 reports the input
domain of a simple telephone switch billing system [26], which processes tele-
phone call data with four call properties, each of which has three possible values:
the access parameter tells how the calling party’s phone is connected to the
switch, the billing parameter says who pays for the call, the calltype param-
eter tells the type of call, and the last parameter, status tells whether or not the
call was successful or failed either because the calling party’s phone was busy
or the call was blocked in the phone network. While covering all the possible
combinations for the BBS inputs shown in Table 1 would require 3* = 81 tests,
the pairwise coverage of the BBS can be obtained by the test suite reported in
Table 2 which contains only 11 tests.



Table 1. Input domain of a basic billing system (BBS) for phone calls.

access billing calltype status
LOOP CALLER LOCALCALL SUCCESS
ISDN COLLECT LONGDISTANCE BUSY

PBX EIGHT HUNDRED INTERNATIONAL BLOCKED
Table 2. A test suite for pairwise coverage of BBS.

# billing calltype status access
1 EIGHT HUNDRED LOCALCALL BUSY PBX

2 CALLER LONGDISTANCE BLOCKED LOOP
3 EIGHT HUNDRED INTERNATIONAL SUCCESS ISDN
4 COLLECT LOCALCALL SUCCESS LOOP
5 COLLECT LONGDISTANCE BUSY ISDN
6 COLLECT INTERNATIONAL BLOCKED PBX

7 CALLER LOCALCALL SUCCESS ISDN
8 CALLER LOCALCALL BUSY PBX

9 EIGHT HUNDRED LONGDISTANCE BLOCKED ISDN
10 COLLECT LONGDISTANCE BUSY LOOP
11 COLLECT LONGDISTANCE SUCCESS LOOP

In most cases, constraints or dependencies exist between the system inputs.
They normally model assumptions about the environment or about the system
components or about the system interface and they are normally described in
natural language. If constraints are considered, then the combinatorial testing
becomes constrained combinatorial interaction testing (CCIT). However, as ex-
plained in sections 2 and 5, most combinatorial testing techniques either ignore
the constraints which the environment may impose on the inputs or require the
user to modify the original specifications and add extra information to take into
account the constraints.

Based on a CCIT construction approach which extends our own previous
work [4,5], in this paper we present a study focused on the use of heuristics to
order the test goals and assess their impact on the size of generated test suites.
Moreover, in contrast to our previous experience, in the proposed approach we
experimented implementing the support for constraints by means of integrating
the well known satisfiability solver Yices [14] in the construction process.

The paper is organized as follows: Sect. 2 presents our approach and its key
points, Sect. 2.1 discusses how the Yices tool is used to generate constrained
combinatorial tests, Sect. 3 introduces a set of heuristic strategies for which
Sect. 4 reports and discusses results of their experimental evaluation. A com-
parison with other techniques and tools is reported in Sect. 5, and finally Sect.6
draws our conclusions.

2 Background

Our approach to combinatorial testing can be classified as logic-based, since it
formalizes the combinatorial coverage in the presence of constraints by means



of logical predicates and applies techniques normally used for solving logical
problems to it. To formalize pairwise testing, which aims at validating each
possible pair of input values for a given system under test, we can formally
express each pair as a corresponding logical expression, a test predicate (or test
goal), e.g.: p1 = v1 A ps = vy, where p; and py are two input variables and vy
and vy are two possible values of pl and p2 respectively. Similarly, the t-wise
coverage can be modeled by a set of test predicates, each of the type:
P1 :vl/\pg:ng...Apt:vtE/\ﬁzlpi:vi

where p1,ps ... p; are t inputs and v, vy . .. vy are their possible values. We define
a test as an assignment to all the inputs of the system. We say that a test ts
covers a test predicate tp if and only if it is a model of ¢p, and we formally
represent this fact as ts = ¢p . Note that while a test binds every variable to
one of its possible values, a test predicate binds only t variables. We say that a
test suite achieves the t-wise combinatorial coverage if all the test predicates for
the t-wise coverage are covered by at least one test in the suite. The main goal
of combinatorial testing is to find a possibly small test suite able to achieve the
t-wise coverage.

In order to generate the test predicates, we assume the availability of a for-
mal description of the system under test. This description should include at
least the input parameters together with their domains®, but could also include
constraints over the inputs expressed as axioms. By formalizing the t-wise test-
ing by means of logical predicates, finding a test that satisfies a given predicate
reduces to a logical problem of finding a complete* model for a logical formula
representing the test predicate and the constraints. Formally, the first task is
to find the test ts that solves the equation ts = ¢tp Aci A ... A ¢, where ¢;
represent the constraints. To this aim, many techniques like constraint solvers
and model checkers can be applied. In this approach the constraints become first
class citizens and they can be represented by logical expressions.

To generate the complete test suite, one can generate all the test predicates
by a simple combinatorial algorithm and then proceed incrementally to generate
the tests, that is choosing one test predicate at the time and trying to generate a
test that covers it and satisfies the constraints. In [4] we already proposed three
enhancements of this approach, which have been applied also in the present
context. The first consists in monitoring the test generation, i.e. marking the
test predicates covered by the found test, and skipping them in the next runs.
The second consists in conjoining as many as possible compatible test predicates,
and using this bigger, extended test predicate to derive the test case, in order
to increase coverage more quickly and also reduce the number of runs of the
external solver. This stage of the construction process can be referred to as
composition of the test predicates and precedes every run of the external test
generation which in [4] was a model checker. The third enhancement consists in
further reducing the size of the overall test suite by searching for existence of any
redundant test case, that is a test whose predicates are all already covered by

3 Currently, only finite, discrete enumerable domains are supported.
4 We say that a model is complete if it assigns a value to every input variable.



other tests, and deleting such tests from the final suite. This optimization stage
is performed a posteriori on the built test suite by a dedicated reduction greedy
algorithm. Results from empirical studies [32] indicate that as minimization is
applied (while keeping constant coverage), there is little or no reduction in the
fault detection effectiveness. For this reason, although the reduction stage is
optional, it is always applied in this paper.

The process proposed by our method is implemented by the ASM Test Gen-
eration Tool (ATGT)®. ATGT was originally developed to support structural
[18] and fault based testing [16] of Abstract State Machines (ASMs), and it has
been then extended to support also combinatorial testing.

In [4] we discussed the main advantages of our approach with respect to other
approaches to CCIT, namely (1) the ability to deal with user specific require-
ments on the test suite, in form of both specific test predicates representing criti-
cal combinations and particular tests already generated, (2) the integration with
other testing techniques like the structural coverage presented in [17] and the
fault based coverage of [16], (3) the integration with the entire system develop-
ment process, since the user can initially model only the input and later add also
the behavior and other formal properties, and apply other analysis techniques
like simulation, formal verification, and model checking, and (4) the complete
support of constraints, which can be given as generic boolean predicates over the
inputs. Indeed, as discussed again in Sect. 5, most methods for combinatorial
testing focus only on finding very efficient algorithms able to generate small test
suites, while they normally neglect all the other issues listed above. In [5] we
presented an extension of this approach able to deal with temporal constraints.

2.1 Implementing support for constraints by Yices

One important difference introduced in this work over the methodology defined
in our previous work [4,5] and summarized in Section 2 is the use of the SMT
solver Yices [14] instead of the model checker SAL to support constraints over the
input domain. Yices is an efficient SMT solver that decides the satisfiability of ar-
bitrary formulas containing uninterpreted function symbols with equality, linear
real and integer arithmetic, scalar types, recursive datatypes, tuples, records,
extensional arrays, fixed-size bit-vectors, quantifiers, and lambda expressions.
With respect to a SAT solver, Yices offers a more expressive language for the
specification and for the properties and it uses several algorithms for satisfiability
checking. For example, we are able to directly encode constraints over enumera-
tive variables without the burden of their translation to SAT, which is itself an
open research problem [31]. We plan in the future to exploit other features of
Yices to deal with more complex systems, but for now we simply use booleans
and enumerative variables since we apply our tool to case studies taken from
other approaches which support only that. With respect to a model checker,
Yices cannot deal with state transformations (although it can be used as front
end for bounded model checking) and for this reason it cannot be used in the

® ATGT is available at http://cs.unibg.it/gargantini/software/atgt/.



;; (1) define the types and the variables for the BBS example
define—type AccessT (scalar LOOP ISDN PBX))

define—type BillingT (scalar CALLER COLLECT EIGHT _HUNDRED))
define—type CallTypeT (scalar LOCALCALL LONGDISTANCE INTERNATIONAL))
define—type StatusT (scalar SUCCESS BUSY BLOCKED))

define access :: AccessT) (define billing :: BillingT)

define callType :: CallTypeT) (define status :: StatusT)

;; add the constraints

(assert (=> (= billing COLLECT) (/= callType INTERNATIONAL)))
;; add the test predicate

(assert (and (= access LOOP) (= billing COLLECT)))

;; find and print a model (if any)

(set—evidence! true) (check)

~ o~~~ —~

;s (2) second BBS example using an uniterpreted function modelling the cost
;; Cost as uniterpreted type with a constant for FREE calls

(define—type Cost) (define FREE::Cost)

;; Two Cost functions of billing and of callType

(define CB::(—> BillingT Cost)) (define CCT::(—> CallTypeT Cost))

;; add some constraints about free calls

(assert (= (CB EIGHT HUNDRED) FREE))

(assert (/= (CCT INTERNATIONAL) FREE))

(assert (= (CB billing) (CCT callType)))

;; add the test predicate

(assert (and (= billing EIGHT HUNDRED) (= callType INTERNATIONAL)))
;; find and print a model (if any)

(set—evidence! true) (check) ;; ———> unsat

Fig. 1. BBS in Yices (1) base version (2) using uniterpreted functions

presence of temporal constraints, where instead, model checkers can be efficiently
employed [5]. Since Yices does not perform model checking and SAL uses Yices
as default SMT solver, directly using Yices should be faster than using SAL.
Moreover, we can use the Yices API library instead of the more expensive data
exchange through files we used for SAL. Experimental work results presented in
Section 4 confirmed that Yices is much faster than SAL.

The translation of the logical problem of finding a model for a given problem
is straightforward. For instance, the translation of the BBS problem for the
test predicate access = LOOP A billing = COLLECT is reported in Fig. 1. As
second example, we show how the advanced features of Yices allow to easily
model partial specifications by using uninterpreted functions.

While a model checker always finds and outputs a counter example, a SMT
solver normally only checks if a formula is satisfiable or not, and it is not manda-
tory to print the model in case a model exists. Yices can print the model (if any)
if explicitly requested by the user (with a set-evidence command). However, the
model found by Yices may not bind all the variables: it specifies only the val-




ues of variables whose values are fixed by the found model, leaving the others
unspecified. To be used as test, the model must be completed with values for
all the variables and this can be done by choosing random values for unbound
variables. In our case, the number of unbound variables should be very low, since
we compose as many test predicates as possible, so to bind as many variables as
possible and to leave free only the variables which are not referred by uncovered
test predicates that could be composed. Therefore, the effect of this random
completion of tests should negligibly affect the final test suite.

3 Sorting the test predicates

The order in which the test predicates are selected during test generation may
affect the size of the final test suite. In our previous work [4], we found that
processing the test predicates in random order generally leads to good results,
provided that one runs the generation process several times and then he/she
takes the best outcome as final test suite. This approach is widely used: exist-
ing tools based on greedy, non deterministic search heuristics (i.e. like AETG,
SA-SAT, ATGT, PICT®) are commonly benchmarked over a series of fifty exe-
cutions. The main disadvantage of the random based approach, is that the user
must run several times the test generation process to be sure to obtain a statis-
tically good result. In order to obtain a reasonably short test suite with just one
run of the tool, a deterministic construction algorithm can be applied. In this
case, the incremental construction algorithm will process the pool of test pred-
icates always in the same order, determined with respect to some optimization
criterion. Several orderings can be defined to this aim, based on the observation
that in an optimal covering array all the combinations of variables to values as-
signments are evenly used. In fact, when adding a new test case to the test suite,
it should cover as many new combinations as possible, that is, it should include
test predicates which give a more original contribution to the test suite. To this
aim, we defined several comparison criteria to evaluate which test predicate is
more original between two candidates tp; and tps, given a test suite containing
already several test cases. These are:

Counting explored assignments (touch) This counts the number of assignment
variable = value contained in the tps which are already contained in a test of the
test suite. In this way, tp; is preferable if it contains fewer assignment already
touched in the test suite than tps.

Least used assignment (min) In this case, the algorithm keeps track of the num-
ber each variable = value assignment has already been included in the test suite,
and tp; is preferable to tpy if its least used assignment is less used than the
least used assignment of tps. The rationale behind this sorting criteria is that
the novelty of a single assignment has here priority over the novelty of the whole

6 The PICT tool core algorithm does make pseudo-random choices but, unless a user
specifies otherwise, the pseudo-random generator is always initialized with the same
seed value, in order to purposely let two executions of the tool on the same input
produce the same output.



Most used assignment (mazx) As opposite to the former, this comparison criteria
prefers tp; to tpo if its most used combination has lower usage count than that
of tps. Note that this produce a totally different ordering with respect to the
former, and not just its reversal.

Even usage of assignments (dev) In this criteria, a test predicate ¢p; is preferable
if the usage of its assignments is more evenly distributed than how it is for ¢p,.
This is actually quantified by computing the standard deviation of the usage
counts for the assignments in the considered test predicate. The rationale is
that the even usage of combinations, which is a global requirement of a good
test suite, can be imposed also locally in each newly added test predicate, and
throughout the incremental construction process this can help preventing the
introduction of unbalanced test cases.

Accounting for tp composition Four additional ordering strategies have been
defined (touch/c, min/c, maz/c, dev/c), which are variants of their respective
original ordering strategies, modified according to the test predicate composition
principle, that is, they account also for all the assignments in the composed test
predicate, instead of just for those already in the test suite.

4 Evaluation and discussion

In this section a comparison of experimental results is presented, obtained by ap-
plying the ATGT tool to a set of example tasks available from the literature [8,9],
and listed in the leftmost columns of Table 3. While the tasks #[1..5,11..13] have
been generated artificially with increasing size, all other tasks encode example
combinatorial problems derived from real systems of various sizes. Third and
fourth column of Table 3 report the input domain size and the complexity of the
imposed constraints. The notation used to express the problem domain size is
the exponential notation introduced in [21], while the constraints complexity is
expressed by converting the constraints into DNF and then apply the following
function 4:
d(anb)=46(a)-0(b) d0(aVb)=4d(a)+0(b)
0(x =b) = range(z) — 1 o(x#b) =1

For forbidden combinations,  is equal to the constraints measure proposed
in [9], which simply counts a forbidden combination of ¢ variables as ¢ and
multiply all the forbidden combinations. For instance, the forbidden pair x =
a,y = b, would be represented in our approach by the constraint —(x = a A
y = b), which in DNF becomes = # a V y # b which is evaluated by ¢ to 2.
In case of forbidden combinations, quantities expressed with this criteria can
take advantage of exponential layout, e.g., 2° - 3! will read also as five pairwise
constraints plus one tree-wise. All the specifications shown in Table 3 contains
constraints easily expressed as forbidden combinations, except task#8, which
has only boolean variables and contains a single complex boolean constraint,
which converted to DNF has 224 conjunctions, so the complexity is 224.



Table 3. Suite sizes and average times for random heuristic.

task size time
# |name size 0 |min avg 1stQ 3rdQ max| Yices SAL
1|CCA1 33 2°3T 19 943 9 10 11 0,89 9,7
2 [CCA2 43 2331 | 17 19.16 19 20 22 1,43 15,58
3 |CCA3 53 2531 | 27 30.06 29 31 34 2,23 23,77
4 |CCA4 6° 2031 | 40 42.92 42 44 47 3,13 33,67
5 |CCA5 73 2531 | 55 59.74 59 61 64 4,17 45,49
6 [MobilePhone 3%27  2°3'5T[ 10 11.48 11 12 14 1,8 19,95
7 |CruiseControl ~ 4!3%2% 22 8§ 841 8 9 10 1,07 11,68
8 ITCAS2Boolean 10243227 224 | 10 11.15 11 11 13 49 57,74
9 |BBS 3* 2t |12 12,98 12 14 15 1,08 11,89
10|SpinSimulator ~ 452'3 247321 26 29.45 29 30 33 12,49 137,09
11[{CCA6 57 2331 134 36.76 36 38 40 3,15 32,66
12|CCA7 6* 2331 | 49 52.81 52 54 57 446 46,3
13|CCAS8 74 2°31 | 68 73.14 72 74 79 6,09 70,36

A set of fifty instances of the test suite based on the policy of random?
processing order have been generated for each of the tasks, and Table 3 reports
the resulting best, average, and worst test suite size obtained, together with
the values of the first and third quartiles computed from the gathered set of
sizes. Table 3 also reports the computing times for the considered tasks when
using Yices or SAL respectively. They show a performance improvement by a
factor of about eleven times using Yices over SAL model checker. Although
these computing times correspond to the random policy experiments only, the
computing times observed for the other policies were similar, irrespective of
the considered processing policy, and the performance improvement observed in
all experiments has shown to be constant, irrespective the task too. Thus, we
decided not to report them here.

All the previously introduced deterministic ordering policies have also been
applied, and the resulting test suite sizes are reported in Table 4. In the per-
formed experiments an additional deterministic ordering policy has been applied
too, which consisted in processing all the test predicates just in the same order
they where enumerated by straight nested loops. This dummy ordering policy,
named as generated (asg)has been included to have a scenario where no ordering
is applied at all and the corresponding outcomes are in the rightmost column of
Table 4. All results reported in tables 3 and 4 are intentionally reported prior
to eventual application of the suite reduction stage. Indeed, applying reduction
would have improved the results but could have also masked the relative perfor-
mance differences between the policies.

Figure 2 allows the reader to visually compare altogether the data in both
tables 4 and 3, and especially to figure out how the considered deterministic
policies perform with respect to random processing, before applying the test

" An uniform distribution among test predicates has been applied.



Table 4. Comparison of suite sizes for deterministic heuristics.

task# |min min/c touch touch/c max maz/c dev dev/c asg

1 10 9 9 9 10 11 9 10 10
20 21 18 18 21 20 21 21 21
36 33 31 30 33 35 32 32 37
58 52 46 45 47 48 49 46 58
7 68 63 63 70 66 67 65 80
11 14 11 10 10 12 11 11 13
9 10 9 9 10 9 9 9 9
12 12 12 10 12 14 12 13 15
9 18 15 13 14 20 14 14 15 20
10 39 31 29 28 37 31 31 33 40
11 45 40 37 38 42 39 42 41 55
12 68 59 58 54 63 61 64 62 81
13 | 106 88 79 79 92 81 83 81 123

0~ OO W N

suite reduction algorithm. On the horizontal axis are the task numbers, split in
two graphs with different scaling of the y axis, for improved readability.

While random policy has always reached better (smaller) sizes than all the
considered deterministic policies, it is interesting to note that its worst (bigger)
performance is also worse than many of the proposed deterministic policies in all
the tasks in Figure 2(a), and in tasks #{3,4,5,10} of Figure 2(b). In many tasks
there have been deterministic strategies performing even better than average
random result, like i.e. in tasks # {1,2,7,8,3,4}, or comparable to average, like
i.e. tasks #{9, 3, 5}. It can be observed that the touch/c processing policy is
constantly the best performing among all the observed deterministic policies,
with the exception of tasks #9 and #5, where it is only slightly outperformed
by its sibling policy touch. Also, it is interesting to note that the touch/c policy
is always performing better that the worst random policy performance in all
tasks, with the sole exception of task #13, where they are equal, and as good as
the best random result, in tasks #{1,7,8}. It is relevant to note that the time
cost to achieve the best random performance has to be multiplied by the number
of runs necessary to obtain it. This result encourages the use of a deterministic
processing strategy, like touch/c over the random based alternative, at least in
specific cases where time performance is a strict priority over the test suite size
optimization.

Figure 2(b) also shows that the performance of deterministic policies de-
grades faster with respect to random policy average, when scaling up the task
size. Note that the performances of the non deterministic strategy span in an
interval which become wider for big specifications, from the best performance
to the worse performance possible since such strategy has no constraints except
those theoretical. The performance of a deterministic strategy will fall in this in-
terval, but it will never perform better than the best result of the random policy.
For this reason finding a deterministic strategy which performs at least better
than the average is a challenging activity. Indeed, there is no guarantee about the
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Fig. 2. Suite sizes computed for tasks #1-13, prior to reduction.

quality of a single performance of a non deterministic strategy, requiring for this
reason multiple runs. After the application of reduction stage, the performance
gap reduces significantly, as shown in Figure 3, which compares the suites sizes
of random and the best deterministic policy. In this case, for all considered tasks
the performance of deterministic is never worse than the random worst result,
and in nine out of thirteen tasks is better than average random result, supporting
the adoption of deterministic heuristic as a fairly good option. Finally, in Ta-
ble 5 we contrasted the best results of our approach, from both random and best
deterministic ordering policy, with those of some tools from the literature. The
mAETG-SAT [8] and PICT [10] tools are AETG-like [6] greedy construction al-
gorithms, with a random-heuristic based core, even though the PICT tool can be
forced to behave deterministically by initializing its internal random seed always
with the same constant value. The SA-SAT [8] tool is a meta-heuristic search
algorithm inspired on simulated annealing [7], which exhibit random behavior
too. Testcover [30][28] tool builds a test suite by recursively composing together
sub-blocks which are already optimal orthogonal arrays or covering arrays. This
latter is the sole tool which has no random heuristic inside. The results from our
tool ATGT are here reported inclusive of the ex-post reduction optimization,
showing that both for pairwise and for three-wise combinatorial tasks the dif-
ference between random and deterministic performance is always moderate, and
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Fig. 3. Reduced suite sizes, of random and touch policies, for tasks #1-13.

often negligible. The shown performance compares also fairly good with that of
the other available tools.

5 Related work

To the best of our knowledge, little work has already be done in literature about
the ordering of test goals for test generation. In [15], the authors show that tak-
ing the test predicates in the same order in which they are built is generally a
bad policy, while randomly choosing them leads to good results. They also define
some ordering criteria, which however are not suitable to combinatorial testing.
Although their approach differs with respect to that presented here, since they
generate one test case for each test predicate while we collect as many test pred-
icates as possible to generate one test, our experiments confirm that a random
order is better than the order in which test predicates are generated. In [2], Bryce
et al. presented a general framework of greedy construction algorithms, in order
to study the impact of each type of decision on the effectiveness of the resulting
heuristic construction process. To this aim, they designed the framework as a
nested structure of four decision layers, regarding respectively: (1) the number
of instances of the process to be run, (2) the size of the pool of candidate rows
from which select each new row, (3) the factor ordering selection criteria and
(4) the level ordering selection criteria. The approach presented in this work fits
exactly in the greedy category of algorithms modeled by that framework, and it
is structured in order to be parametric with respect to the desired number of
repetitions and the factor and level ordering strategies. The major contribution
of this study is then the evaluation of the original strategies presented in Sect. 3,
which actually implement variants of a novel hybrid heuristic based on defining



Table 5. Comparison of suite sizes for 2-wise and 3-wise constrained models.

Task ATGT mAETG-SAT SA-SAT PICT TestCover
#  |touch/c™*® rmdied,
t = 2, pair wise
1 9 9 10 10 10 10
2 18 17 17 17 19 17
3 30 27 26 26 27 30
4 45 40 37 36 39 38
5 63 55 52 52 56 54
10 28 26 25 24 16 19
t = 3, three wise
10 135 127 108 95
11 164 159 138 140 143 -
12 283 282 241 251 250 -
13 502 449 383 438 401 -

ordering selection criteria for the test predicates, instead. Building the next row
around a test predicate means that both a set of fized factors and their levels
(values) will be determined at the same time, in contrast with Bryce et al. study
which focused on separate rules for the factor and level selection layers. Their
study concluded that factor ordering is predominant on the resulting test suite
size, and that density-based level ordering selection criteria was the best per-
forming one out of those tested. In the present work, all the strategies proposed
and tested actually implement this common optimization principle of control-
ling the density of feature levels, but we explored original ways of redefining the
density concept. In fact, while Bryce et al. compute it as the expected num-
ber of uncovered pairs, in contrast we define many measures somewhat related
to the current frequency of appearance of each predicate in the test suite, and
lexicographically sort with respect to that.

As a second aspect, research on combinatorial testing approaches featuring
support for constraints deserves further investigation. Some methods require
to remodel the original specification, very few directly support constraints in an
integrated manner. For instance, AETG [6,26] requires to separate the inputs in a
way they become unconstrained, and only simple constraints of type if then else
(or requires in [8]) can be directly modeled in the specification. Other methods
[20] require to explicitly list all the forbidden combinations. As the number
of input grows, the explicit list may explode and it may become practically
infeasible to find for a user. Cohen et al. [8] found that just one tool, PICT
[10], was able to handle full constraints specification, that is, without requiring
remodeling of inputs or explicit expansion of each forbidden test cases. However,
there is no detail on how the constraints are actually implemented in PICT,
limiting the reuse of its technique. Others propose to deal with the constraints
only after the test suite has been generated by deleting tests which violate the
constraints and then regenerate the missing combinations. By this approach, any
classical algorithm for CIT may be extended to support constraints. However,



this is usable only if the number of combinations to be regenerate is small and
all the constraints are explicitly listed. Experiments show that the number of
tests violating the constraints can be very high if they are simply ignored, and
the number of implicit constraints can exponentially grow with the number of
variables [9]. In our work we address the use of full constraints as suggested in
[8] and a more expressive language for them through the expressions supported
by Yices.

Several papers recently investigated the use of verification methods for com-
binatorial testing. Hnich et al. [22] translates the problem of building covering
arrays to a Boolean satisfiability problem and then they use a SAT solver to
generate their solution. In their paper, they leave the treatment of auxiliary
constraints over the inputs as future work. Note that in their approach, the
whole problem of finding an entire covering array is solved by SAT, while in our
approach only the generation of a single test case is solved by Yices. To this
respect, our approach is similar to that presented by Cohen et al. [8,9], where a
mix of logical solvers and heuristic algorithms is used to find the final test suite.
Kuhn and Okun [23] try to integrate combinatorial testing with model check-
ing (SMV) to provide automated specification based testing, with no support
for constraints. Conversely, Cohen et al. propose a framework to incorporat-
ing constraints into established greedy and simulating annealing combinatorial
testing algorithm. They exclusively focus on handling constraints and present a
SAT-based constraint solving technique that has to be integrated with external
algorithms for combinatorial testing like IPO or AETG. Their framework is gen-
eral and fully supports the presence of constraints, even if they can be modeled
only in a canonical form of boolean formulae as forbidden tuples.

6 Conclusion

In this paper we have defined a pool of eight metrics to sort the test predicates
prior to processing, in order to assess the impact of their processing order on the
size of the resulting test suite and on the generation time. The investigation of
such aspect of deterministic combinatorial construction algorithms is an original
contribution. The results have been contrasted with those of random and dummy
orderings and also with available results from some well-known combinatorial
tools. It has been shown that even though random based heuristics can achieve
better (lower) absolute results in terms of the size of the computed test suite,
the performance of deterministic heuristics is still acceptable, it does not require
multiple runs as the random policy, and thus it is preferable if the computing
time requirements are an issue. In order to support our study we implemented
a combinatorial construction technique that supports constrained combinatorial
testing, by using the Yices SMT solver in order to generate models. The proposed
approach is able to support not just pairwise but also n-wise CCIT, and the
presented comparative evaluation with respect to other existing tools suggest
that the presented methodology is fairly good approach to CCIT. To the best of
our knowledge, this is also the first approach to CCIT exploiting an existing SMT



solver. Work is undergoing to integrate this technique with structural and fault
based testing, and to extend it in order to support constraints with universal
and existential quantifications, which would be very useful to express complex
constraints in a very compact style.
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