
USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPSAMONG EVENTSANGELO GARGANTINI, ANGELO MORZENTI, AND ELVINIA RICCOBENEAbstrat. In this paper we propose a formalization using state variables likeounters to model temporal relationships among events. We prove that theproposed method is orret. We show that ounters are more suitable to proveproperties and to implement events relationships by means of a programminglanguage. 1. IntrodutionMany widely adopted approahes to modeling and spei�ation are based on no-tations entered on ontologial entities like states and/or events. It is a basi fat ofthe theory of state/transition systems that the formal models based on states andthose based on events are to a large extent equivalent, so the question may arisewhether it is more onvenient to adopt either one of them, or both, when devel-oping omputer-based appliations. From the standpoint of software engineering,hene onsidering also matters related to organization, administration, and prati-al onveniene, the onrete hoie of the engineers is most times ditated by theease of use of a notation (a ombination of expressiveness, readability, writ abil-ity) and (we point out a bit provoatively) by the atual availability of ommerial-and industrial-strength tools that are well engineered, tehnially and ommeriallysupported, and integrated with the most ommon hardware/software platforms.If we fous on the most oneptual aspets, we note that the use of states andevents is most useful in the modeling and analysis of reative, embedded, real-timesystems, i.e., those systems that losely interat with an environment that theyhave to monitor or ontrol. The notations supporting modeling and analysis aremost relevant in the highest phases of development: for the purpose of design andimplementation the programming languages have reahed a level of abstration andgenerality that makes them adequate and su�ient.In the phases of user requirements identi�ation, of design requirements spe-i�ation, and of System Requirements Analysis (the ativity whereby one wishesto establish that the adopted hypotheses on the environment, ombined with theenvisaged solutions, satisfy the user requirements) the hosen notation and its style(operational versus desriptive, oriented towards properties or towards state/trans-itions/events/ ations) an in�uene dramatially the ost e�etiveness of the de-velopment e�ort, and an favor or hinder the requirements eliitation, the ommu-niation among developers and between developers and users, the ability to reasonAngelo Gargantini - University of Catania, gargantini�dmi.unit.it and Angelo Morzenti -Politenio di Milano, morzenti�elet.polimi.it and Elvinia Riobene - University of Catania,riobene�dmi.unit.it. 1



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 2on the models and the solutions to prove, at various levels of formality, their or-retness and adequay.In the above desribed senario (whih, we note, is mostly in�uened by method-ologial and pragmati issues, rather than by stritly sienti� and foundationalones) the requirements of minimality and essentiality of the adopted formal nota-tion (e.g., questions suh as: an I do without events and use only states, or vieversa) beome muh less relevant. In fat, one an obtain great bene�ts by om-bining the notions of state and event, even at the ost of some redundany, butaiming at produing models and desriptions that are more ompat and intuitive.From a pragmati point of view, it is also important that the adopted notation andstyle be able to embody some psyhologial or even philosophial aspets of thedevelopers' mental habits suh as: the tendeny to desribe dynami systems (andreative systems among these) in terms of ause-e�et relations; the identi�ationof ertain neessary or su�ient onditions/events/states in order for other onesto hold; the great ease, for most people, to reason in visual or geometri terms,whih favors the adoption of ertain oneptual entities that an be represented ina graphial fashion (notie that this an our for both states and events, as it willbe illustrated in the following).Hene, for what onerns the questions raised by the ST.EVE workshop, ourposition is based on a quite eleti and pragmati attitude: both the notion ofstate and that of event have virtues and limitations, so that the worst thing to dowould be to rejet one in favor of the other; the best approah, in our opinion, is tomake a onstant e�ort to use them in ombination, sine most likely this will fosterthe emergene of new, omplementary and synergeti, points of view and ways ofdesribing and reasoning.The dispute among supporters of state-based and event-based models and anal-ysis is somehow reminisent of another ontention, the one between desriptivenotations (i.e., logi-based, best suited for expressing properties and relations) ver-sus operational ones (based on state/transitions and hene more oriented towardsdesribing ations and exeution steps of (abstrat) mahines). This ontention,like the one between states and events, is best settled by adopting the so-alleddual-language approah, whih ombines in a synergeti way a desriptive notation(e.g., temporal logi) and an operational one (e.g., Petri nets), thus overoming thelimitations and maintaining the advantages of both; we have applied and illustratedthe dual-language approah in [6, 7℄Coming bak to the main topi of the workshop, in the present work we willillustrate our position in favor of the ombined use of states and events by presentingsome new developments of our previous work appeared in [8, 9℄, where we usedthe language TRIO (a very general and expressive temporal logi) to haraterizeaxiomatially the various kinds of modeling and spei�ation entities that an beemployed in the System Requirements Analysis of reative, time-ritial systems.We formalized in terms of TRIO axioms the notions of time point- and time interval-based prediates and variables (whih have a lose orrespondene with events andstates, respetively), of (non)Zeno entities, and a quite rih variety of time andausal (either deterministi or not) relationships among these entities. Here wewill provide new elaborations on the use of speial, interval-based, integer-valuedvariables that ount the number of event ourrenes; suh ounter variables turnout to be a quite simple and e�etive means to express and to prove time and



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 3ausal relations and properties that would be quite umbersome and intriate toharaterize in terms of a spei�ation alphabet omposed of state-like items onlyor event-like items only.The paper is organized as follows. Setion 2 brie�y presents TRIO, events andounters and reports the related work. In Setion 3 we explain the most basi re-lationship between events we model, namely the ause-e�et relationship betweentwo event with bounded delay. In Setion 4 we extend the same approah dealingwith non deterministi hoie between events (with null delay) and in Setion 4we model the most general ase with non deterministi hoie and non determin-isti delay. In Setion 6 we disuss the advantages using ounters providing someexamples. 2. BasisTRIO. We will use TRIO [10, 15℄ to express many temporal dependenies andrelations. TRIO is a �rst order logi augmented with temporal operators thatallow to express properties whose truth value may hange over time and to modelvariables whose value hanges over time. The meaning of a TRIO formula is notabsolute, but is given with respet to a urrent time instant whih is left impliit.The basi temporal operator is alled Dist : for a given formula W, Dist(W, t)means that W is true at a time instant whose distane is exatly t time units fromthe urrent instant, i.e., the instant when the sentene is laimed. Many othertemporal operators an be derived from Dist.Futr(F, d) d ≥ 0 ∧ Dist(F, d) futurePast(F, d) d ≥ 0 ∧ Dist(F,−d) pastNowOn(F) ∃d(d > 0 ∧ Lasts(F, d)) F holds for an interval after nowAlw(F) ∀dDist(F, d) F always holdsAlwP(F) ∀d(d > 0→ Past(F, d)) F always held in the pastSom(A) ∃dDist(F, d) Sometimes F held or will holdBesides temporal dependent (TD) prediates, TRIO introdues temporal depen-dent variables with domain D, as variables whose value hanges in D over time. Forinstane, TD variables are suitable to model enumerate variables and ontinuouslyhanging variables, as many physial quantities. To refer to values of a variable orterm in the past or in the future, the operator dist (as generalization of Dist) isintrodued: for a given term x, dist(x,t) has the value that x had or will have ata time instant whose distane is t from now. From the dist operator, the futr andpast operators are derived, referring to values of variable sin the future and in thepast.Note that in the following, when stating formulas and properties that alwayshold, we omit an outermost Alw: stating suh properties in a generi instant oftime we mean that they hold forever.Events and Counters. In our framework, events are prediates that are trueonly in single time instants and have null duration. A more detailed disussionand a rigorous treatment of events and state (or interval) variables an be foundin [9℄. Events an be distinguished but event ourrenes of the same event annotbe uniquely identi�ed (exept for the time they our) sine they do not arry



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 4other information, otherwise other axiomatizations are suitable to model temporalrelationships among events [11℄; this point will be lear in Setion 3. We admitsimultaneous ourrenes of the same event. We use the notation A, B to indiateevents. For events we will use ounters: for the event A we all #A the ounterof the event A. #A in eah instant has an integer value indiating the number ofourrenes of A till the urrent instant. Counters are state variables, i.e. theyhold their value for temporal intervals and not just for time points.We assume here that, for any event E, there exists a �rst ourrene, i.e., thatthere is an instant before whih E never ourred, a fat that is formalized in TRIOas Som(AlwP (¬E)). Therefore, there exists a initial instant when all the ountersare null. This hypothesis is quite realisti for real-world systems. A less restritiveassumption is however adopted in [8℄ in the proof of the theorem 1, showing thatit is immaterial from a mathematial viewpoint.For the sake of simpliity, we assume event ounters being inremented just afterthe time instant when the ounted event happens, i.e. we assume ounters to beleft ontinuous (for details see [9℄). For this reason, the following axiom holds (x isan integer): B ∧ #B = x → NowOn(#B = x + 1)Related works. There exist several approahes that try to ombine onepts fromstate based methods with onepts from event based notations. In Chapter 18 of [5℄the authors disuss how to integrate Z and Objet-Z with proess algebrai methodslike CSP and CCS. In [3℄ some abstrat onepts of proess algebra and fromASMs are integrated into Abstrat State Proesses (ASPs), i.e. evolving proesses(extended ASM programs whih are strutured and evolve like proess-algebraibehavior expressions) operating on evolving abstrat states the way traditionalASM rules do. This paper takle a more partiular onept but in a general way.The idea of using ounters to model relations between events was already pre-sented in [4℄. [4℄ de�nes events like funtions from N to time: for the event e,e(i) is the time of the i-th ourrene of the event e. It de�nes also ounters ofevents. In that paper onstruts to express preedene (that is an event or a set ofevents must preede or follow another event) between two events (or an event and aset of events) are presented and these onstruts use ounters. Also [16℄ introduethe ounter #e for eah event e. An example is provided where ounters are usedto speify properties of the system, in a similar fashion proposed by our method,but no formal framework is given. Indeed, ounters are diretly used to speifysystem requirements (like, for instane, �the number of missiles �red is no morethan the number of targets loated so far�). The generi requirement that a er-tain event must follow (or preede) another an be enrihed speifying a boundeddelay between suh events or requiring that an event an ause another event nondeterministially hosen among a set of possible e�ets. This kind of requirementis widely (also informally) used. Furthermore it is expliitly modeled (somehowembedded within the language itself) in Timed Petri Net (TPN) [13℄ and in MMTtimed Automata [14℄. We shown how the use of ounters an be extended to speifythis relation in a very simple and e�etive way.3. Cause-Effet Relationship Between Two Events with NonDeterministi DelayThe �rst relationship we takle in this paper is the relationship involving onlytwo events: an event A auses another event B, in a future time that is not known



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 5preisely, due to some nondeterminism of the system. Typially, the delay betweenA and B is haraterized by means of a lower bound and an upper bound denotingthe minimal and maximal time distane between related ourrenes of the twoevents. The relation is therefore nondeterministi, being the exat instant in thefuture, when B will our after A, unknown. Moreover, we assume that the relationis one-to-one (for instane beause A is the unique ause of B : every ourreneof A auses one B and every ourrene of B is aused by one ourrene of A).An example of this kind in a onurrent systems ould be the relation between theevent of taking a resoure and that of returning it.The preliminary following formal de�nition of this kind of relation follows.De�nition 1. An event A is a unique ause for an event B in [d,D℄ time units,where d and D are positive real onstants suh that d ≤ D, i� there exists a one-to-one funtion φ from the ourrene times of A to those of B suh that t + d ≤

φ(t) ≤ t + DThis de�nition, originally presented in [9℄, is not suitable to model events thatan our several times in the same time instant. Indeed, if the event A ours atthe time instant t two times, a funtion φ would not su�e to express the relationbetween ourrenes of A and ourrene of B, sine the two B events related withthe two ourrenes of A ould our in distint time instants, while φ(t) has anunique value. To orretly model the relationship, we have to extend the de�nitionof the funtion φ, suh that φ ounts the simultaneous ourrenes of the sameevent.De�nition 2. An event A is a unique ause for an event B in [d,D℄ time units,where d and D are positive real onstants suh that d ≤ D, i� there exists a one-to-one funtion φ from Time × N to Time × N suh that φ(tA, iA) = tB, iB i� Ahappens at least iA times at the time instant tA and B happens at least iB times atthe time instant tB , and tA + d ≤ tB ≤ tA + DThe funtion φ relates the iA-th ourrene of A at the time instant tA with the
iB-th ourrene of B at the time instant tB.Note that the fat that event ourrenes are indistinguishable (exept for thetime they our) makes the funtion generally non unique. For example if A isunique ause of B, d = 8, and D = 14, A ours at time 0 and 3 and B ours attime 9 and 14, we ould have to possible funtions φ1 and φ2 as depited in thefollowing �gure.
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The same observation an be extended to the ase of simultaneous ourrenes.With simultaneous ourrenes, the funtion φ always admits multiple solutions,



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 6sine we annot distinguish two simultaneous ourrenes of the same event. Thisase is depited in the following �gure, where event A happens two times at 3 andeah ourrene an be related with B at time 9 or with B at time 14.
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This kind of relationship (together with the extensions we present in the followingsetions) is widely used and in several formalisms it is the only temporal relationshipbetween events: see for instane timed Automata in [2, 14℄ and Timed Petri Net(TPN) in [13℄. In TPN, it is pitured as follows (through the paper we often useTPNs to graphially represent the relationship we intend to deal with). We willdesignate events also using name of transitions in TPNs, with lower ase letters likes, r, t, ...
[d,D]

s
tDe�nition 2 formally states the relationship between events we deal with (andit guarantees to avoid misunderstandings), yet it is apparent that it an be barelyuseful during analysis or synthesis of real systems. To be useful, the de�nitionan be formulated using TRIO axioms as reported in [9℄. However, note that thatsimple and natural formalizations using only temporal formulas (that is not usingprediates) are ompletely wrong (as shown by [8℄). Corret solutions using severaladditional prediates an be found in [7℄ and in [12℄.In the following we demonstrate that the proposed approah using ounters isorret, simpler and more useful.3.1. Formalizing De�nition 2 Using Event Counters. We now introdue away to bind events A and B using the ounters of their ourrenes, respetivelydenoted as #A and #B.By means of a loose and informal reasoning we �rst �nd a suitable relationmodeling the ause-e�et binding.First of all, notie that, for any event E, at any time the number of ourrenesof E in the interval at distane [d1,d2) (i.e., the interval starting d1 time units inthe future and ending d2 time units in the future 1) is equal to the total numberof events ourred before the end of the interval minus the total number of eventsourred before the beginning of the interval: this di�erene an be is denoted as

dist(#E, d2) − dist(#E, d1).1The right end of the interval is not inluded beause ounters are assumed to be left ontinuous.



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 7The �rst onept we would like to express is: if in a interval [d1,d2) in the futurethere are x ourrenes of event A, then in a interval [d1+d,d2+D) there are atleast x ourrenes of B:
dist(#A, d2) − dist(#A, d1) ≤ dist(#B, d2 + D) − dist(#B, d1 + d) (1)Vie versa if in an interval [d1,d2) the future there are x ourrenes of B, thenin a interval [d1-D,d2-d) there are at least x ourrenes of A:
dist(#B, d2) − dist(#B, d1) ≤ dist(#A, d2 − d) − dist(#A, d1 − D) (2)We would like to derive, from (1) and (2), a simpler, unique, and equivalentrelation. First we an rewrite (1) with d1= d1-d and d2= d2-D:
dist(#A, d2 − D) − dist(#A, d1 − d) ≤ dist(#B, d2) − dist(#B, d1) (3)From (2) and (3) we �nd a unique relation:
dist(#A, d2 − D) − dist(#A, d1 − d) ≤ dist(#B, d2) − dist(#B, d1)

≤ dist(#A, d2 − d) − dist(#A, d1 − D) (4)Taking some liense in notation, we hoose d1=−∞2 and d2= 0:
dist(#A,−D) − dist(#A,−∞− d) ≤ #B − dist(#B,−∞)

≤ dist(#A,−d) − dist(#A,−∞− D)Sine dist(#A,−∞ − d) = dist(#B,−∞) = dist(#A,−∞-D) = 0 we �nallyobtain:
dist(#A,−D) ≤ #B ≤ dist(#A,−d) (5)We have found a relation between ounters (formalized as a TRIO axiom) suit-able to model the relation given in de�nition 2. This fat is stated in the followingtheorem.Theorem 1. Event A is a unique ause of event B in [d,D℄ time i�:

past(#A, D) ≤ #B ≤ past(#A, d)The preliminary version of the proof of this theorem an be found in [8℄.Intuitively, if the relation of De�nition 2 holds, when event A ours, ausing aninrement in ounter #A, then ounter #B is also bound to inrease; however, dueto the assumed delay ranging between d and D, ounter #B will inrease no earlierthan d time units after the inrease of #A, hene the inequality #B≤past(#A,d)holds; moreover, and symmetrially, #B will inrease no later than D time unitsafter #A, hene #B≥past(#A,D) holds.Theorem 1 expresses the onept stated in De�nition 2 with very simple relationsbetween event ounters. Thanks to their simpliity (they are just linear inequalities)these relation an be used very easily and e�etively in the derivation of relevantproperties as shown by the following orollary.Corollary 1. B → ∃t(d ≤ t ≤ D ∧ Past(A, t))2By hoosing d1=−∞ we onsider an instant in the past suh that neither prediate A norBever ourred before that time, and therefore their ounters are both zero; suh an instant exists,thanks to our previously mentioned assumption that Som(AlwP(¬A)) and Som(AlwP(¬B)).



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 8Proof. if B ours, its ounter inreases by one (ounter are left ontinuous):
B → ∃x(#B = x ∧NowOn(#B = x + 1))applying the relation between ounters:
B → ∃x(#B = x ∧ Past(#A ≤ x, D)∧ NowOn(#B=x+1∧Past( x+1≤ #A,d)))beause of NowOn(A ∧ B) ↔ NowOn(A) ∧ NowOn(B):
B → ∃x(Past(#A≤ x, D)∧ NowOn(Past( x+1≤ #A,d)))thanks to the equality NowOn(Past(A,t))=Past(NowOn(A),t)
B →∃x(Past(#A≤ x, D)∧ Past(NowOn(x+1≤#A),d)))From this , it an be proved that there is an ourrene of A:
B → ∃t(Past(A, t) ∧ d ≤ t ≤ D) �Partiular ases and generalizations. The model an be both generalized andapplied to partiular ases. For instane, if the minimum delay d is zero (event Ban follow immediately event A) the relation beomes: past(#A,D) ≤ #B ≤ #A.If the delay has no upper bound, then D = ∞ and the relation redues to: #B

≤ past(#A,d).A further, interesting generalization of the one-to-one relation introdued inDe�nition 2 is to allow a negative minimum time d. In this most general aseone would not model a �ause-e�et� relation, but a orrespondene between eventourrenes that are somehow related, for instane beause they are both e�etof a ommon (unique) ause. Theorem 1 an be generalized in a straightforwardway to this ase by just hanging the past operators (whih assume a positive timeargument and neessarily refer to previous instants) into dist operators (whihequally admit a positive, null, or negative time argument, thus referring to bothpast, present and future), obtaining the following relation
dist(#B, d) ≤ #A ≤ dist(#B, D)whih holds under the unique assumption that d ≤ D.As a onrete example, let us onsider an eletroni trading system where anorder for some goods performed by a lient gives rise subsequently, through inde-pendent hains of ations, to the physial delivery at the lient's address of theparel ontaining the ordered item, and to the billing of the prie on the lient'sbank aount. An important property of the trading system ould be that there is aone-to-one mathing between goods delivery and bank aount transations. Thesetwo events are learly related, but there might be no strit temporal preedenebetween them. If we model goods delivery by the event prediate GD and bankaount transations by event prediate BAT, then we an abstratly speify thateah ourrene of GD may at most preede the orresponding ourrene of BATby 3 days, or at most follow it by 4 days, using the following inequalities

dist(#GD,−3) ≤ #BAT ≤ dist(#GD, 4)Example 1. In the Generalized Rail Cross (GRC) ase study (see [9℄) a one-to-one temporal relationship obviously exists between the entering of trains in thevarious regions surrounding the rossing. The system is nondeterministi due tothe unertainty about the trains speed, whih may vary between minimum andmaximum allowed values.The informal spei�ation asserts that the trains take a minimum time dm and amaximum time dM to go from the beginning of region R to the beginning of region
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Figure 1. . Models for axiomatizations based on speial predi-ates or on ounters.R; it takes a minimum time hm and a maximum time hM to go from the beginningof region I to its end.These relations are formalized by the following inequalities between ounters ofevent ourrenes (reall that RI, II, and IO are de�ned, respetively, as the eventsof a train entering region R, entering region I, and exiting region I, and that theyare multiple events).
past(#RI, dM ) ≤ #II ≤ past(#RI, dm)

past(#II, hM ) ≤ #IO ≤ past(#II, hm)

♦Model for Funtion φand Counters. Note that the relation between ountersdoes not establish the exat mapping between the various ourrenes of the auseand e�et events. It de�nes just the values of the ounters as events our in time,without providing any information about the �physial� mathing between eventourrenes. Of ourse, the simpler but slightly less informative desription interms of ounters su�es in the ases where the exat mathing between the eventourrenes is immaterial with respet to the desired system properties.As an illustration of this, onsider again the GRC example, with a plant where
dm =5 and dM =15. Suppose there are two ourrenes of RI at times 0 and 3(i.e., a train enters region R at time 0 and a seond train enters at time 3), and twoourrenes of event II at times 9 and 14 (i.e., a train enters region I at time 9 andanother one at time 14). From a physial viewpoint there are two interpretationsof this event sequenes: either the trains enter in region I in the same order as theyentered in region R, or the train that entered region R last passes the �rst one, andenters region I before it.Correspondingly, there are two models (i.e. two possible φ funtions) with theseevent ourrenes: in eah model the relation shows whih event of the kind �en-trane in region I� orresponds to eah event of the kind �entrane in region R�, asshown in Figure 1. When we use event ounters, instead, we model the fat that�sensors do not reognize trains�, so that there is just one possible model, shownin Figure 1, aounting for the total number, up to any given time, of ourrenes
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Figure 2. BAT and GDof events of kind �entrane in region R� and �entrane in region I�. Notie, how-ever, that the seond, less preise desription is perfetly adequate to the purposeof governing the Railway Crossing: the safety system does not need to �reognizetrains�: it an limit itself to ounting them.As an example where the exat mathing between event ourrenes an be rele-vant to the desired system properties, onsider again the above desribed eletronitrading system, with a sample �history�, shown in Figure 2, where two bank aounttransations take plae at time 0 and 5, and goods delivery our at time 2 and 4.Figure 2 shows that there is only one model based on ounters #GD and #BAT,and there are two models based on the funtion φ.(Notie that the spei�ation of the eletroni trading system an be furtherenrihed by assoiating to every goods delivery and bank aount transation thedesription of the aquired item; in this ase it an be easily veri�ed that the numberof andidate models inreases, and a few additional simple axioms are needed tostate the property that related BAT and GD ourrenes must refer to the sameaquired item.)4. Non Deterministi Choie Between Immediate EffetsThe use of ounters an be extended to deal with non deterministi hoie be-tween two or more events that are immediate (i.e. with no delay) e�ets of anunique event ause. Let an event A be immediate ause of two onurrent eventsB1 and B2.De�nition 3. An event A is the unique immediate ause of two onurrent eventsB1 and B2 i� there exists a one-to-one funtion φ from Time × N to Time × N ×{B1,B2} suh that φ(tA, iA) = tA, ie, e i� A happens at least iA times at the timeinstant tA and the event e happens at least ie times at the time instant tAIn this ase the funtion φ relates eah ourrene of A with one ourrene of
B1 or one ourrene of B2. This situation an modeled by the simple Petri Netshown in Figure 3.Using ounters, we an immediately express the temporal relationship amongevents s, t1 and t2 as follows.
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t1 [0,0]

t2 [0,0]

s

Figure 3. Non deterministi hoie between two eventsTheorem 2. An event s is the unique immediate ause of two onurrent events
t1 and t2 i�

#t1 + #t2 = #sWhen s �res one, it inreases its ounter by one, and one and only one ounter
#t1 or #t2 is bound to inrease, i.e. one transition between t1 and t2 must �re.The hoie between t1 and t2 is not deterministi. If s �res more than one, t1and t2must �re suh that the sum of their �rings is equal to the number of �ringsof transition s. In ase of simultaneous �rings of s, this equation admits manysolutions, and, therefore, it is (as expeted) not deterministi.Starting from the equation above, we an prove many useful relations betweenthe number of �rings of t1 and the number of �ring of t2. For example, it isimmediate proving that if t1 never �res, whenever s �res, t2 must �re and that, inthis ase, the number of �rings of s and t2 is equal. Indeed if t1 never �res, then
#t1 = 0, and #t2 = #s. If s �res, its ounter inreases and the ounter of t2 isbound to inrease and the two ounters will always hold the same value.5. Non Deterministi Temporal Choie Between Multiple EffetsIn this setion, we want to model, using ounters, the omplex ase when anevent A is ause of one event among a possible set of events with a delay that isnot �xed. In this ase the non determinism regards both the delay (as in Setion3) and the hoie between two or more e�ets (as in Setion 4).First, we try to model this kind of relationship by means of a funtion. Let anevent A be ause of two onurrent events B1 and B2 with bounded delay. We anintrodue the following de�nition.De�nition 4. An event A is an unique ause of two onurrent events B1 and B2in, respetively, [dB1

, DB1
] and [dB2

, DB2
] time units i� there exists a one-to-onefuntion φ from Time × N to Time × N × {B1, B2} suh that φ(tA, iA) = te, ie, ei� A happens at least iA times at the time instant tA and the event e happens atleast ie times at the time instant te and tA + de ≤ te ≤ tA + DeThis situation an be modeled by the simple Timed Petri Net shown in Figure 4(a). We assume that there is real on�it between the two transitions, i.e. l1 ≤ u2and l2 ≤ u1.To model this ase using ounters, we an transform the TPN shown in Fig-ure 4 (a) to the equivalent TPN shown in Figure 4 (b). Now we an model thisnew equivalent TPN by means of the following relations between event ounters,exploiting Theorems 1 and 2:(1) #r1 + #r2 = #s
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s

t2 [l2,u2]

t1 [l1,u1]

s

r2

r1 t1 [l1,u1]

t2 [l2,u2](a) (b)Figure 4. Non deterministi temporal hoie between multiple e�ets(2) past(#r1, u1) ≤ #t1 ≤ past(#r1, l1)(3) past(#r2, u2) ≤ #t2 ≤ past(#r2, l2)Now we want to translate the relation above in equivalent relations but withoutthe �titious events r1and r2. Sine relations (2) and (3) above are always true, wean temporally translate them by l1, u1,l2, u2, to obtain the following 4 relations:(2') #r1 ≤ futr(#t1, u1) and (2�) futr(#t1, l1) ≤ #r1(3') #r2 ≤ futr(#t2, u2) and (3�) futr(#t2, l2) ≤ #r2Combining (2'), (2�), (3') and (3�), we obtain the following 4 relations withoutany referene to r1and r2(1) futr(#t1, u1) ≥ #s − #r2 ≥ #s − futr(#t2, u2)(2) futr(#t1, l1) ≤ #s − #r2 ≤ #s − futr(#t2, l2)(3) futr(#t2, u2) ≥ #s − futr(#t1, u1)(4) futr(#t2, l2) ≤ #s − futr(#t1, l1)The intuitive meaning of suh relations is that if s �res, then its ounter is in-reased and t1 must �re in a time instant in the future between l1(equation 2) and
u2(equation 1), unless a �ring of t2 has onsumed already the �ring of s (the minussign in 1 and 2). Note that (1) is equivalent to (3) and (2) is equivalent to (4). Wean now formulate the following theorem.Theorem 3. An event s is an unique ause of two onurrent events t1 and t2 in,respetively, [l1, u1] and [l2, u2] time units i�

futr(#t1, l1) + futr(#t2, l2) ≤ #s ≤ futr(#t1, u1) + futr(#t2, u2)The meaning of this theorem is that the number of �rings of t1 and t2 after(before) the two upperbounds (lowerbounds) have elapsed must be greater (smaller)than the number of �rings of s.Example 2. Thanks to the relations above, we an prove some interesting prop-erties. For example we an prove that if t2 never �res, then t1 �res as many timesas s. If we assume that initially the ounter of t2 is equal to 0 (without loss of gen-erality), then #t2 = 0 is always true. The relations beome: futr(#t1, u1) ≥ #sand futr(#t1, l1) ≤ #s, i.e. t1 is unique e�et of s in [l1, u1] time units.Example 3. An ordering and delivering system is spei�ed as follows. When agood (whose identity is not important) is ordered, then it an be shipped using thenormal postal servie in 0 to 5 days. If the item is not shipped after 3 days, then
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GO PDGO ED

futr(#ED,3)

futr(#PD,5)

#GOfutr(#ED,7)+futr(#PD,5)

futr(#ED,7)

futr(#ED,3)+#PD

#PD

time0 2 4 6

Figure 5. A senario for the ordering-delivering systemthe shipping department an use an express urrier, that, in any ase, must deliverthe ordered good in 7 days from the date of the order. The event of ordering agood GO is the unique ause of two onurrent events PD (postal delivery) andED (express delivery).
PD [0,5]

ED [3,7]

GO

Applying Theorem 3 we obtain:
futr(#PD, 5) + futr(#ED, 7) ≥ #GO and #PD + futr(#ED, 3) ≤ #GOFigure 5 depits a senario where an item is ordered at time 0 and another oneat time 2, and an item is delivered by postal servie at time 4 and another itemis delivered at time 6. You an see that the exat mapping between orders anddelivering events is not modeled, and GO ould happens in all the gray area.5.1. Generalization to multiple auses. The proposed framework an be easilyextended to deal with the ase of multiple auses (s1, s2, s3, ...). This ase isdepited in the following TPN. To model this, one must substitute in the relationpresented before, the ounter of s, #s, with the sum of the ounters #s1, #s2, ...

s1

s2

s36. Advantages of Using CountersWe argue that ounters and the proposed relations among them onstitute aviable means for proving properties of systems and for implementing suh relations



USING COUNTERS TO MODEL TEMPORAL RELATIONSHIPS AMONG EVENTS 14in real programming languages. Indeed, funtions φ and their properties as pro-posed in de�nitions 2, 3, and4 (as well as prediates introdued in [12℄), are di�ultto handle, espeially in performing proofs and in implementing them by means ofreal programming language. It is intuitive that ounters, temporal translation ofthem, and linear inequalities between them are more manageable. In this Setionwe provide evidene of this fat by means of some examples.Example 4. Consider the following example, where an event s auses an event twith temporal bounds lt and ut, and t auses an event r with temporal bounds lrand ur

r [lr,ur]t [lt,ut]sThe proof that s auses an event r with temporal bounds lt + lr and ut + ur isimmediate. From the relations for ounter #t and #r
past(#s, lt) ≤ #t ≤ past(#s, ut)

past(#t, lr) ≤ #r ≤ past(#t, ur)we an derive the following relation:
past(#s, lt + lr) ≤ #r ≤ past(#s, ut + ur)Example 5. For the ordering-delivering system presented in Example 3, we wantto prove that all the ordered items are shipped after 7 time units:

#PD + #ED ≥ past(#GO, 7)Proof. Exploiting theorem 3, translating of 7 time units in the past, we an statethat #ED + past(#PD, 2) ≥ past(#GO, 7). Thanks to the ounter property stat-ing that a ounter an only inrease, we an assert that #PD ≥ past(#PD, 2).Combining the two relations, we an prove the property above. �Example 6. The tehnique presented in this paper an be applied to prove re�ne-ment rules for TPNs. A method based on temporal logi for proving that a TPNis a orret implementation of another TPN (spei�ation) and a set of orretre�nement rules are presented in [6℄. Using ounters the same proofs an be moreeasily onduted and understood.For example, in Figure 6 we show a simple TPN and a re�nement of its, that wewant to prove to be orret, i.e. we want to prove that the re�nement preserves theause e�et relationship between s and t, i.e. the following relation between �ringsof transitions t' and s' holds:Theorem 4. dist(#t′, d) ≤ #s′ ≤ dist(#t′, D)Proof. For the re�ned TPN, we an write (see Setion 5.1):(1) dist(#t′, d2) ≤ #r1 + #r2 ≤ dist(#t′, D2)For r1 and r2 , exploiting theorem 3, we an write:
futr(#r1, D1) + futr(#r2, D1) ≥ #s′ and futr(#r1, d1) + futr(#r2, d1) ≤ #s′
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[d,D]

s
t [d1,D1]

[d1,D1]
[d2,D2]

t’
s’

r1

r2d1+d2=d and D1+D2=DFigure 6. A TPN and its re�nementThis an be rewritten:(2) dist(#r1 + #r2, d1) ≤ #s′ ≤ dist(#r1 + #r2, D1)Translating (1) by D1 and d1, we obtain(3)
dist(#r1+#r2, D1) ≤ dist(#t′, D1+D2) , and dist(#t′, d2+d1) ≤ dist(#r1+#r2, d2+d1)Combining (2) and (3), we have proved Theorem 4 that t' is unique e�et of s'in [d1 + d2, D1 + D2] �Furthermore, spei�ations based on ounters are readily implementable, sineounters are trivially omputable by means of inrements of integer-valued programvariables.The translation of temporal relationships in terms of state variables as ountersan be of great advantage during the implementation phase. Indeed, events states,ounters, and temporal translation an be immediately implemented in terms ofsimple hardware devies or software fragments so that the detailed design, dimen-sioning, and implementation of monitoring and ontrolling systems an be madequite systemati and intuitive using prede�ned, parametri omponents. For a re-ally toy example, onsider the following, where a program written in the syntax ofLEGO r© Mindstorms r© Quite C [1℄ like heks whether A is unique ause of B in[5,7℄ time units.#define N 100lok lokAB[N℄;int ountA, ountB;while (1) { // foreverif A // if A, reset the ountA-th lok and ount AlokAB[ountA++ % N℄.reset;if B {// if B, take the ountB-th lok and ount Bhek = lokAB[ountB++ % N℄// hek the delay is boundif !( 5 <= hek && hek <=7) then ERROR}}
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