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ABSTRACT
Variability models are a common means for describing the com-

monalities and differences in Software Product Lines (SPL); con-

figurations of the SPL that respect the constraints imposed by the

variability model define the problem space. The same variability

is usually also captured in the final implementation through im-

plementation constraints, defined in terms of preprocessor direc-

tives, build files, build-time errors, etc. Configurations satisfying

the implementation constraints and producing correct (compilable)

programs define the solution space. Since sometimes the variability

model is defined after the implementation exists, it could wrongly

assess the validity of some system configurations, i.e., it could con-

sider acceptable some configurations (not belonging to the solution

space) that do not permit to obtain a correct program. We here

propose an approach that automatically repairs variability models

such that the configurations they consider valid are also part of the

solution space. Experiments show that some existing variability

models are indeed faulty and can be repaired by our approach.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
General and reference → Validation;
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1 INTRODUCTION
Software Product Lines (SPLs) are families of products that share

some common characteristics, and differ on some others [9]. Soft-

ware product line engineering consists in the development and

maintenance of SPLs by taking into account their commonali-

ties and variability. Software variability, i.e., the possibility to cus-

tomize/configure the software for different needs, is particularly

important, as it permits to adopt the software in different contexts,

so making it more reusable [22].
The variability of SPLs is usually already described at design

time by using variability models [26], whose usefulness is nowadays
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widely recognized [25]. They are used to represent SPLs by speci-

fying the constraints existing between the different features of the
system, so defining the valid combinations of features; for example,

a feature can require or exclude the presence of another feature,

or constraints can be expressed over groups of features. The set of

configurations that are allowed by a variability model defines the

problem space [11]. Different kinds of variability models have been

proposed, both in academia and in industry, as KConfig, CDL [10],

and feature models [7]. SPLs users derive concrete products from

variability models using configurators that support the intelligent

propagation of choices and auto-completion. Practitioners have

also developed a series of automated tools which supply some func-

tionalities of model validation and analysis [12]. These tools ease

the management of large configurable systems that can easily have

thousands of features with complex constraints.

The variability described in the problem space must be also cap-

tured by the system implementation in order to make it customiz-

able/configurable. Different solutions (implementation constraints)
are employed to express variability in code: preprocessor directives,

build files, build-time errors, etc. The set of system configurations

respecting all the implementation constraints is called solution
space [11]: system configurations of the solution space permit to

obtain correct compiled programs that can be executed. Differently

from the problem space that is compactly described by one design

artefact (i.e., the variability model), the solution space definition is

scattered among different artefacts. However, it is also possible to

build a model for the solution space by “mining” the implementa-

tion constraints from build-time errors, build files, and preprocessor

directives (e.g., #IFDEF); this is what has been done in [20] using

the FARCE tool which is based on TypeChef [15]. Therefore, in the

following we assume to have a model describing the problem space

(the variability model) and a model describing the solution space.

Most of the times, variability models are written when the im-

plementation already exists and the solution space already defined;

in these cases, the variability model is written in order to make the

customization of an existing system easier. In practice, the problem

space could not conform to the solution space on some configura-

tions: the solution space could allow to concretize configurations

that are not allowed in the problem space, and the problem space

could include some configurations that do not produce correct (i.e.,

compilable) programs. While we still consider the former case ac-

ceptable (the variability model imposes further constraints w.r.t.

the implementation because of design decisions), the latter is not

acceptable, because the variability model would allow us to build

systems that are not feasible: in this case, we consider the variability

model faulty. We here aim at automatically repairing faulty variabil-

ity models. We present an approach in which a (logic representation

of a) variability model is repeatedly modified by the application

https://doi.org/10.1145/3106195.3106206
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of some repairs. Each repair is a syntactical modification of the

variability model such that the new model allows a proper subset

of the configurations of the original model, and it no longer allows

some configurations that were wrongly accepted in the original

model; however, the new model still allows all the configurations

that were correctly evaluated by the original model. The process

stops when the variability model only accepts configurations that

are also accepted by the solution space, or if it is no more possible

to modify the model.

We found that some variabilitymodels used in practice are indeed

faulty (as also found in [14]) and can be repaired by our technique.

The paper is organized as follows. Sect. 2 provides some back-

ground on variability models, introduces definitions regarding the

structure of the variability models considered in this work, and

gives our definitions of configurability fault and of correctness for

variability models. Sect. 3 presents the notion of repair of a variabil-

ity model, and Sect. 4 describes the approach we propose (based on

repairs) to remove faults from variability models. Sect. 5 reports

the experiments we have done to evaluate the approach, and Sect. 6

discusses possible threats to the validity of the approach. Sect. 7

reports some related work, and Sect. 8 concludes the paper.

2 BASIC CONCEPTS AND DEFINITIONS
The problem space is defined in terms of a variability model that
identifies the features of a system and their relations. There exist

different kinds of variability models [26], like KConfig and CDL [10],

and more academic variability models like feature models [7]. All

these notations and languages provide a representation in terms of

propositional logic, where each feature is a propositional variable

and each relation is mapped to a particular propositional formula.

For example, the translation from feature models to propositional

formulas is presented in [26]. In this work, we do not restrict our-

selves to one particular kind of variability model, but we consider

all of them taking advantage of their common representation in

propositional logic.

The solution space, instead, is identified by the constraints im-

posed by the system itself. For example, it could be extracted from

the source code by analysing the preprocessor directives as pro-

posed by TypeChef [15]. We assume that also the solution space

has a representation in terms of propositional logic.

In the following, we identify with P the model of the problem

space (the variability model of a given system), and with S the

model of the solution space. In this work, we focus on repairing

a possibly faulty variability model P . F = {a,b, c, . . .} is the set of
features used in the variability model or in the implementation (or

in both). From now on, we see F as a set of propositional variables,

and P and S as logical formulas defined over F . As we will see in
Sect. 2, P is a conjunction of formulas having a particular form. For

S , instead, we do not assume any particular form.

Definition 2.1 (Configuration). A configuration is a truth assign-

ment to each propositional variable in F .

If in a configuration the truth value of a feature f is true, it
means that the feature is selected, otherwise that it is not selected.

Therefore, a configuration can be seen as a subset of the features

F . We use P and S to identify the problem space and the solution

space, i.e., the set of models of P and S .

Definition 2.2 (Product). A product is a configuration c accepted
by P , i.e., c ∈ P.

The mapping of any variability model in propositional logic pro-

duces a set of constraints that, for our purposes, we divide in two

families: core constraints are those that can be generated by vari-

ability models of any kind, while notation-specific constraints are
generated only by some kinds of variability model. Such partition

allows us to be as comprehensive as possible, since we propose an

approach that works on core constraints but we do not exclude

variability models containing other peculiar constraints. We define

P =
∧n
i=1

Ci ∧ Θ, where Ci are core constraints and Θ notation-

specific constraints. Each core constraintCi in P can only be of this

schema (where a, b, and bi are features):
• Constant feature: a. The feature must be selected in all the

products.

• Disabled feature: ¬a. The feature cannot be selected in any

product.

• Requires: a ⇒ b. Whenever a is selected, also b must be

selected.

• Excludes: a ⇒ ¬b. If a is selected, b cannot be selected.

• OR: a ⇒
∨n
i=1

bi . If a (called father) is selected, at least one
bi (called children) is selected.

Core constraints are sufficient to express all the core relation-

ships (like feature relationships, hierarchies, and grouping) in most

variability modeling notations. In particular, group relationships

that restrict the number of selectable sibling features if their par-

ent is selected can be mapped to our core constraints. As outlined

in [10], classical group relationships are xor when exactly one

child is selected, or for at least one, mutex for at most one. xor

and or groups can be mapped to an OR constraint plus a number

of suitable excludes and requires, while the mutex group is modeled

only using excludes and requires. For instance, an or group of a

feature model is represented by a constraint of shape a ⇒
∨n
i=1

bi
and by a sequence of constraints bi ⇒ a requiring that a is selected

whenever one of its children is selected.

The shape of constraints in Θ depends on the considered vari-

ability model notation. For extended feature models, for example,

constraints modeling the cardinality relations are notation-specific

and could be mapped to Θ (following, for example, the approach

suggested in [27]). Notation-specific constraints, although part of P ,
will not be modified by our approach. Note that the benchmarks we

used for our experiments (see Sect. 5.1), representative of medium-

size and big variability models, do not have notation-specific con-

straints. Recent studies found that core constraints are able to rep-

resent variability models of real software products [10].

Example 2.3. Fig. 1 reports an example of P (on the left), given

as feature model, and S (on the right), given as C code with pre-

processor directives. Feature models are a well-accepted means for

expressing requirements at an abstract level. They are applied to de-

scribe variable and common properties of products in a product line,

and to derive and validate configurations of software systems [25].

In the feature model P shown in the figure, the root BYE is always
selected, LOWERCASE is an optional feature (it can be selected only

if BYE is selected), and HELLO is a mandatory feature (it must be
selected whenever LOWERCASE is selected). The only constraint

in S is that LOWERCASE can be selected only if HELLO is selected,
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Feature model P Source code S

BYE

LOWERCASE

HELLO

#ifdef HELLO

char* msg = "Hello!\n";

#endif
#ifdef LOWERCASE

msg[0] = 'h';

#endif
#ifdef BYE

char* bye = "Bye\n";

#endif

As Boolean formulas

BYE
LOWERCASE⇒ BYE
HELLO⇒ LOWERCASE
LOWERCASE⇒ HELLO

LOWERCASE⇒ HELLO

Figure 1: Example of P and S

P S
P ∩ S : correct products

P ∩ S : faults

Figure 2: Correct products and faults

otherwise there will be a compilation error. We assume that, in this

example, P contains more constraints than S due to some design

decisions.

Although P and S do not need to be equal (in fact they very often

differ), the designer wants that every configuration allowed by P ,
i.e., every product, is permitted by S as well. In terms of sets P

and S, their relation is given in Fig. 2. The intersection between

P and S represents products that are correctly instantiated in S
(called correct products), while configurations that are in P but not

in S represent products that cannot be actually realized by the real

system, i.e., they represent faults in P , since P wrongly considers

them as products.

Definition 2.4 (Variability model correctness). P correctly config-

ures S if and only if P ⊆ S.

Example 2.5. In Fig. 1, the model P correctly configures S . In
every product of P , if LOWERCASE is true, then HELLO is true.

There are configurations that would be allowed by S but are not

permitted by P . For instance, LOWERCASE and HELLO true, but

BYE false. This is not a fault. With this configuration the code will

compile, but still it is not allowed by P for a number of reasons (the

code may do something wrong, perform unsafe operations, or for

design reasons).

Definition 2.6 (Configurability fault). P contains a configurability
fault if and only if P ∩ ¯S is not empty.

Example 2.7. If the user had designed P as shown in Fig. 3 (i.e.,

by setting HELLO optional), then the model would be faulty. If we

consider the configuration {BYE, LOWERCASE}, it is accepted by P
but not by S (compilation error).

Feature model P As Boolean formula

BYE

LOWERCASE

HELLO

BYE
LOWERCASE⇒ BYE
HELLO⇒ LOWERCASE

Figure 3: A faulty P

P S

P ′

P ∩ P′: products added by P ′ (to be empty for NA)

P ∩ P′: products removed by P ′ (to be not empty for RE)

P ∩ S ∩ P′:
products of P , confirmed by S , removed by P ′ (to be empty

for PR)

Figure 4: Relation between P, P ′, and S

Knowing whether a variability model is correct or not may be

not enough, since one can be interested in finding how much a

model is faulty. For this reason, we introduce a measure of model

bugginess by defining an index measuring the conformance of P
w.r.t. S .

Definition 2.8 (Conformity index). We define conformity index as

CI (P , S) =
|P ∩ S|

|P|

It measures howmany products of P can be correctly instantiated

by S . We aim at having conformity index equal to 1; in this case, P

would be a subset of S and so no configuration rejected by S would

be accepted by P . Note that computing the conformity index could

be difficult in practice, as it requires to compute the set of products

of P and S . However, we aim at having a technique that guarantees

to improve the index (regardless the possibility to compute it).

3 VARIABILITY MODELS REPAIRS
We here tackle the problem of detecting and removing configura-

bility faults from a variability model. We want to achieve this by

applying some modifications, called repairs, to P .

Definition 3.1 (Repair). A repair is a syntactic modification of P
that permits to obtain a different syntactically correct P ′.

3.1 Variability model repairs properties
When we apply a repair to a variability model P in order to obtain

the repaired P ′, we modify the products of P as shown in Fig. 4 in

terms of the sets P, P ′, and S. We want that P ′ actually repairs P ,
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i.e., it removes some faults of P without introducing any new unde-

sired product. We formalize repair requirements by the following

properties:

NA Not adding: P ′ cannot allow configurations that were not

already allowed by P . In terms of sets of Fig. 4, the set P∩P ′

must be empty, i.e., P ′ ⊆ P.

RE Removing: P ′ must reject some configurations originally

allowed by P . In terms of sets of Fig. 4, the set P ∩ P ′ must

be not empty, i.e., P * P ′.
PR Preserving: P ′ must not refuse correct products allowed by P

and by S . In terms of sets of Fig. 4, the set P ∩ S ∩ P ′ must

be empty, i.e., P ∩ S ⊆ P ′.

WF Well-formed: P ′ must still represent a variability model, i.e.,

it can only add constraints that can be mapped back to con-

structs of the original variability model.

We call correct repair a transformation of P in P ′ that guarantees
all the previous properties, i.e., a well-formed variability model

such that P ′ is a proper subset of P and still contains all the correct

configurations of P ∩ S.

Remark. A naïve approach to produce repairs would be to en-

code each configuration c which is wrongly accepted by P (i.e., it

holds c |= P ∧ ¬S) as a formula asFormula(c)1 and add it to P as

¬asFormula(c) to obtain P ′. In this way, P ′ would exclude exactly

all the products of P that cannot be instantiated by S . However,
¬asFormula(c)may violate property WF (i.e., it may be not express-

ible using the core constraints defined in Sect. 2). Moreover, the

number of such wrong configurations could be huge.

3.2 Proposed repairs
We here propose some possible repairs to P in order to obtain a

better (in terms of conformity index) variability model P ′. We only

propose repairs for the core constraints of P ; in this way, we are

proposing an approach for repairing any variability model
2
. The

proposed repairs are (where a, b, and bi are features):
addCF Make a feature constant: Adding a constraint a to P . Feature

a is required in all products P ′.

addDF Disable a feature: Adding constraint ¬a to P . Feature a is

disabled in all products P ′.

addREQ A requires constraint a ⇒ b is added to P .
addEXC An excludes constraint a ⇒ ¬b is added to P .
addOR An OR constraint a ⇒

∨n
i=1

bi is added to P . This repair is
applicable only if P already contains the requires constraints
b1 ⇒ a, . . ., bn ⇒ a and no other OR constraint in which a
is the antecedent.

rmORchild In an OR constraint of P , a child bj is removed: a ⇒∨n
i=1

bi becomes a ⇒ (
∨j−1

i=1
bi ∨

∨n
i=j+1

bi ). All the requires

constraints bi ⇒ a (also modeling the corresponding or

block of variability models) are not modified, so the removed

child bj still requires a.

Note that all previous repairs guarantee NA since they can only

restrict P, i.e., they can remove some products but not add new

1asFormula is a function that, given amodelm, returns the conjunction of the variables

having value true inm and the negation of the variables having value false inm.

2
Note that if the fault is contained in the notation-specific constraints Θ, our approach
could be not able to completely repair P .

ones. Indeed, all repairs that add a new constraint to P do not add

products to P by the semantics of the logical conjunction. Note that

also removing a child from an OR does not add products because

|= (a ⇒
∨
i ∈{1, ...,n }\{j } bi ) ⇒ (a ⇒

∨
i ∈{1, ...,n } bi ).

Moreover, all previous repairs guarantee WF, i.e., applying a

repair to a model P obtained from a variability model of a given

type (i.e., feature model, or KConfig model, etc.) produces a model

P ′ that can be traced back to a variability model of the same kind.

For feature models, for example, addCF, addDF, addREQ, addEXC,
and addOR have a straightforward mapping using a corresponding

construct in the feature model notation: for instance, addCF can

be obtained by adding a requires constraint r ⇒ a between the

root r and the constant feature a (or, if a is not already present

in the feature model, adding a as mandatory child of r ). Mapping

rmORchild requires to remove the child in the corresponding or

block in the feature model; we obtain an unstructured feature model

that, however, can be aptly restructured using an abstract feature

or similar techniques [2, 13]. Similar arguments can be carried on

for each variability model notation we consider in this paper.

Therefore, in order for a repair to be correct, we only need to

check properties RE and PR. We can express these two properties by

means of logic operators (set inclusion becomes logical implication

and set intersection becomes logical conjunction):

RE ̸ |= P ⇒ P ′

PR |= P ∧ S ⇒ P ′

In the following, our approach will be based on the manipulation

of logic formulas.

Example 3.2. Applying the addREQ repair LOWERCASE⇒HELLO
to the faulty P shown in Fig. 3 produces the variability model in

Fig. 1 that does not contain any fault.

3.3 Repair attributes
As seen in the previous section, for a repair to be correct we have

to check properties RE and PR. Checking these two properties has

two useful characteristics.

Single use. If a repair is not applicable to P (i.e., it is not correct

because it violates RE or PR), it will be also not applicable to any P ′

obtained from P by the application of correct repairs. This allows

us to try to apply each repair only once.

Fast check. Each repair can be seen as a constraint δ that is added

to P3, i.e., P ′ = P ∧δ . Therefore, in order to prove |= P ∧S ⇒ P ∧δ ,
we just need to prove |= P ∧ S ⇒ δ . This can be efficiently done in

an SMT solver as explained in Sect. 4.1.

3.4 Repair precedence
Applying the repairs in different orders may lead to different final

results. We now want to define the order among repairs that allows

to obtain the best repaired model in terms of conformity index (see

Def. 2.8).

3
Note that this is true also for repair rmORchild that modifies existing constraints.

For each repair of this kind, we can provide an equivalent repair that adds a constraint

instead of modifying an existing one.
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P PB

PA PAB PBA

apply(P ,RB )

apply(PA,RB )

apply(P ,RA) apply(PB ,RA)

=⇒

Figure 5: Repair precedence – RA ≼ RB

We claim that a family of repair operators RA must be applied

before a family RB if applying RA and then RB removes more prod-

ucts than applying RB and then RA. In this case, we say that RA
has precedence w.r.t. RB (i.e., RA ≼ RB ).

Definition 3.3 (Repair precedence). RA has precedence w.r.t. RB
(formally RA ≼ RB ) if it holds

apply(apply(P ,RA),RB ) ⇒ apply(apply(P ,RB ),RA)

where apply(P ,R) is a function that applies constraints R to P
(those that respect RE and PR) and returns the modified model P ′.
The situation is depicted in Fig. 5.

We can formally prove the following precedences:

• RaddCF ≼ R for any repair family R
• RaddDF ≼ R for any repair family R
• RaddREQ ≼ R for any repair family R
• RaddEXC ≼ R for any repair family R, except for RrmORchild
• RaddOR ≼ RrmORchild

Making a feature constant, disabling a feature, and adding a re-

quires constraint (i.e., addCF, addDF, and addREQ) do not require

the presence of any other constraint, and the presence of the con-

straints they introduce do not avoid the application of other repairs;

therefore, the corresponding families can be applied at any time

during the repair process. However, applying one of these repair

families after any other repair family does not permit to find a

better (i.e., more constrained) model; actually, it could avoid the

creation of other repairs: for example, creating repairs RaddREQ af-
ter repairs RaddOR could avoid the creation of some OR constraint,

since there could not be all the implications needed to represent

the corresponding or block of variability models.

Also RaddEXC can be applied before any other repair family, ex-

cept for RrmORchild. For this couple of repair families, we cannot

provide any precedence: indeed, there are cases in which it is more

convenient to apply RaddEXC first, and others in which it is the other

way round.

RaddOR has precedence w.r.t. RrmORchild since removing children

of ORs is more effective if there are more ORs to modify.

Moreover, all the constraints of a given family R can be applied

in any order since for each r1, r2 ∈ R, it holds r1 ≼ r2 ∧ r2 ≼ r1.

Indeed, there is no family of repairs that produces constraints that

can be exploited for building repairs of the same family.

3.5 Repair witness
When we (partially) repair P in P ′, we can also generate a witnessw ,

i.e., a configuration that holds in P and does not hold in S and in P ′,
i.e.,w |= P ∧¬S ∧¬P ′. Such witness can be used to demonstrate the

fault in the original model, for example when doing a bug report

(see RQ6 in Sect. 5).

Figure 6: Proposed approach

Algorithm 1 Iterative repairing algorithm

Require: P : problem space constraints

Require: S : solution space constraints

1: ϕcont ← P ∧ ¬S
2: ϕRE ← P
3: ϕPR ← P ∧ S
4: while ϕcont , false do
5: r ← getNextRepair(P) ◃ Get next repair

6: if r = null then
7: return P ◃ There are no more possible repairs

8: end if
9: δ ← getConstraint(r)
10: if ϕRE ⇒ δ then
11: continue ◃ No product is removed

12: end if
13: if ϕPR ⇒ δ then ◃ Are correct products preserved?

14: ϕcont ← ϕcont ∧ δ
15: ϕRE ← ϕRE ∧ δ
16: ϕPR ← ϕPR ∧ δ
17: P ← apply(P , r) ◃ Apply repair r
18: end if
19: end while
20: return P

4 ITERATIVE REPAIRING PROCESS
We here present an approach that tries to repair a faulty variability

model. The proposed approach is informally depicted in Fig. 6. The

idea is that we want to repeatedly modify model P into a model P ′

till P ′ coincides with P ∧ S .
The approach is formally presented in Alg. 1. The approach first

builds three logic formulas:

• ϕcont for checking if the model is not completely repaired,

i.e., if there are still products in P ∩ S;

• ϕRE for checking property RE, i.e., that some product allowed

by P is removed in the repaired model;

• ϕPR for checking property PR, i.e., that the products allowed

by P ∧ S are not removed in the repaired model.

Then, the following instructions are repeatedly executed till the

model is completely repaired, i.e., until ϕcont becomes unsatisfiable:

• a new repair r is generated (the order in which repairs

are generated respects the repair precedences identified in

Sect. 3.4). A repair consists in a constraint δ and the infor-

mation regarding how to apply it (either adding it to the

existing constraints or substituting it for an existing one). If

no new repair is available, the process terminates returning P
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Table 1: Translation to an incremental SMT solver

Pseudocode SMT implementation

1 Boolean formula ϕ logical context ctxϕ

2 ϕ , false sat(ctxϕ )

3 ϕ ← ϕ ∧ δ assert(ctxϕ , δ )

4 ϕ ⇒ δ

function isImplied(ctxϕ , δ )
push(ctxϕ )
assert(ctxϕ ,¬δ )
isImplied ← ¬sat(ctx)
pop(ctxϕ )
return isImplied

end function

as non-completely repaired model; otherwise, the constraint

δ of the repair r is considered.
• if δ is already implied by P (i.e., property RE is violated), the

repair r is not considered and the next iteration of the loop

is taken;

• if δ is an acceptable constraint since it does not remove

correct products (i.e., property PR is not violated as δ is

implied by P ∧ S), it is conjuncted with each of the three

formulas and the corresponding repair r is applied to P (i.e.,

δ is applied to P according to the information contained in

r). Otherwise, r is not considered and the next iteration of

the loop is taken.

After the while loop, the algorithm returns the repaired P .
Note that Alg. 1 always terminates, either because the loop con-

dition becomes false or there are no more possible repairs. Since

the number of models of ϕcont decreases at every iteration and the

number of possible repairs is finite, the algorithm is guaranteed

to terminate either because ϕcont becomes unsatisfiable or all the

possible repairs have been considered.

Note that the algorithm does not guarantee to produce a complete

correct variability model. It could terminate before finding the

correct model because there are no more applicable repairs. This

is expected because it is well known that the logic of variability

models (a subset of propositional logic) may be not complete w.r.t.

propositional logic [26] that is used instead by S .

4.1 Approach implementation in SMT solver
The approach described in Alg. 1 has been implemented in Java,

using an SMT solver (namely Yices) for logical reasoning. The

mapping from the logical notation used in the pseudocode to SMT

statements is shown in Table 1:

(1) The three formulasϕcont ,ϕRE , andϕPR are modeled bymeans

of three contexts ctxcont , ctxRE , and ctxPR .
(2) Checking whether ϕ is not false is done by checking whether

the corresponding context ctxϕ is satisfiable.
(3) Conjuncting a new constraint δ to an existing formula ϕ

(lines 14, 15, and 16) is done using the command assert of δ in the

context ctxϕ .
(4) Checking whether δ is implied by ϕRE and ϕPR (lines 10 and

13) is done by asserting ¬δ in the corresponding context: if the

Table 2: Benchmarks

Benchmark # P
features

# P
constraints

# S
features

# Total

features (|F |)

uClibc 114 100 138 165

eCos 514 736 322 649

BusyBox 610 596 783 801

Linux 5736 10452 4389 5913

context becomes unsatisfiable, δ is implied. The context is saved

and restored, before and after the checking, by means of commands

push and pop.

5 EXPERIMENTS
5.1 Benchmarks
We took the benchmarks (variability models and solution space

models) considered in [20]:

• uClibc4: it is a C library for developing Linux embedded

systems. It has a KConfig model as variability model.

• eCos5: it is a free open source real-time operating system

intended for embedded applications. It has a CDL model as

variability model.

• BusyBox6: it combines tiny versions of many common UNIX

utilities into a single small executable. It has a KConfigmodel

as variability model.

• Linux: it is a general-purpose operating system. It has a

KConfig model as variability model.

In [20], variability models are provided using their logical repre-

sentation and since they use core constraints, they are completely

captured by our notation. Solution space models, instead, have been

mined from build-time errors, the effects of features in build files,

and the structure of the code (e.g., #IFDEF usage); since they are

also expressed in propositional logic, they can be treated by our ap-

proach. Table 2 shows, for each benchmark, the number of features

and constraints of the variability model, the number of features of

the solution space model, and the total number of features.

All the experiments have been executed on a Linux PC with two

Intel(R) Xeon(R) CPU E5-2630 (2.30GHz) and 64 GB of RAM.

5.2 Research questions
We here answer some research questions in order to evaluate our

approach.

RQ1 How many repairs are applied?

Table 3 reports, for each benchmark and for each repair family,

the number of applied repairs.

As the table shows, the number of applied repairs is between

25 and 278, which makes the manual inspection of the repairs

feasible. Note that a single fault in a variability model (e.g., the

usage of a wrong block construct) can produce a very high number

of wrong configurations (as shown in [14]); so trying to discover

faults in configurations by, for example, manually analysing them is

4
https://www.uclibc.org/

5
http://ecos.sourceware.org/

6
https://www.busybox.net/

https://www.uclibc.org/
http://ecos.sourceware.org/
https://www.busybox.net/
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Table 3: Applied repairs

Benchmark add
CF
add

DF
add

REQ
add

EXC
add

OR
rmO

Rch
ild

Total

uClibc 4 13 6 34 2 2 61

eCos 0 88 185 5 0 0 278

BusyBox 0 1 17 12 1 0 31

Linux 25 N/A N/A N/A N/A N/A 25

unfeasible. Instead, we are able to apply few repairs also when the

number of wrong configurations is very high. Note that the applied

repairs could introduce some anomalies [8], as dead features or

redundant constraints, that could make the model less readable;

however, the repaired model can be polished at the end using some

technique that removes such anomalies [8].

RQ2 How many repairs are generated and how many of them

are not applied because they are not correct?

Table 4 reports, for each benchmark and for each repair fam-

ily, the number of generated repairs and those discarded because

violating PR or RE properties. The table shows that PR and RE prop-

erties efficiently filter the generated repairs: only a few of them are

actually applied (those that are correct repairs), while the others

are discarded. Note that more repairs are discarded by PR than by

RE, although PR is checked after RE in the approach in Alg. 1. This

means that generally repairs are able to remove some products

(i.e., RE is not violated), but very often they also remove correct

products (i.e., PR is violated).

Note that, for the Linux variabilitymodel, we obtained the correct

model during the application of addCF repairs; therefore, all the

other repairs have not been generated.

RQ3How long does the repair process take and does it actually

repair the model?

Table 5 shows, for each benchmark, the time taken by the repair

process and the final result (whether the variability model has been

partially or completely repaired). Our technique repairs all the four

models. In three cases, the repair is not complete: either our repairs

are not powerful enough to remove faults in the models or the core

constraints are not expressive enough to represent S . For the Linux
variability model, instead, we are able to achieve conformity index

equal to 1 (i.e., to completely repair the model). Probably the Linux

variability model has fewer faults than the others since it is widely

used. However, we were still able to find some configurability faults.

As expected, the execution time is proportional to the number

of features of the initial variability model. However, the process

terminates as soon as it finds a correct model: therefore, although

the Linux benchmark is the biggest one, it does not have the highest

repair time since it is completely repaired only using addCF repairs.
In the worst case, our algorithm terminates in 1h30min.

RQ4 How is the variability model modified?

Table 6 shows the initial and the final number of constraints

for all the benchmarks. As expected, the number of constraints

always increases because most of the repairs add a new constraint

and no repair removes any constraint. However, since the number
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Figure 7: uClibc – Conformity index

of repairs is small, also the number of final constraints remains

manageable. Moreover, our repairing technique is able to introduce

constraints of all types, including OR constraints that are the base

for some group relationships of variability models [10].

RQ5 How does the conformity index grow with the repairs

application?

We were able to measure the conformity index only for the

uClibc benchmark. Fig. 7 shows how the conformity index of the

uClibc benchmark grows after each repair application. The plot

also reports when (i.e., in which iterations) a repair family is applied.

It is apparent that the repair family that is successfully applied for

more times than the others is addEXC.
Table 7 reports the same data of Fig. 7: it shows the conformity

index (from 0 to 1) obtained after the application of each repair

family (in the order they were applied), and the family gain factor
of conformity, i.e., the increment w.r.t. the value of the conformity

index before the application of the repair family. The repair families

that contributemore during the process are addDF and addEXC. This,
however, may depend on the order in which the repairs families are

applied. For this reason, we also computed the conformity index that

can be obtained by applying only one repair family in the process:

Table 8 shows, for each repair family, the obtained final conformity

index and the gain factor w.r.t. the initial conformity index when

we applied only repairs of one family. The addEXC family permits

to obtain the best results; indeed, as seen in Sect. 3.4, addEXC can
be applied since the beginning of the process, as it is not strictly

preceded by any other repair family (except for rmORchild w.r.t.

whom we cannot provide any precedence). However, also other

families, as addCF, addDF, addREQ (those not relying on existing

constraints of P ), have this property; they do not have such good

performances as addEXC because they are either too strong (and get
filtered by PR) or too weak (and get filtered by RE). The rmORchild
repairs have no effect when applied alone, since they are effective

only if applied after the addOR repairs (at least in our examples).

RQ6 How difficult is to apply a repair back to the original

variability model?

We are interested in investigating how a repair produced by our

technique can be applied back to the original variability model. We

consider the variability model specified for the uClibc library when
the target architecture is x86_64 (file Config.x86_64). We have taken

the first repair produced for the model, which is an addCF for the
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Table 4: Generated repairs (G) and those discarded because of PR and RE

Benchmark addCF addDF addREQ addEXC addOR rmORchild Total

G PR RE G PR RE G PR RE G PR RE G PR RE G PR RE G PR RE

uClibc 165 160 1 165 143 9 24251 22674 1571 11465 10024 1407 16 13 1 9 3 4 36151 33085 3005

eCos 649 649 0 649 514 47 362861 329496 33180 157063 131674 25384 105 103 2 0 0 0 521980 463003 58699

BusyBox 801 801 0 801 800 0 639422 639240 165 319583 319510 61 75 74 0 0 0 0 961261 961004 226

Linux 26 0 1 N/A N/A N/A N/A N/A 26 0 1

Table 5: Execution time and final result of the repair process

Benchmark Time (sec) Final result

uClibc 31 Partially repaired

eCos 690 Partially repaired

BusyBox 5241 Partially repaired

Linux 1060 Completely repaired

Table 6: Number of constraints (I: Initial, F: Final)

Benchmark Constant

feature

Disabled

feature

Requires Excludes OR Total

uClibc
I 0 0 80 15 0 100

F 4 13 86 49 2 159

eCos
I 0 0 660 21 0 736

F 0 88 845 26 0 1014

BusyBox
I 0 0 579 17 0 596

F 0 1 596 29 1 627

Linux
I 0 0 9455 144 0 10452

F 25 0 9455 144 0 10477

Table 7: Conformity index growth – uClibc

order repair conformity index family gain factor

initial 5.70×10
−9

1 addCF 2.70×10
−8

4.7

2 addDF 2.75×10
−4

1.02×10
4

3 addREQ 7.94×10
−4

2.8

4 addEXC 0.21 266

5 addOR 0.23 1.1

6 rmORchild 0.30 1.2

Table 8: Conformity index of single repair families – uClibc

final conformity index conformity gain factor

addCF 2.7×10
−8

4.74

addDF 5.7×10
−5

1.00×10
4

addREQ 7.94×10
−4

1.39×10
5

addEXC 2.73×10
−2

4.78×10
6

addOR 7.73×10
−9

1.36

rmORchild 5.7×10
−9

1

(a) Original menuconfig (b) Repaired menuconfig

Figure 8: menuconfig for uClibc

feature UCLIBC_HAS_FPU (i.e., UCLIBC_HAS_FPU must be always

selected). Firstly, as double check, we have generated a witnessw
(see Sect. 3.5) of the repair, and we have checked thatw identifies

an actual wrong product: we have compiled the library without

that option selected and we indeed found a compilation error. This

confirms that the repair has removed at least one configuration that

was not implementable, but that was allowed by the original model
7
.

Then, we havemodified the original variability model file in order to

find the modification necessary to have this feature mandatory. By

applying the proposed patch to the faulty menuconfig (see Fig. 8 (a)),

we were able to produce a correct menuconfig where the user

cannot unselect the feature UCLIBC_HAS_FPU, as shown in Fig. 8 (b).

Finally, we have filed a bug report at uClibc bugzilla website
8
(see

Sect. 3.5); at the time of writing, we have not received any reply.

6 THREATS TO VALIDITY
The solution space model is extracted from the implementation

using a research prototype software (FARCE), that could not capture
all the constraints [21], i.e., the retrieved solution space model could

accept configurations that cause build-time errors; indeed, FARCE is
used to analyse artefacts written in decades-old C-Dialects [21],
but does not cover all corner cases (e.g., some GNU C extensions,

some unusual build-system patterns). However, all the constraints

identified by FARCE are correct, i.e., FARCE is sound (it rejects only

faulty configurations, i.e., those causing build-time errors) but not

complete (it could also accept faulty configurations). The incom-

pleteness of FARCE does not affect the applicability of our approach,
but only the quantitative results: indeed, all the configurations we

remove from the problem space (by applying repairs) are correctly

rejected also by the solution space model (since FARCE is sound).

Moreover, FARCE is not the only approach able to find constraints

among features in variability models. For instance, in [28], a ma-

chine learning approach infers product-line constraints from an

oracle that is able to assess whether a given product is correct; we

could use this approach to have more precise solution space models.

7
Note that the witness is not required for repairing the variability model, but it is

useful to provide a proof of the configurability fault.

8
https://bugs.busybox.net/show_bug.cgi?id=9011

https://bugs.busybox.net/show_bug.cgi?id=9011
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In RQ5, we only considered the growth of the conformity index

for uClibc; indeed, for computing the index we have used BDDs

to count the products of the variability model, and this approach

did not scale to the (much bigger) other benchmarks. Therefore,

we cannot draw any definitive conclusion on the strength of the

different repair families to improve the conformity index; however,

we can still prove that all of them improve it.

Applying the repair back to the original variability model could

be difficult, as it could be done in multiple ways (at least one way

is guaranteed to exist by the fact that each repair guarantees WF)

and the user should decide which one to apply in order to preserve

the readability of the model. However, in RQ6, we have shown that

repairing an existing faulty variability model is feasible. As future

work, we plan to devise a technique that assists the user in fixing

the original variability model.

7 RELATEDWORK
This work is inspired by our previous work [5] in which we tried

to automatically detect and remove configurability faults in feature

models using an approach based on mutation [4]. Although the

aims of the two works are similar (i.e., removing configurability

faults), the two approaches are quite different. Firstly, in [5] we

target only feature models, while here we try to be as much compre-

hensive as possible by considering the types of constraints shared

by the different variability model notations. Secondly, the previous

work does not guarantee to improve the conformity index of the

model since it could worsen it in particular cases, while the current

approach can only improve it. Thirdly, in [5] mutation families

(similar to the repairs of this work) are all continuously applied to

the model at each step of the fault removal process. This causes

the generation of a lot of model modifications, while in this work

we apply each repair at most once. Finally, the current work con-

siders real industrial case studies, while our previous work only

considered more academic benchmarks.

Another approach trying to identify inconsistencies between the

problem space and the solution space is proposed in [16] in which

the authors checkwhether the implementation constraints correctly

capture the constraints of an existing feature model: they derive a

feature model from the implementation and check whether this is

conformant with the original feature model. The approach differs

from ours in several aspects. They only consider feature models,

while we consider any variability model kind; they suppose that,

in case of inconsistency, the fault is in the implementation, while

for us is the other way round; finally, they need to generate a new

model and compute the structural difference w.r.t. the initial one to

show the inconsistency, while we only need to apply few repairs

directly to the initial model to remove configurability faults.

A different approach trying to automatically repair feature mod-

els is presented in [14]. The approach starts from a feature model

and, through a continuous cycle of test-and-fix, improves it in or-

der to reduce the number of its wrong constraints; the approach

uses configurations derived both from the model and from the real

system and checks whether these are correctly evaluated by the

feature model. The main difference with our approach is that we

do not rely on the real implementation, but on the model repre-

senting the solution space: therefore, we can avoid considering the

single configurations (whose number could be huge), but we can

manipulate only constraints.

Another way to repair variability models is explored by Tem-

ple et al. [28]. They use machine learning techniques to infer the

constraints of a product line. They randomly generate products

from the product line and apply machine learning to identify which

combinations of features are likely to produce faulty products.

There are some works that do not attempt to repair variability

models but, nonetheless, try to isolate or at least study faults in

them. For instance, in [1], 42 bugs of the Linux kernel (derived from

bug reports) due to variability are analysed; each bug is related to

a configuration that does permit to compile the system correctly,

but such that the obtained program produces a runtime error. They

do not provide any automatic way to fix them.

Other works on variability models are not interested in finding

faults w.r.t. the implementation, but in analysing variability models

per se, for example for studying their evolution. In [17], the authors

study the evolution over time of the Linux variability model both

from a quantitative and from a qualitative point of view, identifying

how the number of features and constraints grew over time, and

how the structure of the model was modified by designers. In [23],

the authors found that, during the evolution of the Linux kernel

between releases 2.6.32 and 2.6.33, 35% of the features removed from

the variability model continued to exist elsewhere in the code: our

approach could be applied to keep the variability and the system

implementation consistent in case of evolution.

Other approaches are interested in mining constraints for synthe-

sizing either a variability model or a solution space model. Nadi et

al. [20] focused their research on deriving constraints from variabil-

ity models, and from implementation constraints (code, build files,

preprocessor directives, etc.); we have used the constraints they

derived as benchmarks for our approach. Their main interests are

to find how many implementation constraints can be automatically

extracted, to detect how these constraints relate to the constraints

of the variability models, and to classify the constraints of the vari-

ability model. Differently from our approach, they are not interested

in finding faults in the variability models, although they also notice

that some inaccuracy of their results could be due to some errors in

the variability models. Zhang and Becker [30] tackle the problem of

managing the variability of the implementation when a variability

model is missing: to this purpose, they try to automatically encode

variability models by analysing the implementation constraints

(i.e., the solution space). Andersen et al. [3] extract feature models

from constraints given in CNF or DNF. Since these techniques may

introduce some errors, our approach can be used to possibly repair

these generated models, or validate their correctness.

Our approach has some similarities with automatic software re-
pair [19]. Automatic repair of any software artefact needs some

kind of oracle: in our approach the oracle is given by the imple-

mentation constraints (i.e., the solution space), while in software

repair the oracle is usually given by test suites [6], pre- and post-

conditions [24], etc. Moreover, also a way to automatically repair

the software is needed: in [18], the authors can try to identify the

more effective repair actions, that are similar to our repair families.



SPLC ’17, September 25-29, 2017, Sevilla, Spain Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori

8 CONCLUSIONS
The paper has presented an approach to automatically repair a

variability model that wrongly assesses the validity of some config-

urations w.r.t. the validity defined by the constraints of the imple-

mentation. The approach consists in trying to apply some repairs

(in terms of further constraints) to the variability model till it does

not consider correct some configurations that cannot be concretized

in the implementation. Experiments have shown that the approach

is able to repair faulty models used in large and significant projects.

As future work, we plan to devise techniques to avoid the gen-

eration of some repairs that will be discarded because of PR or

RE. Moreover, we plan to study the effect of our repairs on the

corresponding variability model; indeed, it could be that our repairs

introduce some redundancies (e.g., redundant constraints in feature

models) that make the variability model less readable: we could

remove the redundancies on the variability model using exiting

tools [29], or we could try to apply the repairs in a way that these

redundancies do not occur. Moreover, we plan to devise a technique

to assist the user in applying the repair back to the original variabil-

ity model; indeed, there could be several ways to fix the original

model, but some of them could spoil the readability of the model.
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