
A Model-driven Validation & Verification
Environment for Embedded Systems

A. Gargantini
DIIMM, Università di Bergamo, Italy

Email: angelo.gargantini@unibg.it

E. Riccobene
DTI, Università di Milano, Italy
Email: riccobene@dti.unimi.it

P. Scandurra
DTI, Università di Milano, Italy
Email: scandurra@dti.unimi.it

Abstract— This paper presents a model-driven environment for
HW/SW co–design and analysis of embedded systems based on
the Unified Modeling Language, UML profiles for SystemC/multi-
thread C, and the Abstract State Machine formal method. The
environment supports a model-driven design methodology which
provides a graphical high-level representation of hardware and
software components, and allows C/C++/SystemC code gener-
ation from models, a reverse engineering process from code
to graphical UML models, and a transparent and tool-assisted
system validation and verification based on ASMs.

I. INTRODUCTION

SystemC (built upon C++) has emerged as de facto,
open [18], industry-standard language for system-level models,
specifically targeted at architectural, algorithmic, transaction-
level modelling [24]. Recently, a further improvement has
been achieved by exploiting lightweight software modelling
languages like UML (Unified Modeling Language) [25] to
describe system specifications and generate from them exe-
cutable models in C/C++/SystemC. See the numerous stan-
dardization activities controlled by the OMG group [17] like
the Schedulability, Performance, and Timing Analysis (SPT)
profile, the recent UML extension for SoC (USoC), the SysML
proposal, and the MARTE initiative.

In accordance with the design principles of the OMG’s
Model-driven architecture (MDA) [14], we defined a model-
driven design methodology for embedded systems [22] based
on the UML 2, a SystemC UML profile (for the HW side),
and a multi-thread C UML profile (for the SW side), which
allows modelling of the system at higher levels of abstraction
(from a functional executable level down to RTL level). The
methodology is fostered by a design process called UPES
(Unified Process for Embedded Systems) [23] which extends
the conventional Unified Process (UP) (by the authors of
UML), and by the UpSoC (Unified Process for SoC) sub-
process of UPES used for refining the HW platform model.

In this paper, we present our work in progress on com-
plementing our methodology with a formal analysis process
for high level system validation and verification (V&V) which
involves the Abstract State Machine (ASM) formal method [5].
This analysis flow is supported by a V&V toolset integrated
into a model-driven HW-SW co-design environment [21] to
assist the designer in both the modelling and analysis activity.

Our overall goal is to provide a design and analysis envi-
ronment where both the software application and the hardware

architecture are described together by a multi-views UML
model representing the mapping of the functionality (of the
software application) onto an architecture, and where the
system components can be functionally validated and verified
early at high levels of abstraction and in a transparent way (i.e.
no strong skills and expertise on formal methods are required).

This paper is organized as follows. Sect. II provides our mo-
tivations. Sect. III provides some background on the ASMs and
their supporting toolset. Sect. IV describes the architecture of
the design/analysis environment with its components features.
Sect.V focus on the new V&V component of the environment.
Finally, Sect. VI quotes some relevant related work.

II. MOTIVATIONS

Formal methods and analysis tools have been most often
applied to low level hardware design. The higher abstraction
offered by most system-level design languages (mostly based
on ANSI-C, like SystemC, SpecC, etc.), instead, are not yet
amenable to rigourous, formal analysis [26]. The ambiguity in
the specifications of the underlying (vastly more expressive)
programming languages such as C and C++ makes the creation
of formal models for verification even more difficult. As such
languages are closer to concurrent software than to traditional
hardware description, we propose to address this problem by
using formal techniques from software analysis, and, going
up of a further abstraction step (to further reduce the system
design complexity), formal techniques from model analysis for
UML-like designs capable of eliminating ambiguities in the
UML semantics by compiling UML designs in an intermediate
formal representation (like ASMs, Object-Z, Petri Nets, etc.).
In particular, we adopt the ASM formalism to provide a formal
intermediate representation of the intended system. Although
the ASM method [5] comes with a rigourous scientific founda-
tion, it can be understood correctly as pseudo-code or Virtual
Machines working over abstract data structures. The method
boasts a great variety of successful applications in different
fields such as: definition of industrial standards for program-
ming and modelling languages, design and re-engineering of
industrial control systems, modelling e-commerce and web
services, design and analysis of protocols, architectural design,
language design, verification of compilation schemas and com-
piler back-ends, etc. Moreover, a number of ASM tools have
been developed for model simulation, model-based testing,



verification of model properties by proof techniques or model
checkers – see [5] for a detailed description.

III. ASMS AND THE ASMETA TOOLSET

Abstract State Machines are an extension of FSMs, where
unstructured control states are replaced by states comprising
arbitrary complex data. The states of an ASM are multi-sorted
first-order structures, i.e. domains of objects with functions
and predicates (boolean functions) defined on them, while
the transition relation is specified by “rules” describing the
modification of the functions from one state to the next. A
complete mathematical definition of the method is in [5]. The
notion of ASMs moves from a definition which formalizes
simultaneous parallel actions of a single agent, either in an
atomic way, basic ASMs, and in a structured and recursive
way, Turbo ASMs, to a generalization where multiple parallel
agents interact in a synchronous/asynchronous way, synchr/a-
synch multi-agent ASMs. Appropriate rule constructors also
allow non-determinism (or existential quantification) and un-
restricted synchronous parallelism (universal quantification).

The ASMETA (ASM mETAmodelling) toolset [10] [4] is a
set of tools around ASMs developed according to the model-
driven development principles. At the core of the toolset, the
AsmM metamodel [4] is a complete meta-level representation
of ASMs concepts based on the OMG’s Meta-Object-Facility
(MOF) [15]. AsmM is also publicly available as expressed in
the meta-languages AMMA/KM3 [3] and in EMF/Ecore [8].

The ASMETA toolset includes a textual notation, AsmetaL,
to write ASM models (conforming to the AsmM) in a textual
and human-comprehensible form, a text-to-model compiler,
AsmetaLc, to parse AsmetaL models and check for their
consistency w.r.t. the AsmM OCL constraints, a simulator,
AsmetaS, to execute ASM models (as instances of AsmM),
the Avalla language, a domain-specific modelling language for
scenario-based validation of ASM models, with its supporting
tool, the AsmetaV validator, and the ATGT tool that is a test
case generator based upon the SPIN model checker [12].

IV. ENVIRONMENT ARCHITECTURE

Figure 1 shows the HW/SW co-design environment archi-
tecture [21]. Components inside dashed lines are under devel-
opment. The environment consists of two major parts: a de-
velopment kit (DK) with design and development components,
and a runtime environment (RE) that is the SystemC execution
engine. The DK consists of a UML2 modeler supporting the
UML profile for SystemC and for multi-thread C, translators
for forward/reverse engineering to/from C/C++/SystemC, and
a V&V toolset based on the ASM formal method. In our
current implementation, the modeler is based on the Enterprise
Architect (EA) UML tool [7] by SparxSystems. Details on the
new V&V toolset are given in the next section.

V. THE V&V TOOLSET

The V&V toolset is built upon the ASMETA toolset. Its
essential components are depicted in Fig. 2 together with the
phases (denoted with a number and a label) the designer (or

Fig. 1. Tool architecture

Fig. 2. V&V toolset

analyst) undertakes in the analysis process. The process starts
by applying the mapping (phase 1) of the SC-UML model
of the system (exported from the EA-based modeler) into a
corresponding ASM model (written in AsmetaL) providing
the basis for analysis.

Once the ASM formal model of the system is generated,
several phases can be executed in parallel: basic simulation
(phase 2), scenario-based validation (phase 3), test-case gen-
eration (phase 4) and conformance testing (phases 5 (A)
and 5 (B)), formal verification by model checking (phase 6).
Components and interfaces for phases 1, 2, and 3 have been
already implemented. Components/interfaces for phases 4 and
6 are currently under development, while those for phase 5
will be tackled in a long-term period.

A brief description of each phase and supporting tool com-
ponents follows. It should be noted that as required skills and
expertise the designer (or analyst) has to familiarize with the
SystemC UML profile (embedded in the EA-based modeler),
with very few commands of the Avalla textual notation to write
pertinent validation scenarios, and with property specification
notations like temporal logics.

1. Mapping: The semantic mapping is defined (once for all)
in terms of a set of transformation rules between the SystemC
UML profile and the AsmM metamodel. First, we had to
express in terms of ASMs the SystemC discrete (absolute and
integer-valued) and event-based simulation semantics taking
inspiration from the ASM formalization of the SystemC 2.0



simulation semantics in [16]. We then proceeded to map
UML-SystemC concepts (data types, modules, ports, process
state machines1, etc.) into ASMs concepts. The UML2AsmM
transformation is completely automatized by a model trans-
formation engine such as the ATL engine [2] (the one we
adopted) developed within the Eclipse Modeling Project as
implementation of the OMG QVT [20] standard.

2. Basic simulation: The AsmetaS simulator [10] interprets
ASM models (as instances of the AsmM metamodel). It can
be used in a standalone way to provide basic simulation of the
overall system behaviour. As key features for model validation
AsmetaS supports axiom checking (to check whether axioms
expressed over the currently executed ASM model are satisfied
or not), consistent updates checking for revealing inconsistent
updates, random simulation, and configurable logging facilities
to inspect the machine state.

3. Scenario-based functional validation: The AsmetaV val-
idator is based on the AsmetaS tool and on the Avalla
language. This last provides constructs to express execution
scenarios in an algorithmic way as interaction sequences
consisting of actions committed by the design actor to set the
environment (i.e. the values of monitored/shared functions), to
check the machine state, to ask for the execution of certain
transition rules, and to enforce the machine itself to make one
step as reaction of the actor actions. AsmetaV reads a user
scenario written in Avalla (see Fig. 2), it builds the scenario
as instance of the Avalla metamodel by means of a parser, it
transforms the scenario and the AsmetaL specification which
the scenario refers to, to an executable AsmM model. Then,
AsmetaV invokes the AsmetaS interpreter to simulate the
scenario. During simulation the user can pause the simulation,
and watch the current state and value of the update set at every
step, through a watching window. During simulation, AsmetaV
captures any check violation and if none occurs it finishes with
a “PASS” verdict. Besides a “PASS”/“FAIL” verdict, during
the scenario running AsmetaV collects in a final report some
information about the coverage of the original model; this is
useful to check which transition rules have been exercised.

Validation should precede the application of more expensive
and accurate methods, like formal verification of properties,
that should be applied only when a designer has enough
confidence that requirements satisfaction is guaranteed.

4. Test-case generation: In accordance with model-based
testing, in which test cases are derived in whole or in part from
a model that describes some aspects of the system under test,
the ATGT tool [9] takes as input an ASM model, produces
a set of test predicates, translates the original ASM model
to Promela – the language of the model checker SPIN [12]
used to generate tests –, and generates a set of test sequences
by exploiting the counter example generation of the model
checker (test case generation by model checking). ASMs are
therefore used as test oracles to predict the expected outputs of
units under test. The test cases derived from the ASM model

1SystemC process state machines are an extension of the UML statecharts
formalism for modelling the behaviour of the reactive SystemC processes.

are functional tests on the same level of abstraction as the
model. These test cases are known as the abstract test suite.

5. Conformance testing: Moreover, in order to execute the
abstract test suite directly against the system under test (i.e. the
SystemC code), an executable test suite must be derived from
the abstract test suite (because this last is on the wrong level of
abstraction) that can communicate with the system under test.
This is done by the SystemC code instrumenter (see Fig. 2) by
mapping the abstract test cases generated by ATGT, or even
generated by Avalla from the provided scenarios, to concrete
test cases suitable for execution. Selected behavioural aspects
of the system can be studied, therefore, by conformance
testing, i.e. by instrumenting the SystemC implementation
code from the model.

6. Verification by model checking: Every model-checking
tool comes with its own modelling language. By model trans-
formations, appropriate links can be provided from ASMETA
to model checkers like the well-known SPIN/PROMELA, and
therefore encoding ASM models into PROMELA communi-
cating automata. The user has therefore to specify only the
properties (linear temporal logic (LTL) formulas, in the case
of SPIN) that the final system is expected to satisfy. The model
checker then outputs yes if the given ASM model satisfies the
given properties, or generates a counterexample otherwise. By
studying the counterexample, you can pinpoint the source of
the error in the model, correct the model, and try again. The
idea is that by ensuring that the model satisfies enough system
properties, we increase our confidence in the correctness of the
model.

It should be noted that two different levels of model
execution for analysis are supported by our environment: (i)
the V&V toolset based on AsmetaS and SPIN technologies;
(ii) the SystemC simulation and debugging. The first one is
more abstract and aimed at high-level functional validation
to investigate a model with respect to the user perceptions
to ensure that the specification really reflects the user needs
and statements about the application, and to detect faults
in the specification as early as possible with limited effort.
The second one is low-level, based on SystemC code, and
necessary to deliver correct system-level designs. The joint
use of these two simulation modes bring the advantage of
having specification-based test oracles to be used to drive the
SystemC implementation code for conformance testing.

We have been testing our analysis methodology on case
studies taken from the standard SystemC distribution. Thanks
to the ease in raising the abstraction level using ASMs, we
believe our approach scales effectively to industrial systems.

VI. RELATED WORK

In [19], the authors present a model-driven development and
validation process which begins by creating (from a natural
language specification of the system requirements) a functional
abstract model and (still manually) a SystemC implementation
model. The abstract model is described using the Abstract
State Machine Language (AsmL) – another implementation
language for ASMs. Our methodology, instead, benefits from



the use of the UML as design entry-level and of model transla-
tors which provide automation and ensure consistency among
descriptions in different notations (such those in SystemC
and ASMs). Moreover, these last can remain hidden to the
designer, making the process completely transparent to the
user who does not want to deal with them.

In [19], a designer can visually explore the actions of
interest in the ASM model using the Spec Explorer tool and
generate tests. These tests are used to drive the SystemC
implementation from the ASM model to check whether the
implementation model conforms to the abstract model (con-
formance testing). The test generation capability is limited and
not scalable. In order to generate tests, the internal algorithm
of Spec Explorer extracts a finite state machine from ASM
specifications and then use test generation techniques for
FSMs. The effectiveness of their methodology is therefore
severely constrained by the limits inherited from the use of
Spec Explorer. The authors themselves say that the main
difficulty is in using Spec Explorer and its methods for state
space pruning and exploration. The ASMETA ATGT tool that
we use (see Sect. III) for the same scope exploits, instead, the
method of model checking to generate test sequences, and it
is based on a direct encoding of ASMs in PROMELA, the
language of the model checker SPIN [12], i.e. it directly uses
ASMs as test oracles to predict the expected outputs.

Another limit of the approach in [19] concerns the integra-
tion between the abstract model (the ASM specification) and
the SystemC implementation model. As Spec Explorer only
allows links to C# and Visual Basic, for testing whether a
SystemC implementation model satisfies the specification, the
designer has to provide explicit bindings to SystemC, i.e. he or
she has to manually write a C# interface wrapper that export
functions of the SystemC library and of the implementation
model to libraries in Spec Explorer. This is heavily manual,
time-consuming, and requires expertise in AsmL/C# that go
beyond those of the applicant. We intend, instead, to develop
the SystemC code instrumenter for conformance testing once
for all in a generative manner by model transformation making
it reusable for every source SystemC UML model.

The work in [11] also uses AsmL and Spec Explorer to
settle a development and verification methodology for Sys-
temC. They focus on assertion based verification of SystemC
designs using the Property Specification Language (PSL), and
although they mention test case generation as a possibility,
the validation aspect is largely ignored. We were not able to
investigate carefully their work as their tools are unavailable.

In [13], a model-driven methodology for development and
validation of system-level SystemC designs is presented. The
development and validation flow is entirely based on the
specification of a functional model (reference model) in the
ESTEREL language, a state machine formalism, and on the
use of the ESTEREL Studio development environment [1]
for the purpose of test generation. The proposed approach
merely concentrates on providing coverage-directed test suite
generation for system level design validation only.

Authors in [6] provide test case generation by performing

static analysis on SystemC designs. This approach is limited
by the strength of the static analysis tools, and the lack of
flexibility in describing the reachable states of interest for
directed test generation. Moreover, static analysis requires
sophisticated syntactic analysis and the construction of a
semantic model, which for a language like SystemC (built on
C++) is difficult due to the lack of formal semantics.

The SystemC Verification Library [18] provides API for
transaction-based verification, constrained and weighted ran-
domization, exception handling, and HDL-connection APIs.
We aim, however, at the development of formal techniques to
augment standard SystemC verification.

ACKNOWLEDGMENT

This work is supported in part by the project Model-driven
methodologies and techniques for embedded system design
through UML, ASMs and SystemC at STMicroelectronics.

REFERENCES

[1] Esterel Studio. www.estereltechnologies.com.
[2] The ATL transformation language. www.eclipse.org/m2m/atl/.
[3] The AMMA Platform. http://www.sciences.univ-nantes.

fr/lina/atl/, 2005.
[4] The ASMETA toolset. http://asmeta.sf.net/, 2006.
[5] E. Börger and R. Stärk. Abstract State Machines: A Method for High-

Level System Design and Analysis. Springer Verlag, 2003.
[6] Francesco Bruschi, Fabrizio Ferrandi, and Donatella Sciuto. A frame-

work for the functional verification of systemc models. Int. J. Parallel
Program., 33(6):667–695, 2005.

[7] The Enterprise Architect tool: www.sparxsystems.com.au/.
[8] Eclipse Modeling Framework. www.eclipse.org/emf/.
[9] A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate

Tests from ASM Specifications. In 10th Int. Workshop on Abstract State
Machines, LNCS 2589, p. 263-277. Springer, 2003.

[10] A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based
simulator for ASMs. In Proc. of the 14th Int. ASM Workshop, 2007.

[11] A. Habibi and S. Tahar. Design and verification of systemc transaction-
level models. IEEE Transactions on VLSI Systems, 14:5768, 2006.

[12] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Softw.
Eng., 23(5):279–295, 1997.

[13] D.A. Mathaikutty, S. Ahuja, A. Dingankar, and S. Shukla. Model-driven
test generation for system level validation. High Level Design Validation
and Test Workshop, 2007. HLVDT 2007. IEEE, pages 83–90, 2007.

[14] OMG. The Model Driven Architecture (MDA Guide V1.0.1). http:/
/www.omg.org/mda/, 2003.

[15] OMG. The Meta Object Facility, v1.4, formal/2002-04-03, 2002.
[16] W. Müller, J. Ruf, and W. Rosenstiel. SystemC: methodologies and

applications, chapter An ASM based systemC simulation semantics,
pages 97–126. Kluwer Academic Publishers, 2003.

[17] The Object Managment Group (OMG). http://www.omg.org.
[18] The Open SystemC Initiative. http://www.systemc.org.
[19] Hiren D. Patel and Sandeep K. Shukla. Model-driven validation of

systemc designs. In DAC ’07: Proc. of the 44th annual conference on
Design automation, pages 29–34, New York, NY, USA, 2007. ACM.

[20] OMG, MOF Query/Views/Transformations, ptc/07-07-07, 2007.
[21] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A model-driven

design environment for embedded systems. In DAC ’06: Proceedings
of the 43rd annual conference on Design automation, pages 915–918,
New York, NY, USA, 2006. ACM Press.

[22] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A Model-
driven co-design flow for Embedded Systems. Advances in Design and
Specification Languages for Embedded Systems (Best of FDL’06), 2007.

[23] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. Designing a
unified process for embedded systems. In Int. workshop on Model-based
Methodologies for Pervasive and Embedded Software. IEEE, 2007.

[24] T. Gröetker and S. Liao and G. Martin and S. Swan. System Design
with SystemC. Kluwer Academic Publisher, 2002.

[25] OMG. The Unified Modeling Language, v2.1.2. www.uml.org.



[26] Moshe Y. Vardi. Formal techniques for systemc verification; position
paper. In DAC, pages 188–192. IEEE, 2007.


