
On the Use of Multi-valued Decision Diagrams to Count Valid
Configurations of Feature Models

Andrea Bombarda

andrea.bombarda@unibg.it

University of Bergamo

Italy

Angelo Gargantini

angelo.gargantini@unibg.it

University of Bergamo

Italy

Abstract
This paper addresses the challenge of efficiently counting valid

configurations in Software Product Lines (SPLs).We propose a novel

approach leveraging Multi-Valued Decision Diagrams (MDDs) for

building the set of products. Building upon the MDD structure,

we introduce several algorithmic optimizations to achieve a more

compact and efficient representation of the product set compared

to existing methods based on Binary Decision Diagrams.

The effectiveness of our approach is evaluated through exper-

imentation on two datasets: a set of synthetic benchmarks and

large-scale industrial featuremodels. The results demonstrate signif-

icant improvements in scalability for models of medium complexity,

particularly those rich in alternative groups. However, challenges

remain for other model types, highlighting areas for future research.

ACM Reference Format:
Andrea Bombarda and Angelo Gargantini. 2024. On the Use of Multi-valued

Decision Diagrams to Count Valid Configurations of Feature Models. In

28th ACM International Systems and Software Product Line Conference (SPLC
’24), September 2–6, 2024, Dommeldange, Luxembourg. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3646548.3672594

1 Introduction
Practitioners are increasingly turning to Software Product Lines

(SPLs) to model highly configurable systems having common as-

pects and variability parameters. The various products that stem

from a family of SPL are differentiated based on their features, which

represent user-visible aspects or characteristics of the software sys-

tem. These features within an SPL can exhibit diverse relationships,

which can be captured in a compact notation by using Feature

Models (FMs).

Given a FM, a common problem regards its knowledge compila-

tion: the formula represented by the FM (i.e., the logical formula

defining which products are valid and which are not) is translated

into a target representation, which is then used to answer sev-

eral queries in a more efficient way. A typical example which falls

in the scope of knowledge compilation is the computation of the

number of valid products in an SPL. Having such a number is ex-

tremely important for software engineers [1]. For example, it can

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0593-9/24/09

https://doi.org/10.1145/3646548.3672594

support the testing phase by allowing uniform sampling of products

(which requires the knowledge of how many valid configurations

are available), detecting possible design errors, performing econom-

ical estimations, and it aids developers in reducing the variability

of an SPL.

The problem of computing the number of valid configurations in

an SPL is well-explored in the literature, and has been mainly tack-

led by using logical solvers, Binary Decision Diagrams (BDDs) [2],

#SAT [3], or deterministic decomposable negation normal form

(d-DNNF) [4]. However, the research on leveraging knowledge com-

pilation for FM analysis is still rather limited in terms of considered

analyses, considered knowledge-compilation target languages, and

compiler scalability [5]. For this reason, in this paper, we present

our attempt in using Multi-valued Decision Diagrams (MDDs) for

this task, with the results we have obtained.

This paper introduces a fresh mapping approach that translates

FMs into MDDs, aiming to address the limitations encountered

in previous endeavors utilizing decision diagrams for knowledge

compilation. In particular, by exploiting the possibility of having

multiple edges from a single node, the approach we propose in this

paper reduces the number of nodes required to represent a FM w.r.t.

BDDs. Beside the straightforward mapping of Alternative groups,
we propose three optimizations, namely, the merging of And/Or
groups, the variable re-ordering, and the merging of the cross-tree

constraints before their application to the MDD representing the

FM under analysis.

We present the experiments we have conducted over benchmark

models to analyze the impact of the proposed optimizations on the

performance of the knowledge compilation process. In addition, we

analyze our approach on large-scale industrial FMs to assess their

applicability on real-world examples. Our experiments allowed us

to claim that the proposed optimizations are effective for increasing

the performance of our approach. Moreover, we have been able to

compute the cardinality of 10 out of the 11 large-scale industrial

FMs within the timeout of 24 hours, showing that the approach we

propose in this paper can be applied to real-world examples and is

particular useful for mid-scale case studies.

The paper is structured as follows. In Sect. 2, we describe the

background on Software Product Lines, Feature Models, Configu-

rations and Multi-valued Decision Diagrams. Sect. 3 presents our

approach to count valid configurations in an SPL with MDDs, to-

gether with the optimizations we have adopted to push even further

their performance, while in Sect. 4 we present the experiments de-

signed to evaluate the proposed solution. Sect. 5 discusses potential

threats to the validity of our findings. Finally, Sect. 6 reports the

related work and Sect. 7 concludes the paper.

https://orcid.org/0000-0003-4244-9319
https://orcid.org/0000-0002-4035-0131
https://doi.org/10.1145/3646548.3672594
https://doi.org/10.1145/3646548.3672594


SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Andrea Bombarda and Angelo Gargantini

root

A

C D

B

E F

G H
Mandatory

Optional

Or

Alternative

(A or B)→ H

Figure 1: Example of a FM

2 Background
This section provides an overview of basic concepts related to

Feature Models, product configurations, and Multi-valued Decision

Diagrams.

2.1 SPL and Feature Models
In the field of Software Product Line engineering, feature mod-

els [6, 7] serve as models delineating all potential products within

a software product line (SPL) based on their features and interrela-

tionships. To be precise, a feature model (denoted as FM) comprises

a structured collection of features F , organized in a hierarchical

manner. Each parent-child relationship within this hierarchy im-

poses a constraint falling into one of the subsequent categories:

I) Or : at least one of the sub-features must be selected if the parent

is selected. II) Alternative/Xor : exactly one of the children must be

selected whenever the parent feature is selected. III) And: if the
relation between a feature and its children is neither an Or nor an
Alternative. Each child of an And must be either: - Mandatory: the
child feature is selected whenever its respective parent feature is

selected. - Optional: the child feature may or may not be selected if

its parent feature is selected.

Only the root feature in F has no parent and it is selected in every
product. In addition to hierarchical relations, FMs may have cross-
tree constraints, i.e., relations that cross-cut hierarchy dependencies.
The most common cross-tree constraints are:

• A requires B: the selection of a feature A in a product also

implies the selection of the feature B. We indicate it as A→ B.
• A excludes B: features A and B cannot be part of the same

product. We indicate it as A→ ¬B.
As common in the literature on FMs, in this work, we allow FMs

to contain cross-tree constraints given by general propositional
formulas. Furthermore, a feature can be dead, i.e., it can never be

selected because of the constraints, or core, i.e., it is mandatory in

every valid product, like the root.
An example of a FM is shown in Fig. 1. It has a root feature with

an And group of sub-features, namely A, B, G, and H. The feature
A represents an Or group between the features C and D while the

feature B is an Alt between E and F. Finally, G is amandatory feature
while H is optional. Moreover, FM contains a cross-tree constraint

requiring that if A or B are selected, then H must be selected as well.

2.2 SPL configurations
When working with a FM defined on the set of features F , each
configuration specifies which of the features in F are selected and

which are not. In otherwords, the set of all configurations represents

all possible products that can be derived from an SPL designed by

means of a FM. In this work, we consider a configuration as defined

by [8, 9]. More specifically, a configuration 𝑐 is a function giving

the status of a feature f ∈ F in 𝑐

𝑐 (f) =
{⊤(𝑡𝑟𝑢𝑒) if f ∈ F is selected in c

⊥(𝑓 𝑎𝑙𝑠𝑒) if f ∈ F is not selected in c

A configuration is valid in FM if and only if it denotes a valid

product, i.e., it does not violate any constraint in FM (both structural

and cross-tree). In the example shown in Fig. 1, the configuration

having only root and G selected is a valid one, as well as the one

having root, G, B, F, and H selected. Instead, the configuration

selecting root, G, B, and F is not valid, as it violates the cross-tree
constraint (B is selected, but H is not).

Counting the number of valid configurations is paramount im-

portant as it allows stakeholders to detect design errors, perform

economical estimations, and aids developers by reducing the vari-

ability of the SPLs, to prioritize features and to perform uniform

random sampling of configurations [10].

2.3 Multi-valued Decision Diagrams
The approach presented in this paper is based on usingMulti-valued
Decision Diagrams (MDDs), which are a particular type of decision
diagrams (DDs). More formally, DDs are defined as follows.

Definition 1 (Decision diagram). A decision diagram is a
rooted directed acyclic graph with two terminal nodes F and T and it
represents a function 𝑔 : 𝐷 → 𝐵 where 𝐷 = 𝐷1 × · · · × · · ·𝐷𝑛 and 𝐵
is the Boolean domain, i.e., 𝐵 = {𝐹,𝑇 }.

A DD can be used to evaluate the truth value of the function 𝑔

when it is applied to the variables 𝑥1, · · · , 𝑥𝑛 in the following way.

Every decision node is labeled by a variable 𝑥𝑖 and every edge with

its label represents the direction one must take depending on the

value of 𝑥𝑖 in 𝐷𝑖 . The final node 𝐹 or 𝑇 represents the value of the

function 𝑔 when applied to the chosen values of 𝑥𝑖 .

If all the domains 𝐷𝑖 are binary, then we refer to the decision

diagrams as Binary Decision Diagrams (BDDs). They are used to

represent simple Boolean functions. BDDs are widely used within

the domain of system design verification and for counting the

number of configuration of SPLs. However, while operations on

BDDs might scale well, their construction can be intractable [5]

when representing FMs, as many constraints are needed to model

the relationship between variables. An example of BDD modeling

the FM in Fig. 2a is shown in Fig. 2c.

To partially solve the limitations of BDDs, Multi-Valued Decision

Diagrams (MDDs) have been introduced and they extend BDDs

by allowing every variable to have a different domain, with a dif-

ferent size. While many extensions of BDDs do exist [11], MDDs

are suitable when the domain of the decision is Boolean (like the

validity of a configuration) and the domain of the variables 𝑥𝑖 can

be enumerations (like a parent feature that can take values in the

child feature domain). Each MDD has the following properties:

• only two terminal nodes are available, which are labeled as

F and T;
• every non-terminal node is labeled by an input variable 𝑥𝑖
and has |𝐷𝑖 | outgoing labeled edges, i.e. one per each possible
value of the domain;



On the Use of Multi-valued Decision Diagrams to Count Valid Configurations of Feature Models SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

A

B C

(a) FM

A

TF

NONE

B

C

(b) MDD

A

B

C C

T F

F

T

F

T

T

F

F

T

(c) BDD

Figure 2: Representation of a simple FM with DDs

• every variable appears only once in the MDD, in any path

from the root to a terminal node;

Given these properties, an MDD can represent which values of

the domain 𝐷 are selected by the function 𝑔. In fact, if the values

𝑥1, . . . , 𝑥𝑛 for the variables in𝐷 are selected by𝑔, then𝑔(𝑥1, . . . , 𝑥𝑛) =
𝑇 , otherwise 𝑔(𝑥1, . . . , 𝑥𝑛) = 𝐹 . An example of MDD modeling the

FM in Fig. 2a is shown in Fig. 2b. It can be seen that the representa-

tion of the same FM is more compact in the case of the MDD w.r.t.

the BDD. This means that the same information can be represented

with fewer edges and nodes, making it easier to deal with more

complex FMs.

Among decision diagrams, it is possible to perform unary opera-

tions such as complement, or the most classical binary operations

like union, intersection, and difference. Additionally, in decision dia-

grams (both BDDs and MDDs) the computation of the cardinality -

i.e. the number of assignments that make 𝑔 true - is a simple arith-

metic operation that can be done in linear time (w.r.t. the number

of nodes [12, 13]) and it does not require the enumeration of all the

valid assignments.

In this paper, we will exploit these operations to build the MDD

corresponding to a FM and to compute the number of its valid

configurations, i.e., its cardinality. The main challenge remains

building the MDD for a given FM.

3 Building an MDD for a FM
In this section, we delve into how we use MDDs to map FMs and to

count their valid configurations. Our approach is implemented in a

tool written in C++, and available in our replication package at https:

//github.com/fmselab/FMConfigurationsCounter. It is based on the

MDD implementation offered by MEDDLY [14]. Our tool supports

FMs in the xml format of FeatureIDE [15]. Moreover, our approach

exploits the GMP library [16] which allows us to handle arbitrary-

long numbers.

The process implemented by our approach is reported in Al-

gorithm 1. It works by taking as input the feature model FM of

interest and returns as output the cardinality of the MDD, which

corresponds to the number of valid configurations for FM . Initially,

the variables representing features and feature groups are defined

and the MDD 𝑀 is created (line 1). This process is described in

Sect. 3.1. Then, the constraints mapping the structure and semantic

of FM , i.e., mandatory features, hierarchical relations, Alternative,

Algorithm 1 Algorithm counting the number of valid configura-

tions with an MDD

Require: FM the feature model of interest

Ensure: 𝑐𝑎𝑟𝑑 the cardinality, i.e., the num. of valid configurations

⊲ Define all the variables and the empty MDD

1: 𝑀 ← defineMDD(FM)

⊲ Add the constraints for the group features (from the root)

2: SetRootMandatory(𝑀 ,FM .getRoot( ))
3: AddGroupConstraints(𝑀 ,FM .getRoot( ))

⊲ Add to the MDD the cross-tree constraints

4: AddCrossTreeConstraints(FM ,𝑀)

5: return𝑀.𝑔𝑒𝑡𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 ( )

A

B C D

(a) Alt. group

Selected F.
𝑥𝐴 A B C D

NONE
B × ×
C × ×
D × ×

(b) Mapping of the Alt. group to the variable 𝑥𝐴

Figure 3: Alternative group

And and Or groups, are added to 𝑀 (line 2 and 3). This process is

described in Sect. 3.2. Finally, in a similar way, the algorithm adds

the cross-tree constraints (line 4). The way in which constraints are

converted and merged with𝑀 is presented in Sect. 3.3. At the end of

the process,𝑀 represents the MDD describing all the valid products,

and the cardinality of𝑀 is the number of them (line 5). Addition-

ally, the process building the MDD for a FM can be optimized as

described later in Sect. 3.4.

3.1 Features and groups
Generally, every feature 𝑓 ∈ F is associated with a variable 𝑥 𝑓
within the MDD. The variables’ domains and potential constraints

between them vary based on the feature type.We decided to initially

represent every feature 𝑓 with a Boolean variable 𝑥 𝑓 except for

the features that are parent or child of an alternative group. For an
alternative group 𝑓 with children 𝑐1 . . . 𝑐𝑛 , we introduce only one
variable 𝑥 𝑓 with domain {NONE, 𝑐1, . . . , 𝑐𝑛}. The value NONE is taken
by 𝑥 𝑓 if and only if 𝑓 is not selected, as formalized in the following.

An example of how an alternative group is translated into a unique

MDD variable is reported in Fig. 3. It shows the selected features

depending on the value of the MDD variable 𝑥𝐴 .

3.2 Constraints for groups
To define the constraints (both tree and cross-tree), it is impera-

tive to represent the selection status of a feature within the MDD.

For instance, this is necessary because we need to represent that

a child feature may only be selectable when its parent is also se-

lected. However, since various group types are translated differently

(as explained below), there is not a singular method to determine

how to assess a feature’s status. Therefore, we introduce the isSel

https://github.com/fmselab/FMConfigurationsCounter
https://github.com/fmselab/FMConfigurationsCounter


SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Andrea Bombarda and Angelo Gargantini

Algorithm 2 Procedure adding group constraints to the MDD

Require: 𝑀 the MDD being built

Require: 𝑓 the feature being visited

1: procedure AddGroupConstraints(𝑀 , 𝑓 )

2: switch 𝑔𝑟𝑜𝑢𝑝 (𝑓 ) do
3: case 𝐴𝑛𝑑 : visitAnd(𝑀 , 𝑓 )

4: case𝑂𝑟 : visitOr(𝑀 , 𝑓 )

5: case 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 : visitAlternative(𝑀 , 𝑓 )

6: for all 𝑐𝑖 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑓 ) do
7: AddGroupConstraints(𝑀 , 𝑐𝑖 )

8: end for
9: end procedure

function as follows:

isSel(𝑓 ) =



𝑥 𝑓 ≠ NONE if f is the parent of an

alternative group

𝑥𝑝 = f if f is a child of an alternative

group with parent p

𝑥 𝑓 = true otherwise

(or simply 𝑥 𝑓 since it is Boolean)

While for features translated to Boolean variables, the isSel
function is trivial, for alternative groups isSel must take care of

the child feature selected, if any.

Note that, if a feature 𝑓 is both parent and child of an alternative

group, we assume that the function isSel(𝑓 ) considers 𝑓 only as

a parent, i.e., 𝑥 𝑓 ≠ NONE. However, this situation requires attention

when translating alternative groups and we will deal with it later,
when adding the constraints among parents and their children.

The isSel function is firstly used to set the root feature asmanda-

tory (line 2 in Algorithm 1). More specifically, for each FM, the

following constraint will always be added:

isSel(root)

To build the MDD representing a FM, besides creating the vari-

ables as outlined before, we need to add the constraints among the

features due to the structure of the FM, as reported in Algorithm 2.

To do this, we recursively visit the model starting from the root (see

line 3 in Algorithm 1). For every feature 𝑓 , we consider the group

type it represents as explained below, we add the tree constraints

for 𝑓 and its particular group, and we recursively visit all the chil-

dren of 𝑓 . In the following, we explain what the visiting algorithm

does when called for a feature 𝑓 .

Leaf. If 𝑓 is a leaf, the visiting algorithm does not do anything -

since all the constraints are added by considering the feature groups

as explained below.

And groups. The translation of And groups is straightforward.

Let 𝑓 be the parent feature, 𝑐𝑖 be its 𝑛 optional children, and 𝑐𝑖 be

its𝑚 mandatory children, we add the following constraints:

isSel(𝑐1) → isSel(𝑓 )
. . .

isSel(𝑐𝑛) → isSel(𝑓 )
isSel(𝑐1) ↔ isSel(𝑓 )
. . .

isSel(𝑐𝑚) ↔ isSel(𝑓 )

The constraints guarantee that if a child is selected, then, also the

parent must be selected. For mandatory children also the vice-versa

holds: if the parent is selected, then also the child must be selected.

Let us consider the And group in the FM in Fig. 1. The parent

feature (i.e., root) as well as all the children (i.e., A, B, G, and H) are
translated to MDD variables (𝑥𝑟𝑜𝑜𝑡 , 𝑥𝐴, 𝑥𝐵, 𝑥𝐺 , 𝑥𝐻 ). The constraints
guaranteeing the correct parental relation between the children

and the parent are:
isSel(𝐴) → isSel(𝑟𝑜𝑜𝑡)
isSel(𝐵) → isSel(𝑟𝑜𝑜𝑡)
isSel(𝐺) ↔ isSel(𝑟𝑜𝑜𝑡)
isSel(𝐻 ) → isSel(𝑟𝑜𝑜𝑡)

→


𝑥𝐴 → 𝑥𝑟𝑜𝑜𝑡

𝑥𝐵 ≠ NONE→ 𝑥𝑟𝑜𝑜𝑡

𝑥𝐺 ↔ 𝑥𝑟𝑜𝑜𝑡

𝑥𝐻 → 𝑥𝑟𝑜𝑜𝑡

Or groups. Representing Or groups in an MDD is very similar to

And ones. Let 𝑓 be the parent feature, 𝑐𝑖 be its 𝑛 or children, we add

the following constraints:
isSel(𝑐1) → isSel(𝑓 )
. . .

isSel(𝑐𝑛) → isSel(𝑓 )
isSel(𝑓 ) → ∨𝑛

𝑖=1 isSel(𝑐𝑖 )

The constraints guarantee the correct parental relation between

the children. Moreover, the last additional constraint forces at least

one of the children features to be selected.

Let us consider the Or group in the FM in Fig. 1. The parent

feature (i.e., A) as well all the children (i.e., C and D) are translated
into the MDD Boolean variables 𝑥𝐴 , 𝑥𝐶 , and 𝑥𝐷 . The following

constraints are added:
isSel(𝐶) → isSel(𝐴)
isSel(𝐷) → isSel(𝐴)
isSel(𝐴) → (isSel(𝐶) ∨ isSel(𝐷))

→

𝑥𝐶 → 𝑥𝐴

𝑥𝐷 → 𝑥𝐴

𝑥𝐴 → (𝑥𝐶 ∨ 𝑥𝐷 )

Alternative groups. When visiting a feature that is a parent of

an alternative group, we introduce just one variable for the entire

group, such as in Fig. 3 - and this allows us to take advantage of the

multivalued nature of MDDs. Using a single variable already takes

into account that if a child is selected then the parent is selected

as well, and if the parent is selected then one of the children is

selected as well. Indeed, when the parent is not selected (NONE) no
child can be selected. Instead, if the parent is selected (≠ NONE) one
child must be selected as well. So, in general, no action is required

in case of an alternative group. However, in case a feature 𝑓 is both

parent and child of an alternative group, the function isSel(𝑓 )
considers 𝑓 only as parent (i.e., 𝑥 𝑓 ≠ NONE), so we have to add a

constraint to its parent 𝑥𝑝 forcing the consistency between the two



On the Use of Multi-valued Decision Diagrams to Count Valid Configurations of Feature Models SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

Logical Op. MDD Op. Logical Op. MDD Op.
A𝑎𝑛𝑑 B 𝑀𝐴 ∩ 𝑀𝐵 A𝑜𝑟 B 𝑀𝐴 ∪ 𝑀𝐵
𝑛𝑜𝑡 A ¬𝑀𝐴 A → B ¬𝑀𝐴 ∪ 𝑀𝐵
A = B 𝑀𝐴 = 𝑀𝐵

Table 1: Mapping logical operations to MDD operations

variables:

𝑥 𝑓 ≠ NONE↔ 𝑥𝑝 = f

An example of this mapping procedure is reported in Fig. 3. The

FM in Fig. 3a is an alternative group with three children. It is

mapped to a single MDD variable 𝑥𝐴 which can assume only 4

values: NONE indicates that no feature of the group is selected (not

even the parent A), B indicates that the feature B is selected (and,

consequently, also feature A), and so on.

More details on how these constraints are added to an MDD are

given in Sect. 3.3.

3.3 Cross-Tree constraints
After having built the MDD 𝑀 representing all the features and

groups of FM , cross-tree constraints are added to𝑀 (line 4 in Algo-

rithm 1). In this phase, each single constraint 𝑐 is converted into its

corresponding MDD𝑀𝑐 . The procedure allowing the representa-

tion of a constraint with its corresponding MDD is recursive: the

constraint is visited until a set of simple MDDs of each single atomic

predicate is created. The atomic predicates are features which are

represented in the constraints by using the isSel function. Then,
the MDDs are merged by exploiting binary operations as reported

in Tab. 1, where𝑀𝑥 is the MDD representation of the atomic predi-

cate 𝑥 . Let us consider the cross-tree constraint 𝑐 reported in Fig. 1.

The atomic predicates, corresponding to the features, are 𝐴, 𝐵, and

𝐻 . These predicates are converted into their corresponding isSel
function and three MDDs representing these functions are derived:

isSel(𝐴) = 𝑥𝐴

isSel(𝐵) = (𝑥𝐵 ≠ NONE)
isSel(𝐻 ) = 𝑥𝐻

→

𝑀𝐴

𝑀𝐵

𝑀𝐻

The final MDD 𝑀𝑐 for the constraint 𝑐 is obtained by combining

𝑀𝐴 ,𝑀𝐵 , and𝑀𝐻 using the operators from Tab. 1 corresponding to

those in 𝑐:

𝑀𝑐 = ¬(𝑀𝐴 ∪𝑀𝐵) ∪𝑀𝐻

At the end of the process,𝑀𝑐 will be the exact MDD representa-

tion of the constraint 𝑐 . Thus, it can be added to the MDD𝑀 created

when defining groups and features by computing

𝑀 = 𝑀 ∩𝑀𝑐

After having repeated this recursive operation for all constraints,

𝑀 will contain all valid products and its cardinality will be the

number of valid configurations for the FM under analysis.

3.4 Optimizations
One of the main problems of decision diagrams is related to their

potential scalability issues, especially in terms of memory occu-

pancy. Every time a new variable is added to the decision diagram,

this implies introducing new nodes and edges to the MDD whose

number is multiplied at every operation (e.g., the addition of a con-

straint). For this reason, we have introduced several optimizations

aiming to reduce the number of edges and nodes.

Leaf mandatory features. When encountering a leaf and manda-
tory feature f ∈ F , we avoid introducing it into the MDD. As a

consequence, if the mandatory feature f is present in any of the

constraints, it is substituted with its parent feature, if any, or with

true. In this way, we reduce the number of variables and, thus,

nodes, but we keep the MDD cardinality unaltered.

Dynamic variable re-ordering. The order of variables in an MDD

strongly influences the performance of operations between MDDs.

In our approach, we apply dynamic re-ordering which is a tech-

nique to re-order the MDD variables to reduce the size (in terms

of number of edges and nodes) of the existing MDDs [17, 18]. Dy-

namic ordering can often reduce the size of the MDDs dramatically,

but it may be time consuming. For this reason, we do not apply

variable re-ordering after every operation (i.e., the application of a

cross-tree constraint). Based on the results we obtained with our

experiments, we have defined the following strategy: we re-order

the variables when the number of nodes in the MDD exceeds 10
6

or when the number of nodes from one operation to the next one

increases by 50%. In this way, we reduce the number of ordering

calls and we save time, especially for simple models, which would

be treatable even without re-ordering the variables. Instead, for

more complex models, performing dynamic re-ordering may slow

down the computation, but it can make the difference between

completing and not completing the task.

Merging constraints. Applying a cross-tree constraint 𝑐 to the

MDD𝑀 under construction is a complex operation requiring the

execution of the intersection operation between 𝑀 and the corre-

sponding MDD representation of 𝑐 . Given the computational cost

of this operation, reducing the number of intersections and the

complexity of each of them is advisable. For this reason, in our

approach, we allow to merge 𝑛 cross-tree constraints before ap-

plying them to𝑀 . More specifically, we sort all the constraints in

terms of their cardinality using the alternative sorting algorithm
1
.

Then, we merge 𝑛 constraints into a single one, obtaining 𝑛 time

less cross-tree constraints.

The reason behind this decision is that when constraints with

different cardinality are merged, those with higher cardinality are

constrained by the lower cardinality ones. Consequently, as the

procedure progresses, the resulting constraint becomes simpler

compared to those initially involved. Furthermore, by decreasing

the total number of constraints, we minimize the intersections with

𝑀 . As a consequence, by reducing the number of intersections, we

also decrease the need for variable re-ordering calls, which can be

a computationally intensive process.

3.5 Merging And/Or groups
Another optimization that pushes the use of MDDs and tries to take

full advantage of their use, consists in mimicking what has been

done for the Alternative groups also for the other groups, and

consequently reducing the number of variables in the MDD.

1
With the alternative sorting, a list is modified in such a way that the first element is

first maximum and second element is first minimum and so on.



SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Andrea Bombarda and Angelo Gargantini

A

B C D

(a) Example of an
And group

Binary Selected F.
𝑥𝐴 LSB→ MSB Invalid A B C D

NONE
0 000 × ×
1 100 × × ×
2 010 × × ×
3 110 × × × ×
4 001 × ×
5 101 × × ×
6 011 × × ×
7 111 × × × ×

(b) Mapping of the And group to the variable 𝑥𝐴

Figure 4: Merging And groups optimization

In the case of 𝑛 features appertaining to an And/Or group with

parent p and 𝑛 children, we provide the user with the opportunity

to merge the entire group into a single MDD variable 𝑥𝑝 having 2
𝑛

integer values representing which feature combination is selected

and a NONE value to represent that 𝑝 is not selected. In this way,

when 𝑥𝑝 has the 𝑖-th bit set, it will mean having the 𝑖-th child

feature selected (with the first feature corresponding to 𝑖 = 0). We

indicate it by using the bitwise operator 𝑥𝑝 ∧ (1 ≪ 𝑖).
At this point, no feature will ever be translated as Boolean vari-

able and the isSel function can be simplified and defined as:

isSel(𝑓 ) =
{
𝑥 𝑓 ≠ NONE 𝑓 is not a leaf

𝑥𝑝 ∧ (1 ≪ 𝑖) if 𝑓 is a leaf and the i-th child of 𝑝

Note that not all 2
𝑛 + 1 values are feasible, since some of the 𝑛

features may be mandatory in case of And group or at least a feature

must be selected in case of Or groups. The visiting procedures for

And/Or groups presented in Sect. 3.2 must be modified accordingly.

As for the Alternative group, the fact that when a child is selected,

then the parent is selected as well (𝑥𝑝 ≠ NONE) is implicit. We have

to add only the constraints:{
isSel(𝑥𝑝 ) → isSel(𝑥 𝑓 ) if f is mandatory in And group∨𝑛

𝑖=1 isSel(𝑐𝑖 ) for every Or group with parent 𝑥𝑝

Moreover, since now every feature is both parent and child of a

group (except for the root and leaves), and the function isSel is

defined by considering the feature as parent, we have to add a new

constraint for each Or and And group, if 𝑓 is the i-th child of 𝑝

𝑥 𝑓 ≠ NONE↔ (𝑥𝑝 ∧ (1 ≪ 𝑖) > 0)

This additional constraint forces the parent variable to select exactly

the value of the children, when it is selected as well.

An example of this optimization, in the case of an And group, is

reported in Fig. 4. The FM shown in Fig. 4a is an And group with

3 children, and one of them (the feature D) is mandatory. While

translating the And group into the MDD, a single variable 𝑥𝐴 may

be used. It has maximum 9 values: NONE is used when no feature

(not even the parent one) is selected, 0when only the parent feature
is selected, 1 when only the parent and the first child feature is

selected, and so on (see Fig. 4b). In this example, the feature D is

mandatory so, among the combinations selecting A, only those

having D selected are valid. At the end, the MDD variable 𝑥𝐴 will

have only 5 values, i.e., only the valid ones.

Type ×n # F And Or Alt. Opt. Mand. # C T/O
OnlyAND 10 200 × × × 80 0/840
OnlyOR 10 100 × 63 486/840
OnlyXOr 10 200 × 80 0/840
Mixed 10 200 × × × × × 80 0/840

Table 2: Summary of benchmarks used for the evaluation

This operation can be costly, since it requires also the rewriting of

the constraints (i.e., all the checks on the features involved in an And
group must be translated in checks on multiple values, depending

on the bit of interest) and reducing the number of nodes may imply

increasing the number of edges in the MDD. For this reason, we

allow the user to set whether to enable or disable the optimization,

and we set a threshold on the maximum number of children in an

And/Or group eligible for this optimization.

4 Experiments
In this section, we evaluate the proposed approach against syn-

thetic benchmarks and models available in the literature. Tab. 2

reports the characteristics of synthetic benchmarks. They have

been generated with the SPLOT Feature Model Generator proposed

by [19] and have been converted in the xml format supported by

FeatureIDE. In particular, in order to analyze the performance de-

pending on the type of features, we have generated models having

only And groups, only Or, only Alternative groups, and mixed

groups. For each category, we have generated 10 benchmarks. Mod-

els in the OnlyAND category have been generated by using 50%

probabilities both for mandatory and optional features; those in the

OnlyOr category with 100% of Or features; those in the OnlyXOr
category with 100% of Alternative features and, finally, those in

the Mixed category have been generated by using 25% probability

for mandatory, optional, Or, and Alternative features. Note that,

in the case of models appertaining to the OnlyOR category, we have

reduced the number of features to 100 and, consequently, also the

number of constraints which result to be 63. This choice is made

because of the higher cardinality and complexity of those models,

potentially leading to a significant amount of timeouts.

Additionally, in Tab. 3 we report the FMs we have gathered from

the literature and we have used to evaluate whether our approach

was able to complete the computation of the number of configura-

tions. We refer to those models as industrial FMs. We report the

percentage of different group types in each industrial FM.

With these FMs, we aim to investigate the following RQs:

RQ1 Does merging And/Or groups impact on the performance of

the process?

RQ2 Does the variable re-ordering impact on the performance of

the process?

RQ3 Does merging the constraints impact on the performance of

the process?

RQ4 Is our approach suitable for large-scale industrial FMs? How

does it compare with a more classical BDD-based approach?

In the following, we present the experimental methodology and

the answer to each research question.



On the Use of Multi-valued Decision Diagrams to Count Valid Configurations of Feature Models SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

System # F # C Source % Alt % Or % And

BerkeleyDB 76 20 [20] 34.78 17.39 47.83
axTLS 96 14 [21] 27.78 0.00 72.22
uClibc 313 56 [21] 47.83 0.00 52.17
uClinux-base 380 3, 455 [21] 98.61 0.00 1.39
BusyBox 631 681 [22] 4.68 0.00 95.32
FinancialServices 771 1, 080 [23] 67.93 3.27 28.80
Embtoolkit 1, 179 323 [21] 52.11 0.00 47.89
uClinux-distribution 1, 580 197 [21] 4.72 0.00 95.28
Automotive01 2, 513 2, 833 [20] 57.49 6.07 36.44
Linuxv2.6.33.3 6, 467 3, 545 [21] 4.23 0.21 95.56
Automotive02 18, 616 1, 369 [21] 69.18 6.49 24.33

Table 3: FMs from the literature, ordered by # F

Experimental methodology
We here explain the experimental methodology we have adopted

to evaluate the proposed approach through the 4 RQs previously

introduced. The first three RQs aim at investigating whether the

optimizations we have introduced do impact or not on the perfor-

mance of the knowledge compilation process. For these RQs, we

exploit the benchmarks introduced in Tab. 2. On the one hand, RQ1

investigates the impact of the And/Or merging optimization. For

this reason, for its evaluation, we limit to the models having And/Or
groups, namely those appertaining to the OnlyAND, OnlyOR, and

Mixed categories. On the other hand, RQ2 and RQ3 evaluate opti-

mizations on variable re-ordering and cross-tree constraints, which

apply to all 40 synthetic benchmarks. For this reason, we use all

benchmarks for their evaluation. We emphasize that we do not mix

synthetic models with industrial ones. In the first three research

questions, we only use synthetic benchmarks, while for RQ4 we

use solely industrial ones. In this way, we are able to set the config-

uration parameters to be used in the case of industrial (and most

critical) models by avoiding the bias introduced when tuning a

method on the actual evaluation set.

For every instance of test execution, we record the experimental

setup, including the count of configurations, duration of computa-

tion, activation of the And/Or merging optimization, threshold for

merging values within an And/Or group (the values 0, 2, 5, 10, 20, 50

are tested
2
), activation of variable re-ordering optimization, quan-

tity of cross-tree constraints merged prior to their application to the

MDDs (the values 1, 2, 5, 10, 20, 50 are tested), and the peak number

of edges and nodes attained during the knowledge compilation

phase. Note that the number of edges and nodes is used to measure

the memory utilization, which is reported to be a critical aspect in

the literature on using decision diagrams for knowledge compila-

tion. In this way, for each of the 40 benchmarks we gather data from

84 executions, with different configurations. For each category of

the synthetic benchmarks, Tab. 2 reports in the T/O column how

many executions timed out in our experiments.

After having evaluated the impact of the three optimizations, in

RQ4, we investigate the applicability of our approach on large-scale

industrial FMs. Additionally, in RQ4 we compare the performance

of the proposed approach with that of a more classical BDD-based

knowledge compilation technique. The BDD-based tool, developed

2
The value 0 is only used when the And/Or merging optimization is disabled.

0 10 20 30 40 50
And/Or groups size

0

500

1000

1500

TI
M

E 
[s

]

With timeout
No timeout

(a) Time

0 10 20 30 40 50
And/Or groups size

0

1

2

M
ax

im
um

 n
um

be
r o

f n
od

es 1e7

With timeout
No timeout

(b) Number of nodes

0 10 20 30 40 50
And/Or groups size

0

2

4

M
ax

im
um

 n
um

be
r o

f e
dg

es 1e7

With timeout
No timeout

(c) Number of edges

Figure 5: Merging And/Or groups optimization

in Java, is based on the primitives offered by FeatureIDE and is

available in our replication package.

We have performed the experiments on a Linux server running

Ubuntu 18.04.6 LTS, with 2 CPUs Intel®Xeon®E5-2620 v4 @ 2.10

GHz, and 128 GB RAM. When working with industrial large-scale

FMs, for which requiring a huge amount of time the timeout is

likely, we have set a timeout of 24 hours (8.64 · 104 seconds), while
for synthetic benchmarks a 1-hour timeout (3.6 · 103 seconds) has
been set. In case of timeout, we set the time to a value higher than

the maximum possible (3601 seconds), and the number of nodes

and edges to 5 · 107 which is higher than the number of nodes

and edges measured in the cases in which the computation did not

time out. All scripts and data used in the presented experiments are

available in our replication package at https://github.com/fmselab/

FMConfigurationsCounter.

4.1 RQ1: And/Or groups optimization
In this RQ, we are interested in investigating whether merging

And/Or groups impacts on the performance of the knowledge com-

pilation process. Moreover, we analyze which threshold (i.e., the

maximum size of And/Or groups to be merged in a single MDD

variable) for the groups to be considered is the best fit.

The results of our experiments are reported in Fig. 5. These re-

sults are average results, computed on 30 benchmarks having at

least one And/Or group (those appertaining to the OnlyAND, On-

lyOR, andMixed categories). In general, we can see that introducing

https://github.com/fmselab/FMConfigurationsCounter
https://github.com/fmselab/FMConfigurationsCounter


SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Andrea Bombarda and Angelo Gargantini

OFF ON

0

200

400

600

800

TI
M

E 
[s

]

With timeout
No timeout

(a) Time
OFF ON

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ax

im
um

 n
um

be
r o

f n
od

es

1e7

With timeout
No timeout

(b) Number of nodes

OFF ON

0.0

0.5

1.0

1.5

M
ax

im
um

 n
um

be
r o

f e
dg

es

1e7

With timeout
No timeout

(c) Number of edges

Figure 6: Dynamic variable re-ordering optimization

the And/Or groups merging optimization can be advantageous. In-

deed, the time (Fig. 5a), number of nodes (Fig. 5b), and edges (Fig. 5c)

when using the value 0 as threshold (meaning that the optimization

is not enabled) are higher than that obtained when merging at least

a small amount of children features. This consideration holds both

when considering executions timing out or those finishing the com-

putation. As expected, merging children features in And/Or groups

leads to a reduction of the number of nodes (see the orange line in

Fig. 5b) and this contributes in decreasing the time required by the

knowledge compilation process (see the orange line in Fig. 5a).

Moreover, when the optimization is enabled, values included

in the range between 2 and 5 are the best ones. In fact, when the

threshold is higher than 5, we have a consistent increase in time

due to timeouts (see Fig. 5a).

RQ1: And/Or groups optimization

Merging feature in And/Or groups when mapping them into

their MDD representation can be advantageous. However, on

the one hand, increasing the size of the groups to be consid-

ered reduces the number of nodes but, on the other hand, the

complexity of the MDD increases. This implies higher mem-

ory utilization and time required for knowledge compilation,

leading to the increase of the number of timeouts. For this

reason, as confirmed by our experiments, we believe that this

optimization is better used only for “small” groups and we sug-

gest enabling the optimization by setting a threshold between

2 and 5.

4.2 RQ2: Variable re-ordering
In this RQ, we are interested in investigating whether enabling the

dynamic variable re-ordering optimization leads to enhanced per-

formance w.r.t. always leaving the same variable order. To do this,

we analyze the results of our experiments on all the benchmarks

reported in Tab. 2.

0 10 20 30 40 50
# of CTC merged

0

500

1000

TI
M

E 
[s

]

With timeout
No timeout

(a) Time

0 10 20 30 40 50
# of CTC merged

0

1

2

M
ax

im
um

 n
um

be
r o

f n
od

es 1e7

With timeout
No timeout

(b) Number of nodes

0 10 20 30 40 50
# of CTC merged

0

2

4

6

M
ax

im
um

 n
um

be
r o

f e
dg

es 1e7

With timeout
No timeout

(c) Number of edges

Figure 7: Cross-tree Constraint Merging optimization

Our experimental findings, detailed in Fig. 6 and excluding out-

liers for a better visualization, encompass analyses that both include

and exclude instances resulting in timeouts. Concentrating on the

results that incorporate timeouts (shown in yellow in Fig. 6), it

becomes apparent that activating the optimization reduces the oc-

currence of timeouts (see the decrease in time in Fig. 6a), as well

as reductions in the number of nodes (Fig. 6b) and edges (Fig. 6c).

Nevertheless, as mentioned previously in Sect. 3.4, dynamically

reordering variables within an MDD is a resource-intensive task.

Consequently, when the assessment is restricted to simpler models

and excludes timeouts (depicted in gray in Fig. 6), the time required

for knowledge compilation with the optimization enabled is higher

(Fig. 6a). However, the number of nodes and edges (Fig. 6b and

Fig. 6c) remains lower with the optimization in place.

RQ2: Variable re-ordering

Dynamic re-ordering of the MDD variables is an effective way

to reduce the number of nodes and edges, potentially leading

to lower knowledge compilation time, especially for more

complex FMs. For this reason, as confirmed by our experiments,

we believe that this optimization should be always used, except

for very simple models.

4.3 RQ3: Cross-tree constraint merging
In this RQ, we investigate whether merging the cross-tree con-

straints before their intersection with the MDD representing the



On the Use of Multi-valued Decision Diagrams to Count Valid Configurations of Feature Models SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

Time [s]
System # Valid Conf. MDD BDD

BerkeleyDB 4.03 · 109 0.01 0.07

axTLS 8.26 · 1011 0.01 0.09

uClibc 1.66 · 1040 6.13 17.15

uClinux-base 2.62 · 1022 0.39 0.59

BusyBox 2.06 · 10201 205.60 −
FinancialServices 9.74 · 1013 3.09 235.56

Embtoolkit 5.13 · 1096 2.18 21.70

uClinux-distribution 4.07 · 10409 157.18 −
Automotive01 5.42 · 10217 8.29 · 104 −
Linuxv2.6.33.3 − − −
Automotive02 1.78 · 101534 4.68 · 104 −
Table 4: Cardinality and results on industrial FMs

FM is advantageous. To do this, we analyze the results of our ex-

periments on all the benchmarks reported in Tab. 2.

As in the previous RQs, our experimental results, detailed in

Fig. 7, includes analyses that both takes into account (dashed blue

line) and exclude (orange line) instances resulting in timeouts. Inter-

estingly, merging a large amount of cross-tree constraints (higher

than 20) seems to be counterproductive as the number of nodes

and edges increases significantly, as well as the time. By looking to

the results including timeouts, it can be noticed that for a reduction

factor up to 20, there is a slight decrease in time (see Fig. 7a) and

number of nodes (see Fig. 7b), which implies a reduction of time-

outs. The reduction in terms of number of nodes (also in the case

of experiments excluding the timeouts) is the most important one,

as it is directly correlated with the increase in the probability of

the knowledge compilation to complete.

RQ3: Cross-tree Constraint merging

Merging cross-tree constrains has a very small impact on the

performance of the counting algorithm. Using a reduction fac-

tor greater than 20 is discouraged, while our experiments show

slight reduction in terms of nodes when the reduction factor

is set to 20. Thus, we suggest to carefully evaluate whether to

enable the optimization depending on the complexity of the

constraints and, in any case, with a reduction factor lower or

equal to 20.

4.4 RQ4: Analysis on large-scale industrial FMs
In this research question, we are interested in investigating whether

the proposed solution is suitable for industrial SPLs, i.e., if it can

be applied to compute their number of valid configurations. The

experiments have been carried by merging 20 cross-tree constraints

per time, enabling the variable re-ordering, and optimizing And/Or
groupswithmaximum 5 children (see Sect. 3.4). The obtained results

are reported in Tab. 4.

In general, from the obtained results we can see that the proposed

solution, based on MDDs, allowed to compute the number of valid

products for all the analyzed industrial FMs except for Linux, on

which no technique in the literature has succeeded yet though,

within the set timeout of 24 hours.

Interestingly, our results show that the performance of the ap-

proach does not only depend on the complexity (in terms of number

ax
TL

SM
od

el

be
rk

el
ey

D
BM

od
el

uC
lib

C
M

od
el

uC
lin

ux
Ba

se

Fi
na

nc
ia

lS
er

vi
ce

s0
1

Em
bt

oo
lk

it

10
3

10
4

10
5

10
6

M
ax

im
um

 n
um

be
r o

f e
dg

es

MDD
BDD

(a) Number of edges

ax
TL

SM
od

el

be
rk

el
ey

D
BM

od
el

uC
lib

C
M

od
el

uC
lin

ux
Ba

se

Fi
na

nc
ia

lS
er

vi
ce

s0
1

Em
bt

oo
lk

it

10
2

10
3

10
4

10
5

M
ax

im
um

 n
um

be
r o

f n
od

es

MDD
BDD

(b) Number of nodes

Figure 8: Number of nodes and edges produced by BDDs and
MDDs

of features or constraints) of the FM under analysis, but more on

its structure. For example, The BusyBox model has fewer features

and fewer constraints than the FinancialServices one. However,

the time required to complete the computation of the number of

valid configurations for the former is significantly higher than that

required for the latter. As reported in Sect. 3.1, the alternative
groups are those giving the most advantage to the MDD represen-

tation. Indeed, by inspecting the two FMs, as also reported in Tab. 3,

we have discovered that the percentage of alternative groups in

the BusyBox model is notably lower than that of the FinancialSer-

vices and this justifies the difference in performance in the two

examples. The same consideration holds between Automotive01

and Automotive02, or between Linuxv2.6.33.3 and Automotive02.

The superiority of MDDs over BDDs is evident from the com-

parison of completion times between the two methods, as detailed

in Table 4. Across all industrial FMs, the MDD-based approach

consistently outperforms its BDD-based counterpart. Moreover, the

former experienced timeouts in only one instance, whereas the

latter encountered timeouts in 5 out of 11 models and crashed due

to the higher memory demands. This consideration is confirmed by

Fig. 8, where the number of nodes and edges produced by the two

approaches, on the FMs where computation completed by both of

them, are compared. Indeed, we can see that for almost all models

(except for Embtoolkit), the number of nodes and edges created

within the MDDs is consistently lower than that within the BDDs.

RQ4: Large-scale models

The proposed MDD solution is suitable for medium-scale mod-

els as it allows the computation of the FM cardinality within

few minutes. In the other cases, when the number of fea-

tures and constraints exceeds the thousands, its suitability is

limited and the time required to complete the computation

rapidly grows. However, we have observed a strong influence

of the FM structure on the performance of the approach: the

higher the percentage of alternative features (see Tab. 3),

the higher the advantage of using MDDs. Additionally, com-

paring the MDD-based technique with the BDD-based one,



SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg Andrea Bombarda and Angelo Gargantini

RQ4: Large-scale models

our experiments have shown that the former consistently pro-

duces fewer nodes and edges (indicating a lower memory

consumption) and completes the task in a shorter time.

5 Threats to validity
In this section, we discuss the threats to validity [24] and all the

strategies we have undertaken to mitigate them.

Internal validity refers to the fact that different outcomes ob-

tained with the analyzed approach and optimizations are actually

caused by the different tool configuration themselves and by the

way the experiments were carried out, and not by methodological

errors. To mitigate this risk, we have carefully checked the code of

our tool and experiments to see if there could be other factors that

have caused the outcome, such as implementation errors. A possi-

ble threat to the construct validity comes from the assumption that

our optimization and mapping strategies are suitable to maintain

unaltered the number of configurations of FMs. To mitigate this

risk, we have carefully checked our results against the literature in

order to find other work dealing with the same FMs [10].

External validity is concerned with whether we can generalize

the results outside the scope of the presented study. In particu-

lar, one threat to external validity refers to the case studies we

have used in the experiments. For what concerns the synthetic

benchmarks, we have tried to generate generic benchmarks, with

varying features and characteristics. Instead, for what concerns the

industrial FMs, we have tried to collect the same examples used

by other research works investigating on the same problem, i.e.,

the knowledge compilation for SPLs. However, this work is just a

preliminary attempt of introducing MDDs and suitable mapping

strategies in the context of knowledge compilation. We believe that

further experiments are needed to generalize the conclusions and

to better investigate the use of MDDs on a greater set of examples.

One of the biggest threat to validity, refers to whether using

MDDs instead of BDDs is truly beneficial. Some theoretical con-

siderations (like what is shown in Fig. 2) and our experiments (see

RQ4) provide evidence that MDDs are better than BDDs. Our re-

sults show that MDDs are more compact than BDDs, especially

while dealing with Alternative groups or while compacting small

groups in fewerMDD variables. However, we use a library for BDDs

which may not implement them most efficiently. Since BDDs are

far more well-studied than MDD, their use could take advantage

of years of applied research. Thus, we plan to better investigate on

how the two approaches compare in future work. Similarly, most

works counting valid configurations in FMs use #SAT or d-DNNFs.

We plan to compare our approach with them in future work.

6 Related work
The problem of knowledge compilation for Software Product Lines

is a well-known and investigated issue in SPL engineering, being

np-hard. Especially for large-scale systems computing the number

of valid configurations is difficult and this is the reason why a

challenge on knowledge compilation has been proposed at SPLC [5].

From the analysis of the literature, the problem of defining the

number of valid configurations for SPLs have been tackled by using

decision diagrams, mostly Binary Decision Diagrams (BDDs), or

solvers. In [25], the authors presented the FAMAmodel analyzer in-

tegrating BDDs, SAT Solvers, and CSP solvers for the computation

of the FM cardinality. Concerning the use of BDDs, their perfor-

mance has been evaluated in [26]. The authors analyzed javaBDD

(the same libary that we employ in the implementation used in RQ4-

Sect. 4.4 when comparing with the MDD-based implementation),

Logic2BDD, BuDDy, and CUDD against a set of FMs including those

we have used in Sect. 4. They reported to be able to build BDDs

for three of the 18 considered real-world FMs, many of them below

the threshold of 2,000 features, indicating scalability issues for this

approach. Thus, the authors of [26] claimed that the performance

of BDD libraries had been significantly overestimated by previous

research. Similarly, #SAT solvers have been used in [10, 27]. The

results obtained by the authors, on the same large-scale industrial

models we have used in our evaluation, report the same number

of configurations but, in general, the cardinality is computed in a

shorter time. Other approaches, such as [28] have been developed

by exploiting the DPLL procedure, but require the model to have

constraints written in CNF and this may influence their complexity.

To the best of our knowledge, no attempt of using MDDs, with

the same optimizations we have proposed in our paper, has been

previously published.

7 Conclusions
Counting the valid configurations in an SPL is a challenging process

that can be particularly useful for developers and stakeholders to

allow economical estimation, uniform testing, and to detect pos-

sible design errors. In this paper, we have proposed an approach,

based on Multi-Valued Decision Diagrams (MDDs), which imple-

ments several optimizations to reduce the memory consumption

and make the computation more efficient. We have evaluated the

effectiveness of our approach against two datasets: one composed

by synthetic benchmarks and one by large-scale industrial models.

Our experiments have shown that MDDs allows for building the

set of products in a more efficient way than the classical binary

decision diagram-based approaches, and that using the proposed

optimizations positively impacts on the performance of the knowl-

edge compilation process. More specifically, using MDDs is very

effective when dealing withmedium-high complex FMs, while some

shortcoming has been revealed for more complex models.

As future work, we are investigating possible algorithmic im-

provements, such as avoid representing all mandatory features and

change accordingly the cross-tree constraints to reduce the number

of MDD variables. Moreover, we are trying to structure the MDD

construction process in such a way that multi-thread approaches

can be applied. We believe that working in these two directions

will make the proposed approach suitable to compute the number

of configurations of larger models, such as for Linux, or to speed

up the counting operation for other large-scale models.

Acknowledgment. The work of Andrea Bombarda was supported

by PNRR - ANTHEM (AdvaNced Technologies for Human-centrEd

Medicine) - Grant PNC0000003 – CUP: B53C22006700001 - Spoke 1

- Pilot 1.4. The work of Angelo Gargantini was supported by project

SERICS (PE00000014), under the MUR NRRP funded by the EU -

NextGenerationEU.



On the Use of Multi-valued Decision Diagrams to Count Valid Configurations of Feature Models SPLC ’24, September 2–6, 2024, Dommeldange, Luxembourg

References
[1] C. Sundermann, E. Kuiter, T. Heß, H. Raab, S. Krieter, and T. Thüm, “On

the benefits of knowledge compilation for feature-model analyses,” Annals
of Mathematics and Artificial Intelligence, Nov. 2023. [Online]. Available:

http://dx.doi.org/10.1007/s10472-023-09906-6

[2] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan, “Efficient compilation

techniques for large scale feature models,” in Proceedings of the 7th International
Conference on Generative Programming and Component Engineering, ser. GPCE
’08. New York, NY, USA: Association for Computing Machinery, 2008, p. 13–22.

[Online]. Available: https://doi.org/10.1145/1449913.1449918

[3] C. Sundermann, T. Thüm, and I. Schaefer, “Evaluating #sat solvers on industrial

feature models,” in Proceedings of the 14th International Working Conference
on Variability Modelling of Software-Intensive Systems, ser. VaMoS ’20. New

York, NY, USA: Association for Computing Machinery, 2020. [Online]. Available:

https://doi.org/10.1145/3377024.3377025

[4] P. Bourhis, L. Duchien, J. Dusart, E. Lonca, P. Marquis, and C. Quinton,

“Reasoning on feature models: Compilation-based vs. direct approaches,” 2023.

[Online]. Available: https://arxiv.org/abs/2302.06867

[5] T. Thüm, “A bdd for linux?: the knowledge compilation challenge for variability,”

in Proceedings of the 24th ACM Conference on Systems and Software Product Line:
Volume A - Volume A, ser. SPLC ’20. ACM, Oct. 2020. [Online]. Available:

http://dx.doi.org/10.1145/3382025.3414943

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented domain

analysis (FODA) feasibility study,” Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online].

Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[7] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification and survey

of analysis strategies for software product lines,” ACM Computing Surveys, vol. 47,
no. 1, pp. 1–45, Jun. 2014. [Online]. Available: https://doi.org/10.1145/2580950

[8] A. Bombarda, S. Bonfanti, and A. Gargantini, “Testing the evolution of feature

models with specific combinatorial tests,” in 2024 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), 2024. [Online].
Available: https://doi.org/10.1109/icstw60967.2024.00025

[9] ——, “On the reuse of existing configurations for testing evolving feature

models,” in Proceedings of the 27th ACM International Systems and Software
Product Line Conference - Volume B. ACM, Aug. 2023. [Online]. Available:

https://doi.org/10.1145/3579028.3609017

[10] C. Sundermann, T. Heß, M. Nieke, P. M. Bittner, J. M. Young, T. Thüm, and

I. Schaefer, “Evaluating state-of-the-art #sat solvers on industrial configuration

spaces,” Empirical Software Engineering, vol. 28, no. 2, Jan. 2023. [Online].
Available: http://dx.doi.org/10.1007/s10664-022-10265-9

[11] S. V. Amari and L. Xing, Binary Decision Diagrams and Extensions for System
Reliability Analysis. wiley, 2015.

[12] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks
& Techniques; Binary Decision Diagrams, 12th ed. Addison-Wesley Professional,

2009.

[13] R. E. Bryant, Binary Decision Diagrams. Cham: Springer International

Publishing, 2018, pp. 191–217. [Online]. Available: https://doi.org/10.1007/978-3-

319-10575-8_7

[14] J. Babar and A. Miner, “Meddly: Multi-terminal and edge-valued decision

diagram library,” in 2010 Seventh International Conference on the Quantitative
Evaluation of Systems. IEEE, Sep. 2010. [Online]. Available: http://dx.doi.org/10.

1109/QEST.2010.34

[15] J. Meinicke, T. Thm, R. Schrter, F. Benduhn, T. Leich, and G. Saake, Mastering
Software Variability with FeatureIDE, 1st ed. Springer Publishing Company,

Incorporated, 2017.

[16] B. I. Tuleuov and A. B. Ospanova, GMP (GNU Multiprecision Library). Apress,

2024, p. 131–148. [Online]. Available: http://dx.doi.org/10.1007/978-1-4842-9563-

2_12

[17] R. Rudell, Dynamic Variable Ordering for Ordered Binary Decision Diagrams.
Springer US, 2003, p. 51–63. [Online]. Available: http://dx.doi.org/10.1007/978-1-

4615-0292-0_5

[18] F. Somenzi, “Efficient manipulation of decision diagrams,” International Journal
on Software Tools for Technology Transfer, vol. 3, no. 2, p. 171–181, May 2001.

[Online]. Available: http://dx.doi.org/10.1007/s100090100042

[19] M. Mendonca, A. Wąsowski, and K. Czarnecki, “Sat-based analysis of feature

models is easy,” in Proceedings of the 13th International Software Product Line
Conference, ser. SPLC ’09. USA: Carnegie Mellon University, 2009, p. 231–240.

[20] FeatureIDE, “Official featureide github repository,” [Online; accessed 20-03-2024].

[Online]. Available: https://github.com/FeatureIDE/FeatureIDE

[21] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer, “Is

there a mismatch between real-world feature models and product-line

research?” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE’17. ACM, Aug. 2017. [Online]. Available:

http://dx.doi.org/10.1145/3106237.3106252

[22] T. Pett, S. Krieter, T. Runge, T. Thüm, M. Lochau, and I. Schaefer, “Stability

of product-line samplingin continuous integration,” in Proceedings of the 15th

International Working Conference on Variability Modelling of Software-Intensive
Systems, ser. VaMoS ’21. New York, NY, USA: Association for Computing

Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3442391.3442410

[23] T. Pett, T. Thüm, T. Runge, S. Krieter, M. Lochau, and I. Schaefer, “Product

sampling for product lines: The scalability challenge,” in Proceedings of
the 23rd International Systems and Software Product Line Conference -
Volume A, ser. SPLC 2019. ACM, Sep. 2019. [Online]. Available: http:

//dx.doi.org/10.1145/3336294.3336322

[24] R. Feldt and A. Magazinius, “Validity threats in empirical software engineering

research - an initial survey,” in SEKE, 2010.
[25] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés, “Fama: Tooling a frame-

work for the automated analysis of featuremodels,” in First InternationalWorkshop
on Variability Modelling of Software-intensive Systems, p. 129.

[26] T. Heß, C. Sundermann, and T. Thüm, “On the scalability of building binary

decision diagrams for current feature models,” in Proceedings of the 25th ACM
International Systems and Software Product Line Conference - Volume A, ser. SPLC
’21. ACM, Sep. 2021.

[27] A. Kübler, C. Zengler, and W. Küchlin, “Model counting in product configuration,”

Electronic Proceedings in Theoretical Computer Science, vol. 29, p. 44–53, Jul. 2010.
[Online]. Available: http://dx.doi.org/10.4204/EPTCS.29.5

[28] D. Fernandez-Amoros, R. Heradio, J. A. Cerrada, and C. Cerrada, “A scalable

approach to exact model and commonality counting for extended feature models,”

IEEE Transactions on Software Engineering, vol. 40, no. 9, p. 895–910, Sep. 2014.
[Online]. Available: http://dx.doi.org/10.1109/tse.2014.2331073

http://dx.doi.org/10.1007/s10472-023-09906-6
https://doi.org/10.1145/1449913.1449918
https://doi.org/10.1145/3377024.3377025
https://arxiv.org/abs/2302.06867
http://dx.doi.org/10.1145/3382025.3414943
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://doi.org/10.1145/2580950
https://doi.org/10.1109/icstw60967.2024.00025
https://doi.org/10.1145/3579028.3609017
http://dx.doi.org/10.1007/s10664-022-10265-9
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-10575-8_7
http://dx.doi.org/10.1109/QEST.2010.34
http://dx.doi.org/10.1109/QEST.2010.34
http://dx.doi.org/10.1007/978-1-4842-9563-2_12
http://dx.doi.org/10.1007/978-1-4842-9563-2_12
http://dx.doi.org/10.1007/978-1-4615-0292-0_5
http://dx.doi.org/10.1007/978-1-4615-0292-0_5
http://dx.doi.org/10.1007/s100090100042
https://github.com/FeatureIDE/FeatureIDE
http://dx.doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3442391.3442410
http://dx.doi.org/10.1145/3336294.3336322
http://dx.doi.org/10.1145/3336294.3336322
http://dx.doi.org/10.4204/EPTCS.29.5
http://dx.doi.org/10.1109/tse.2014.2331073

	Abstract
	1 Introduction
	2 Background
	2.1 SPL and Feature Models
	2.2 SPL configurations
	2.3 Multi-valued Decision Diagrams

	3 Building an MDD for a FM
	3.1 Features and groups
	3.2 Constraints for groups
	3.3 Cross-Tree constraints
	3.4 Optimizations
	3.5 Merging And/Or groups

	4 Experiments
	4.1 RQ1: And/Or groups optimization
	4.2 RQ2: Variable re-ordering
	4.3 RQ3: Cross-tree constraint merging
	4.4 RQ4: Analysis on large-scale industrial FMs

	5 Threats to validity
	6 Related work
	7 Conclusions
	References

