
Test Generation for Sequential Nets of Abstract State

Machines with Information Passing

Paolo Arcainia, Angelo Gargantinia

aDipartimento di Ingegneria, Università degli Studi di Bergamo, Italy

Abstract

Model-based test generation consists in deriving system traces from specifica-
tions of systems under test. There exist several techniques for test generation,
which, however, may suffer from scalability problems. In this paper, we as-
sume that the system under test can be divided in several subsystems such
that only one subsystem is active at the time. Moreover, each subsystem
decides when and to which other subsystem to pass the control, by also ini-
tializing the initial state of the next subsystem in a desired way. We model
these systems and we show how it is possible to generate tests in a very effi-
cient way that exploits the division of the entire system in subsystems. Test
generation for the whole system is performed by visiting each subsystem and
generating tests for it. The tests are combined in order to obtain valid system
traces. We show how several visiting policies influence the completeness of
the test generation process.

Keywords: Test case generation, state explosion problem, information
passing, abstraction, State Machines

1. Introduction

Model-based automatic test generation consists in automatically gener-
ating tests from (abstract) models of systems under test. In this way, models
and specifications are reused for software testing without the need for testers
to write test suites by hand. The advantage of using models instead of code,
is mainly the possibility to use specifications as test oracles and that specifica-
tions provide an abstract view of the system without all the implementation
details. Although model-based test generation techniques have been success-
fully employed [1, 2, 3] even for complex systems, the scalability of these
approaches is still a challenge.

Preprint submitted to Science of Computer Programming October 11, 2013

We have worked on test generation from Abstract State Machines (ASMs)
and used a tool for test generation for several years. However, since the test
generation algorithm is based on model checking [4], one of the main ob-
stacles has been the scalability of the approach and soon we encountered
the well known state space explosion problem. Indeed, the problem of the
model checking method is that the computational complexity increases ex-
ponentially together with the size of the model. Several techniques exist to
overcome this limitation, like symbolic representation of states, compact stor-
ing of states, and efficient state space exploration. However, these techniques
may still fail or weaken the coverage of the state space.

On the other hand, the system under test may have some peculiarities
that can be exploited to limit the state explosion. We focus on systems that
are composed of several subsystems that pass the control to each other such
that only one subsystem is active at any time. This topology can be exploited
for generating the test sequences over the single subsystems and combining
them later, instead of generating the tests over the entire system. So, since
the state space exponentially grows with the size of the system, decomposing
the system exponentially reduces the complexity of the problem.

In this paper, we extend the approach in [5] by allowing information
passing among the machines: the active machine decides the next machine
and also its initial state by setting some location values as in classical value-
passing of programming languages. This situation often occurs when model-
ing complex systems. For instance, the reader can think of a robotic system
in which multiple small robots work in the same environment and pass to each
other a job to be completed. The same scenario is common also in program-
ming: a program is divided in multiple subprograms, but at every time only
one subprogram is active and every subprogram calls another subprogram by
passing some information.

Such systems can be modeled in an abstract way as sequential nets of
ASMs, defined in Sect. 3, that are sets of ASMs having some features includ-
ing that only one ASM is active at every time.

The test generation for the entire system modeled by a whole unique spec-
ification may be infeasible, but the topology of the system can be exploited
by the test generation algorithm. In this paper, we present a technique in
Sect. 4, that builds tests for single submodels and combine them in order to
obtain valid system traces. Differently from [5], the test generation and test
combination are performed at the same time, in order to visit the ASM only
starting from valid initial states. We present several policies in which the ac-

2

tivities of test generation and combination can be performed together. The
basic strategy implements a classical depth first search, while the retrying
method performs some extra visits in order to improve the testing cover-
age. Moreover, we present a backward search which is able to build tests by
backward visiting the net and possibly improving the coverage.

The paper is organized as follows. Sect. 2 presents the ASM formalism
and the use of model checkers for test generation. In Sect. 3 we formalize
the concept of sequential nets of ASMs. Sect. 4 reports the three strategies
we propose for generating test suites for sequential nets. Sect. 5 presents
the relations existing between the three strategies. Sect. 6 describes the
experiments conducted on three versions of the running case study that we
use throughout the paper. Sect. 7 discusses the limitations of the presented
approach. Sect. 8 relates our work with similar contributions, and Sect. 9
concludes the paper.

2. Background

2.1. Abstract State Machines

Abstract State Machines (ASMs) [6] are an extension of FSMs, where
unstructured control states are replaced by states with arbitrary complex
data. The states of an ASM are multi-sorted first-order structures, i.e.,
domains of objects with functions and predicates defined on them. Static
functions never change during any run of the machine. Dynamic functions
are distinguished between monitored (only read by the machine and modified
by the environment), and controlled (read and written by the machine).

ASM states are modified by transition relations specified by “rules” de-
scribing the modification of the functions interpretation from one state to
the next one. There is a limited but powerful set of rule constructors includ-
ing guarded actions (if-then) and simultaneous parallel actions (par). The
constructor choose expresses nondeterminism in a compact way. A rule can
be declared with a name (macro rule) and called in another rule simply by
its name.

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . .
of states of the machine, where s0 is an initial state and each si�1 is obtained
from si by executing the machine (unique) main rule. An ASM can have
more than one initial state. Because of the nondeterminism of the choose
rule and of the environment moves, an ASM can have several different runs
starting in the same initial state.

3

An ASM state si is represented by a set of couples (location, value). ASM
locations, namely pairs (function-name, list-of-parameter-values), represent
the abstract ASM concept of basic object containers (memory units). Loca-
tion updates represent the basic units of state change and they are given as
assignments, each of the form loc :� v, where loc is a location and v its new
value.

2.2. Test generation for ASMs

In model based testing [2, 1], the specification describing the expected
behavior of the system is used as a test oracle to assess the correctness of the
implementation. Tests are derived from specifications and used generally in
conformance testing. In the following we give some basic definitions about
test generation from ASMs.

Definition 1. A test sequence (or test) is a finite sequence of states s1, . . . , sn
whose first element s1 is an initial state, and each state si (with i � 1) follows
the previous one si�1 by applying the transition rules. The test length is given
by the number of states of the sequence. A test suite (or test set) is a finite
set of test sequences.

Informally, a test sequence is a partial ASM run and represents an ex-
pected system behavior. It contains both the inputs (monitored locations)
and the expected outputs (controlled locations), i.e., the specification is used
as test oracle. In MBT, specifications are also usually used to define test-
ing criteria, that determine if a test suite is adequate to test a software. In
ASMs, test adequacy can be measured as follows.

Definition 2. A test predicate is a formula over the state and determines
if a particular testing goal is reached. A coverage criterion C is a function
that, given a formal specification, produces a set of test predicates. A test
suite TS satisfies a coverage criterion C if each test predicate generated with
C is satisfied in at least one state of a test sequence in TS.

Note that a test sequence can cover many test predicates in different
states. Several coverage criteria for ASMs have been defined in [4]. One of
the basic criteria for ASMs is the rule coverage. A test suite satisfies the
rule coverage criterion if, for every rule ri, there exists at least one state in
a test sequence in which ri fires and there exists at least one state in a test
sequence in which ri does not fire.

4

2.3. Test generation for ASMs by Model Checking

In order to build test suites satisfying some coverage criteria, several
approaches have been defined. In this paper we use a technique based on the
capability of model checkers to produce counterexamples [7]. The method
consists of three steps:

1. The test predicates set {tp1, . . . , tpm} is derived from the specification
according to the desired coverage criteria;

2. The specification is translated into the language of the model checker;
3. For each test predicate tpi the trap property � tpi is proved, where �

means always. If the model checker finds a state s where tpi is true,
it stops and returns as counterexample a state sequence leading to s:
such sequence is the test covering tpi. If the model checker explores the
whole state space without finding any state where the trap property is
false, then the test predicate is said infeasible and it is ignored. In the
worst case, the model checker terminates without exploring the whole
state space and without finding a violation of the trap property (i.e.,
without producing any counterexample), usually because of the state
explosion problem. This case is inconclusive since the user does not
know if either the trap property is true (i.e., the test is infeasible), or
it is false (i.e., there exists a sequence that reaches the goal).

In this paper we use the Asmeta framework [8] and its ATGT tool [9],
based on the model checker SPIN [10]. Note that any framework supporting
the model checking of ASMs, either directly [11] or through a mapping into
the syntax of a model checker [12, 13, 14], could be used in our approach.

3. Sequential Nets of Abstract State Machines

We focus our attention on those systems that are composed of several
subsystems that pass the control and some information to each other, so
that only one subsystem is active at any time. Usually, in order to describe
such kind of systems, a model of each subsystem is developed. A model of
coordination is needed for representing the execution of the entire system,
i.e., the activation/deactivation of subsystem models according to their local
decisions.

An example is that of web applications. In a web application only one
web page is active at any time, and the active page decides which is the next
page to be displayed. A page can pass to the next one some information (like

5

the shopping cart or the session ID). The coordination is performed by the
web browser and the web server that are responsible of closing the current
page and visualizing the next one (passing the control among pages).

3.1. Definition of sequential net of ASMs

We assume that each component of the system is modeled with an ASM
and we introduce the notion of sequential net of ASMs as follows.

Definition 3. A sequential net of machines is a set of Abstract State Ma-
chines tM1, . . . ,Mnu such that:

1. there exists a unique initial machine M1,
2. only one machine is active at any time,
3. the active machine decides when and to which machine the control is

passed,
4. each machine has its initial state selected by the previous machine,
5. the net is connected, i.e., each machine is reachable from the initial

machine.

A sequential net of ASMs allows one to model a set of machines that run
in sequence one after another, pass the control and some initial information
to each other, and share the same environment. We call the net sequential
because only one machine is running at any time, so the machines are not
concurrent; however, there may not be a unique sequence among the ma-
chines, since every machine can decide the next machine depending on local
decisions. We can represent a sequential net by a graph, where each node is
a machine and an arc is a possible transfer of control between two machines.

Definition 4 (Control passing state). Let Si be the set of states of an ASM
Mi. We define Si

cp � Si the set of control passing states in which Mi passes
the control to another machine. For each machine Mi, function

nextMi : Si
cp Ñ tM1, . . . ,Mi�1,Mi�1, . . . ,Mnu

signals, for each control passing state, the machine to which the control is
passed.

Note that states keeping the control in machine Mi are not considered as
control passing ; so the codomain of nextMi does not include Mi.

6

Definition 5 (Initial state identification). In order to model the information
passing between machines Mi and Mj, we define the partial function

isij : Si
cp Ñ Sj

o

where Sj
o is the set of initial states of machine Mj. is ij is defined only for

states ts P Si
cp |nextMipsq �Mju, i.e., only for those states that actually pass

the control to machine Mj.

Definition 6 (Net run). A net run r for a sequential net is a (possibly
infinite) sequence of valid runs r1, . . . such that:
• r1 is a run of the initial machine M1;
• only the last run of a finite sequence can be infinite;
• for each pri, ri�1q (with i � 1, . . . , k�1), let ri be a run of machine Ma,
ri�1 be a run of machine Mb, fs be the final state of ri and is be the
initial state of ri�1:

1. fs P S a
cp : the final state of the run in Ma is control passing,

2. Mb � nextMapfsq: Ma passes the control to Mb,
3. is P isabpfsq: Ma chooses the initial state is of Mb.

Note that different runs could belong to the same machine and some
machines could not have corresponding runs.

In order to efficiently test a system modeled as a sequential net of ASMs,
testing the single subsystems is not enough, since also the interaction among
them must be tested. So, test suites for a net can not simply be the union of
the tests for the single ASMs (as defined in Sect. 2.2) but they must contain
tests that cover the whole application including the control and information
passing. Therefore, Def. 1 must be extended for sequential nets of ASMs.

Definition 7 (Sequential net test). A test for a sequential net is a finite net
run, i.e., the sequence is finite and the last run is finite.

3.2. Modeling a sequential net with a set of ASMs

A possible way to model a sequential net is to model every single machine
Mi in a classical way by a standard ASM and adding a means to signal the
transfer of control and of information to the next machine as follows:

1. model every machine Mi as usual;
2. add a domain AsmDomain � tM1, . . . ,Mnu to each signature;
3. add a 0-ary function currAsm of type AsmDomain to each signature;

in the initial state, currAsm must assume the value Mi;

7

4. write the body of the main rule as follows:

if currAsm = Mi then
r mi[]

endif

where r mi[] is a macro rule that contains the actions of the machine.
5. if a machine Mi wants to call a machine Mj (with i � j):

(a) it has to perform the update

currAsm := Mj

In this way, Si
cp � ts P Si|vcurrAsmws � Miu and nextMipsq �

vcurrAsmws.
(b) it can identify an initial state of Mj by setting the value of some

controlled functions of Mj. If Mi must set the function f in the
initial state of Mj, Mi must have in its signature a function f and
Mj must have in its signature a monitored function fMon having
the same domain and codomain of f . fMon is only used in the
initial state to initialise f , in the following way:

function f = fMon

When Mi passes the control to Mj, the value of the monitored
function fMon is set to the value of the function f in machine Mi.
In this way, machine Mi models the function is ij.

Every machine Mi can be independently executed, for instance, by sim-
ulation for validation purposes. It asks the environment for (part of) its
initial state, and it executes some useful actions until it changes the value
of currAsm; after that, any other step of execution does not produce any
change in the controlled part of the machine.

Example 1. Consider, for instance, the three ASMs shown in Codes 1, 2
and 3. They constitute a sequential net of ASMs (see Fig. 1). A producer
produces tokens until it receives the signal that it must pass the control
to some consumer (when the monitored function consume is true): if there
are at least 100 tokens, it passes the control to a fast consumer, otherwise, if
there are at least 20 tokens, it passes the control to a slow consumer. The fast
consumer keeps consuming 5 tokens at a time while there are more than 50
tokens; then it passes the control to the slow consumer. The slow consumer
consumes one token at a time until there are no more tokens.

8

Example 2. Given the ASM shown in Code 1, a test predicate generated with
the rule coverage criterion (requiring that the update rule currAsm := FC is
executed) is

currAsm = PR and consume and tokens >= 100

The test sequence that permits to satisfy the test predicate is

�������������

State 1
�������������

tokens = 0
currAsm = PR
consume = false

. . .

�������������

State 100
�������������

tokens = 99
currAsm = PR
consume = false

�������������

State 101
�������������

tokens = 100
currAsm = PR
consume = true

3.3. Product machine

Several validation and verification activities can be performed directly
on the single machines. However, if we want to do a more general evalua-
tion of the system (e.g., simulation of the transitions among machines, or
test generation for the whole system), we must also provide a model of the
coordination.

Instead of introducing a multi-agent scheduler, one possible simpler way
is to merge all the machines in a unique product ASM as follows:
• the signatures of the machines are merged in a single signature:

– there is only one copy of the AsmDomain domain and of the
currAsm function;

– controlled functions that are shared among the machines are de-
clared only once;

– domains that are shared among the machines are declared only
once;

– monitored functions of non-initial machines (i.e., Mj with j �
2, . . . , n), used in the initial states to initialise the controlled func-
tions shared among the machines (i.e., those declared with the
Mon suffix), are not declared.

• all macro rules (except the main rules) of the single machines are in-
cluded;
• in the main rule r main, rules r mirs are individually called according

to the value of the function currAsm;
• the initial state of the product ASM is the initial state of machine M1;

9

a
sm

p
ro
d
u
ce
r
/
/
p
ro
d
u
ce
r

si
g

n
a

tu
re
:

en
u

m
d

o
m

a
in

A
sm

D
o
m
a
in

=
{P

R
|F

C
|S

C
}

d
o

m
a

in
S
u
b
In
tD

o
m

su
b

se
to

f
In
te
g
er

co
n

tr
o

lle
d
cu

rr
A
sm

:
A
sm

D
o
m
a
in

co
n

tr
o

lle
d
to
ke
n
s
:
S
u
b
In
tD

o
m

m
o

n
it

o
re

d
co

n
su
m
e
:
B
o
o
le
a
n

d
efi

n
it

io
n

s:
d

o
m

a
in

S
u
b
In
tD

o
m

=
{0

..
1
1
0
}

ru
le

r
p
ro
d
u
ce
r
=

if
co

n
su
m
e

th
en

if
to
ke
n
s
>
=

1
0
0

th
en

cu
rr
A
sm

:=
F
C

el
se

if
to
ke
n
s>

=
2
0

th
en

cu
rr
A
sm

:=
S
C

en
d

if
en

d
if

el
se

to
ke
n
s
:=

to
ke
n
s
+

1
en

d
if

m
a

in
ru

le
r
m
a
in

=
if
cu

rr
A
sm

=
P
R

th
en

r
p
ro
d
u
ce
r[
]

en
d

if

d
ef

a
u

lt
in

it
s0
:

fu
n

ct
io

n
cu

rr
A
sm

=
P
R

fu
n

ct
io

n
to
ke
n
s
=

0

C
o
d

e
1:

P
ro

d
u

ce
r

a
sm

fa
st
C
o
n
su
m
er

/
/
fa
st

co
n
su
m
er

si
g

n
a

tu
re
:

en
u

m
d

o
m

a
in

A
sm

D
o
m
a
in

=
{P

R
|F

C
|S

C
}

d
o

m
a

in
S
u
b
In
tD

o
m

su
b

se
to

f
In
te
g
er

co
n

tr
o

lle
d
cu

rr
A
sm

:
A
sm

D
o
m
a
in

co
n

tr
o

lle
d
to
ke
n
s
:
S
u
b
In
tD

o
m

m
o

n
it

o
re

d
to
ke
n
sM

o
n
:
S
u
b
In
tD

o
m

d
efi

n
it

io
n

s:
d

o
m

a
in

S
u
b
In
tD

o
m

=
{0

..
1
1
0
}

ru
le

r
fa
st
C
o
n
su
m
er

=
if
to
ke
n
s
<
=

5
0

th
en

cu
rr
A
sm

:=
S
C

el
se

to
ke
n
s
:=

to
ke
n
s
�

5
en

d
if

m
a

in
ru

le
r
m
a
in

=
if
cu

rr
A
sm

=
F
C

th
en

r
fa
st
C
o
n
su
m
er
[]

en
d

if

d
ef

a
u

lt
in

it
s0
:

fu
n

ct
io

n
cu

rr
A
sm

=
F
C

fu
n

ct
io

n
to
ke
n
s
=

to
ke
n
sM

o
n

’ ’ ’ ’

C
o
d

e
2
:

F
a
st

co
n

su
m

er

a
sm

sl
ow

C
o
n
su
m
er

/
/
sl
ow

co
n
su
m
er

si
g

n
a

tu
re
:

en
u

m
d

o
m

a
in

A
sm

D
o
m
a
in

=
{P

R
|F

C
|S

C
}

d
o

m
a

in
S
u
b
In
tD

o
m

su
b

se
to

f
In
te
g
er

co
n

tr
o

lle
d
cu

rr
A
sm

:
A
sm

D
o
m
a
in

co
n

tr
o

lle
d
to
ke
n
s
:
S
u
b
In
tD

o
m

m
o

n
it

o
re

d
to
ke
n
sM

o
n
:
S
u
b
In
tD

o
m

d
efi

n
it

io
n

s:
d

o
m

a
in

S
u
b
In
tD

o
m

=
{0

..
1
1
0
}

ru
le

r
sl
ow

C
o
n
su
m
er

=
if
to
ke
n
s
>

0
th

en
to
ke
n
s
:=

to
ke
n
s
�

1
en

d
if

m
a

in
ru

le
r
m
a
in

=
if
cu

rr
A
sm

=
S
C

th
en

r
sl
ow

C
o
n
su
m
er
[]

en
d

if

d
ef

a
u

lt
in

it
s0
:

fu
n

ct
io

n
cu

rr
A
sm

=
S
C

fu
n

ct
io

n
to
ke
n
s
=

to
ke
n
sM

o
n

’ ’ ’ ’ ’ ’

C
o
d

e
3
:

S
lo

w
co

n
su

m
er

10

��
producer

consume^tokens¥100
00

consume^20¤tokens 100

++
fastConsumer

tokens¤50
00 slowConsumer

tokens�0

��

Figure 1: Sequential net PCseqNet1

• for each machine Mi, every time the control is passed to Mi (i.e.,
currAsm is updated to Mi), a rule r init irs is executed, that sets the
private signature of Mi to the initial state of Mi. The private signature
of a machine Mi is composed by the controlled functions of Mi that are
not shared with any other machine.

Example 3. Given the sequential net shown in Fig. 1 (composed by machines
shown in Codes 1, 2 and 3), the product machine is the one shown in Code 4.
A test predicate for the product machine, generated with the rule coverage
criterion (requiring that the update rule currAsm := SC in the macro rule
r producer is executed), is

currAsm = PR and consume and tokens < 100 and tokens >= 20

The test sequence that permits to satisfy the test predicate is

���������

State 1
���������

tokens = 0
currAsm = PR
consume = false

���������

State 2
���������

tokens = 1
currAsm = PR
consume = false

. . .

���������

State 20
���������

tokens = 19
currAsm = PR
consume = false

���������

State 21
���������

tokens = 20
currAsm = PR
consume = true

4. Test Generation for Sequential Nets of ASMs

We want to reuse the techniques described in Sect. 2.3 to generate valid
sequential net tests, by using only classical ASMs (as those described in
Sect. 3.2 and Sect. 3.3). We aim to devise sound and complete techniques.

Definition 8. A test generation method is sound if each produced test se-
quence is a valid sequence for the sequential net.

11

asm PCseqNet1ProductMachine

signature:
enum domain AsmDomain = {PR | FC | SC}
domain SubIntDom subsetof Integer
controlled currAsm: AsmDomain
controlled tokens : SubIntDom
monitored consume : Boolean

definitions:
domain SubIntDom = {0..110}

rule r fastConsumer =
if tokens <= 50 then

currAsm := SC
else

tokens := tokens � 5
endif

rule r slowConsumer =
if tokens > 0 then

tokens := tokens � 1
endif

’

’

’

rule r producer =
if consume then

if tokens >= 100 then
currAsm := FC

else if tokens >= 20 then
currAsm := SC

endif endif
else

tokens := tokens + 1
endif

main rule r main =
par

if currAsm = PR then
r producer[]

endif
if currAsm = FC then

r fastConsumer[]
endif
if currAsm = SC then

r slowConsumer[]
endif

endpar

default init s0:
function currAsm = PR
function tokens = 0

Code 4: Product machine of the sequential net PCseqNet1 (see Fig. 1)

Definition 9. A test generation method is complete if all the feasible test
predicates of all the single machines are covered by the test sequences pro-
duced by the method.

Generating test sequences using the product machine. The first idea is to
derive the test sequences directly from the product machine that already
contains all the interactions among subsystems. A test sequence t of the
product machine is transformed in a sequential net test in the following way:

1. the sequence t is divided in k subsequences, such that in each subse-
quence ti the value of currAsm is constant and, given two consecutive
subsequences ti and ti�1, the values of currAsm in ti and in ti�1 are
different;

2. given a subsequence ti, let Ma be the value of currAsm in ti. ti is
transformed in a run ri of machine Ma by removing the functions that
do not belong to machine Ma;

3. the concatenation of runs r1, . . . , rk is a sequential net run.

12

Theorem 1. The product machine test generation method is sound and
complete.

Proof. The technique explained before is sound since it can derive only
valid sequential net runs from the test sequences generated from the product
machine. The method is complete since all the feasible test predicates of the
single machines are reachable in the product machine.

However, since test generation algorithms based on model checking may
need to visit the whole state space of the model, the generation of test se-
quences from the product machine may suffer from the state explosion prob-
lem. It would be desirable to have a method in which the model checking
must be executed only on the single machines and not on the product ma-
chine; indeed, as we have shown in [5], it is computationally easier to execute
the model checker several times over small models, rather than executing it
one time over a big model. The method should also provide a mechanism for
combining the test suites produced for the single machines in a unique test
suite to use for testing the whole system; the time taken by the combination
of the test suites should be negligible.

4.1. Generating test suites in absence of information flow

A particular class of sequential nets is given by independent sequential
nets in which there is no information passing between the machines, that
only pass the control to each other. For this kind of nets, we proposed a
test suite generation method in [5]. Given the independent sequential net
tM1, . . . ,Mnu, the technique works as follows:

1. A test suite TSi is built for each machine Mi, using the test generation
technique described in Sect. 2.3. Given the test sequences of machine
Mi, we define inner as those sequences that terminate in a state in
which currAsm is Mi, and exiting as those sequences that terminate in
a state in which currAsm is Mj (with j � i). Inner test sequences keep
the control of the net in the current machine, whereas exiting sequences
pass the control to another machine.

2. The generated test sequences of test suites tTS1, . . . , TSnu constitute
a graph, called test sequence graph, where every node is a machine
and every arc is a test sequence. Inner test sequences are self loops
of a node, whereas exiting test sequences are arcs between different
nodes. Note that a test sequence graph has a similar structure to the

13

corresponding sequential net (for example Fig. 1): the nodes are the
same, but a transition t is present in the test sequence graph only if
there is a test executing t.

3. A recursive procedure traverses the test sequence graph starting from
the initial machine. During the traversal, it concatenates the test se-
quences it encounters; the obtained sequences are valid sequential net
runs and so tests for the sequential net (see Def. 7).

4.2. Combining the test generation and test concatenation for dealing with
information passing

If the sequential net is not independent, i.e., the machines pass to each
other some information, the technique briefly described in Sect. 4.1 is no
longer valid, because the initial state of a machine Mj is determined by the
machine Mi that passes the control to it. Therefore, it is no more possible
to independently build the test suites for the single machines, because we do
not know the initial state from which a machine will be executed. In this
case, we have to combine the generation of the test sequences in the single
machines with the visit of the sequential net for building the sequential net
tests. We propose a general technique for building a test suite for a sequential
net: it is based on a recursive procedure testGenVisit described in Alg. 1.
The procedure is abstract since it contains two placeholders, markVisited
and hasToContinueVisit, that must be filled in order to define a concrete
test suite generation method. In this section we propose two methods: the
basic method and the retrying method. They differ in the condition that
stops the recursive visit. At the end of Alg. 1 we show how the two methods
implements the two placeholders.

4.2.1. Basic method

Let’s now describe the procedure, instantiated using the basic method.
The recursive visit of a machine Mi works as follows:

1. Mi is marked as visited (line 1);
2. a set of tests testsM for covering the test predicates of machine Mi

(initialised with the selected initial state is) is computed using the
technique described in Sect. 2.3 (line 2);

3. if no test has been produced, the test sequence prefix is added to the
test suite testSuite (line 4); otherwise, for each test in testsM :
(a) a test newTest is obtained by concatenating the tests prefix and

test (line 7);

14

Algorithm 1 General test suite generation method – Procedure testGenVisit

Require: the machine Mi to visit
Require: an initial state is of machine Mi

Require: a test sequence prefix that permits to reach machine Mi

1: markVisited

2: testsM Ð allTestsForpMi, isq
3: if testsM � H then
4: testSuiteÐ testSuiteY tprefixu
5: else
6: for test P testsM do
7: newTestÐ prefix � test
8: fsÐ finalStatepnewTestq
9: if fs P Si

cp then
10: Mj Ð nextMipfsq
11: nextMisÐ isijpfsq
12: if hasToContinueVisit then
13: testGenV isitpMj, nextMis, newTestq
14: else
15: testSuiteÐ testSuiteY tnewTestu
16: end if
17: end if
18: end for
19: end if

Basic generation method:

1: markVisited : visitedMs Ð visitedMs Y tMiu
12: hasToContinueVisit : Mj R visitedMs

Retrying generation method:
1: markVisited : visitedMs Ð visitedMs Y tpMi, isqu
12: hasToContinueVisit : pMj, nextMisq R visitedMs^hasUncovTpspMjq

(b) if the final state fs of newTest is a control passing state (line 9)
and the selected machine Mj has not been visited yet (line 12),
the recursive visit continues from Mj with the selected initial state
nextMis , using newTest as prefix (line 13); otherwise newTest is
added to the test suite (line 15).

15

rule r slowConsumer2 =
if tokens >= 30 then

tokens := tokens � 2
else if tokens > 0 then

tokens := tokens �1
endif endif

Code 5: Modified rule of the slow consumer in the sequential net PCseqNet2

The procedure testGenVisit is invoked using as argument the initial ma-
chine M1 of the net, an initial state of M1 randomly chosen, and the empty
test sequence ε.

Note that the traversal of the graph representing the sequential net has
linear complexity with the number of arcs and nodes (transitions and ma-
chines), and it requires a negligible amount of time with respect to the gen-
eration of the tests in the single machines (line 2 of the algorithm).

Theorem 2. The basic method is sound.

Proof. The basic method is sound because the tests are finite runs of the
sequential net (see Def. 7). The finiteness of the runs is guaranteed by the fact
that, during the traversal of the sequential net, already visited machines are
not visited anymore, and by the fact that each machine has a finite number
of test predicates and so a finite number of tests.

Theorem 3. The basic generation method is not complete.

Proof. In order to prove that the basic method is not complete, we give an
example where some feasible test predicates are not covered by the produced
tests. We consider a modified version of sequential net PCseqNet1 that we
call PCseqNet2. In PCseqNet2 the slow consumer consumes 2 tokens (instead
of only 1) while there are at least 30 tokens, as shown in Code 5 where we
report the modified rule r slowConsumer, called r slowConsumer2. In this
case, if machine slowConsumer is visited starting from machine producer, in
the initial state tokens could be lower than 30 and so rule r slowConsumer2
would be only partially covered since the guard tokens >= 30 is never true.

16

4.2.2. Retrying generation method

The retrying method implements the testGenVisit procedure (see Alg. 1)
with a less restrictive stopping condition for the recursive visit. Indeed a
machine can be visited starting from different initial states. So, the proce-
dure marks as visited the couple pmachine, initial stateq at line 1, and, at
line 12, the recursive visit continues if next machine Mj has never been vis-
ited with the selected initial state nextMis and if there are still uncovered
test predicates in machine Mj .

As for the basic method, also the retrying method invokes procedure
testGenVisit using as argument the initial machine M1 of the net, a randomly
chosen initial state of M1, and the empty test sequence ε.

Note that the retrying method guarantees to cover all the test predicates
of rule r slowConsumer2 : it is visited (if not from producer, for sure from
fastConsumer) with an initial value of tokens such that guard tokens >= 30
is true.

Theorem 4. The retrying method is sound.

Proof. The retrying method is sound because the tests are finite runs of
the sequential net (see Def. 7). The finiteness of the runs is guaranteed by
the fact that each machine has a finite number of test predicates and so a
finite number of tests. Note that a machine Mi could have an infinite number
of initial states but, since the number of tests that reach Mi is finite, Mi will
be visited a finite number of times.

Theorem 5. The retrying method is not complete.

Proof. In order to prove that the retrying method is not complete, it is
sufficient to show an example where some feasible test predicates are not
covered by the produced tests. We consider a modified version of sequential
net PCseqNet1 that we call PCseqNet3. In PCseqNet3 the slow consumer
consumes one token at a time if the number of tokens is greater than 28, and
consumes all the tokens at once when there are 27 tokens, as shown in Code 6
reporting the modified rule r slowConsumer (called r slowConsumer3). In
this case, if machine slowConsumer3 is visited with any initial state in which
tokens is different from 27, the update rule that resets tokens to 0 can not
be covered. Reaching such a state can be very difficult using the retrying
method (and even more difficult using the basic method).

17

rule r slowConsumer3 =
if tokens = 27 then

tokens := 0
else if tokens > 28 then

tokens := tokens � 1
endif endif

Code 6: Modified rule of the slow consumer in the sequential net PCseqNet3

4.3. Backward test generation

In order to cover those test predicates that are not covered by the basic
and the retrying methods, we introduce a technique for building a test for a
given test predicate by backwards traversing the graph of the sequential net.

Alg. 2 shows a recursive procedure that, in order to cover a test predicate
tp of machine M , builds a test sequence by starting from machine M and
going backwards until the initial machine of the net is reached. The recursive
visit of a machine M works as follows:

1. machine M is marked as visited (line 1);
2. if the test predicate tp is not feasible a null test sequence is returned

(line 18); otherwise, if tp is feasible:
(a) a test sequence is produced for covering it (line 3);
(b) if M is the initial machine of the net, the test is returned (line 5);

otherwise the procedure continues with the following points;
(c) a test predicate tpInit is computed starting from the initial state

initStateM of the test (line 8); such test predicate describes the
condition that must be satisfied by another machine of the net for
reaching machine M and selecting initStateM as initial state of M .
The test predicate is currAsm � M ^

�
fPInitFun f � vfwinitStateM ,

where InitFun is the set of controlled functions that are initialized
in the initial state through monitored functions, as explained in
Sect. 3.2;

(d) for each machine Min that reaches M , if Min has not been visited
yet, it is recursively visited using tpInit as test predicate; in this
way we check if machine Min has a test sequence that permits to
reach M and that selects the desired initial state initStateM ;

(e) as soon as a machine is found that can reach M with a not empty
test backTest (line 12), the loop is quit and the concatenation of

18

Algorithm 2 Backward test sequence generation method – Procedure back-
wardVisit
Require: the machine M to visit
Require: the test predicate tp to cover
Ensure: the test t covers tp

1: visitedMs Ð visitedMs Y tMu
2: if isFeasibleptpq then
3: testÐ getTestptpq
4: if M �M1 then
5: return test
6: end if
7: initStateM Ð getInitStateptestq
8: tpInitÐ buildTpFrompinitStateM ,Mq
9: for Min P enteringpMq do

10: if Min R visitedMs then
11: backTestÐ backwardV isitpMin, tpInitq
12: if isNotNullpbackTestq then
13: return backTest� test
14: end if
15: end if
16: end for
17: end if
18: return NULL

the test sequences backTest and test (line 13) is returned;
(f) if no machine is found, the null test sequence is returned (line 18).

Note that the backward method guarantees to cover the update rule that
resets tokens in machine slowConsumer3 (see Code 6). Both the basic and
the retrying methods may not reach machine slowConsumer3 with the re-
quired initial state with tokens initialised to 27. The backward method,
instead, finds the test, since it starts building the test directly from machine
slowConsumer in which the initial state is not fixed (no value for tokensMon
is given), so that all the initial states are considered.

Theorem 6. The backward method is sound.

Proof. The backward method is sound because the produced test is a finite
run of the sequential net (see Def. 7). The finiteness of the run is guaranteed

19

M0
tokens:�0

//M1

tokens�1?

77

tokens�1?

''
M2

tokens 5?

tokens:�tokens�1
oo tokens¥5?gg

Figure 2: FiveTokens sequential net

asm M0

signature:
enum domain AsmDomain = {M0 | M1 | M2}
domain SubIntDom subsetof Integer
controlled currAsm: AsmDomain
controlled tokens : SubIntDom

definitions:
domain SubIntDom = {0..5}

rule r m0 =
par

currAsm := M1
tokens := 0

endpar

main rule r main =
if currAsm = M0 then

r m0[]
endif

’
’
’
’
’
’
’
’
’
’
’

Code 7: M0

asm M1

signature:
enum domain AsmDomain = {M0 | M1 | M2}
domain SubIntDom subsetof Integer
controlled currAsm: AsmDomain
controlled tokens : SubIntDom
monitored tokensMon : SubIntDom

definitions:
domain SubIntDom = {0..5}

rule r m1 =
if tokens = 1 then

par
//do some actions
currAsm := M2

endpar
else

par
//do some other actions
currAsm := M2

endpar
endif

main rule r main =
if currAsm = M1 then

r m1[]
endif

default init s0:
function tokens = tokensMon

Code 8: M1

asm M2

signature:
enum domain AsmDomain = {M0 | M1 | M2}
domain SubIntDom subsetof Integer
controlled currAsm: AsmDomain
controlled tokens : SubIntDom
monitored tokensMon : SubIntDom

definitions:
domain SubIntDom = {0..5}

rule r m2 =
if tokens < 5 then

par
currAsm := M1
tokens := tokens +1

endpar
else

//do some other actions
endif

main rule r main =
if currAsm = M2 then

r m2[]
endif

default init s0:
function tokens = tokensMon

’
’
’

Code 9: M2

by the fact that, during the backward visit, already visited machines are not
visited anymore.

Theorem 7. The backward generation method is not complete.

Proof. In order to prove that the backward method is not complete, we
show that it is not able to produce tests for some particular test predicates.
Consider, for example, the sequential net shown in Fig. 2, whose machines
are shown in Codes 7, 8 and 9. In such sequential net, the function tokens
is incremented only by M2 when it passes the control back to M1. After
having passed the control 5 times, M2 performs some internal activities. Let
us introduce the test predicate tp1 : currAsm � M1 ^ tokens � 1 related

20

Retrying

''

Backward

ww
Basic

Figure 3: Subsumption relations between the test generation methods

to the then branch of the conditional rule in rule r m1 of machine M1. For
covering the test predicate tp1, machine M1 must be visited starting from
an initial state where tokens is 1. The backward method can not cover tp
because it behaves as follows:

1. it starts the visit from machine M1;
2. it visits backwards machine M2, since it is the only machine that

reaches M1 setting tokens to 1. M2 decides to pass the control to
M1 only if tokens is less than 5; in particular, it passes the value 1
when tokens has been initialized to 0;

3. it tries to visit backwards machine M1, since it is the only machine
that reaches M2 setting tokens to 0; however, since M1 has already
been visited, the backward visit is stopped, without producing a test
for tp1.

Note that tp1 is feasible and would be covered by the retrying method
(see proof of Thm. 12).

5. Subsumption relations between the test generation methods

Definition 10. We say that a test generation method Y subsumes another
test generation method X if, when X finds a test that covers a test predicate
tp, then also Y guarantees to find a test for tp.

Assuming that the model checker never returns inconclusive results, the
subsumption relations existing between the three presented test generation
methods are those depicted in Fig. 3.

Theorem 8. The retrying method subsumes the basic method.

Proof. The retrying method extends the basic method by permitting to
visit a machine more than once, with different initial states. So, if a test is
built for a test predicate tp by the basic method, a test for tp would be also
built by the retrying method.

21

Theorem 9. The basic method does not subsume the retrying method.

Proof. There are some test predicates that, although covered by the retry-
ing method, may not be covered by the basic method. Consider, for example,
the sequential net PCseqNet2. The retrying method assures to cover all the
test predicates; the basic method, instead, may not cover the test predicates
related to the then branch of the conditional rule of rule r slowConsumer2
(see Code 5), if it visits machine slowConsumer with an initial state in which
function tokens is lower than 30.

Theorem 10. The backward method subsumes the basic method.

Proof. If the basic method is able to build a test for covering a test predi-
cate tp in machine Mi, it means that the test predicate is feasible, and that a
net run exists from machine M1 to machine Mi. Since the backward method
assures to find tests for feasible test predicates and to reach the initial ma-
chine if a net run exists to reach machine Mi, it is proved that the backward
method subsumes the basic method.

Theorem 11. The basic and the retrying methods do not subsume the back-
ward method.

Proof. As seen before, the basic and the retrying methods may not cover
the test predicate currAsm � SC ^ tokens � 27 of machine slowConsumer3
(see Code 6) that, instead, is covered by the backward method.

Theorem 12. The backward method does not subsume the retrying method.

Proof. Let us consider the FiveTokens sequential net (Fig. 2, machines in
Codes 7, 8, and 9). We have shown in proof of Thm. 7 that the backward
method can not cover the test predicate tp1 related to the then branch of
the conditional rule in rule r m1 of machine M1. The retrying method can
cover tp1, since it can visit machine M1 starting from machine M2 that,
when passing the control to M1, actually sets tokens to the desired value 1.

Since no subsumption relation holds between the retrying and the back-
ward methods, one may wonder if their combination is complete, i.e., if all
the feasible test predicates can be covered by at least one of the two methods.

22

Theorem 13. The combination of the retrying and the backward generation
methods is not complete.

Proof. In order to prove that the combination of the retrying and the back-
ward method is not complete, we show that both methods cannot produce
tests for some particular test predicates. Consider, for example, the sequen-
tial net FiveTokens shown in Fig. 2, whose machines are shown in Codes 7, 8
and 9. Let us consider the test predicate for covering the else branch of the
conditional rule of rule r m2 of machine M2; it can be covered when tokens
is at least 5. The retrying method, in order to reach machine M2 initialising
tokens to 5, should visit machine M1 six times: however, the third visit can
not be executed since, by that time, all the test predicates of machine M1
are already covered (in Alg. 1 the guard at line 12 is false). Also the backward
method requires to visit machine M1 six times; in this case the generation
is stopped before the second visit of machine M1, since the guard at line 10
of Alg. 2 is false (machine M1 has already been visited).

6. Experiments

In order to have a preliminary comparison of the proposed visiting poli-
cies, we have generated test suites achieving structural coverage of the three
Producer-Consumers sequential nets PCseqNet1 (see Example 1), PCseqNet2
(see Code 5), and PCseqNet3 (see Code 6). We have run all the experiments
on a Linux machine, Intel(R) Core(TM) i7, 4 GB RAM. For obtaining short
counterexamples, we have used the breadth-first-search option in Spin. We
have applied monitoring, i.e., when generating a test for a given test predi-
cate, we check if it accidentally covers also other test predicates that we can
mark as covered and ignore. All the reported results are the average of 100
runs of each experiment.

6.1. Comparison of the basic and the retrying methods

In the first experiment we want to compare the basic and the retrying
methods. Table 1 shows the results obtained by the two methods over the
three versions of the running example. It reports the number of covered and
uncovered test predicates (and the total number), the time taken by the gen-
eration method, the number of tests, the total length of all the tests, and
the average length of a test. We can notice that, for the first sequential net
PCseqNet1, the two methods cover the same number of test predicates, since

23

m
e
th

o
d

co
v
e
re

d
tp

s

u
n
co

v
e
re

d
tp

s

#
tp

s

ti
m

e
(s

e
c.

)

#
te

st
s

to
ta

l
le

n
g
th

a
v
g
.

te
st

le
n
g
th

PCseqNet1
B 31.0 2.0 33.0 2.82 4.37 55.82 13.37
R 31.0 2.0 33.0 3.37 4.25 51.42 12.1

PCseqNet2
B 33.08 3.92 37.0 3.41 4.5 53.39 12.08
R 35.0 2.0 37.0 4.50 5.71 81.33 14.25

PCseqNet3
B 30.44 6.56 37.0 4.25 4.06 33.75 8.26
R 32.0 5.0 37.0 6.36 5.31 76.49 14.35

Table 1: Results using the basic (B) and the retrying (R) methods (average of 100 runs
of each experiment)

the basic method is powerful enough to cover all the feasible test predicates.
We have independently proved that the two uncovered test predicates are
infeasible. For the sequential net PCseqNet2, instead, the retrying method
can cover more test predicates, since it permits to reach machine slowCon-
sumer with two different initial states from which all the test predicates can
be covered. The basic method, instead, could visit machine slowConsumer
with an initial state in which tokens is lower than 30: from that initial state
it is not possible to cover the test predicates related to the then branch of
the conditional rule in rule r slowConsumer2 . For the sequential net PCse-
qNet3, the retrying method, since it is more powerful, can still cover more
test predicates than the basic method; however, both methods can not cover
some test predicates of machine slowConsumer (those related to the then
branch of the conditional rule in rule r slowConsumer3), since they do not
reach that machine with the unique initial state (in which tokens is initialised
to 27) that allows to cover those test predicates.

6.2. Backward method evaluation

In the second experiment, we want to evaluate the effectiveness of the
backward method. We have executed the basic and the retrying methods
(called forward methods) and then, for each uncovered test predicate, we have
applied the backward method. Table 2 shows the results of the experiment.

24

covered tps

fo
rw

a
rd

m
e
th

o
d

B
A

fw
m
e
th

o
d

+
B
A

u
n
c
o
v
e
re

d
tp

s

#
tp

s

ti
m
e
(s
e
c
.)

#
te
st
s

to
ta

l
le
n
g
th

a
v
g
.
te
st

le
n
g
th

#
te
st
s
B
A

PCseqNet1
B + BA 31.0 0.0 31.0 2.0 33.0 5.75 4.55 54.99 12.38 0.0
R + BA 31.0 0.0 31.0 2.0 33.0 6.43 4.55 55.49 12.75 0.0

PCseqNet2
B + BA 33.23 1.77 35.0 2.0 37.0 10.32 4.38 55.14 13.10 1.77
R + BA 35.0 0.0 35.0 2.0 37.0 7.53 5.7 82.08 14.47 0.0

PCseqNet3
B + BA 30.08 4.92 35.0 2.0 37.0 18.77 3.93 29.62 7.46 4.92
R + BA 32.0 3.0 35.0 2.0 37.0 15.92 5.23 73.41 13.88 3.0

Table 2: Results of the combination of the basic (B) and retrying (R) methods with the
backward method (BA) (average of 100 runs of each experiment)

In addition to the fields reported in Table 1, it also reports the number of
covered test predicates divided into those covered by the forward method and
those covered by the backward method, and the number of tests generated
with the backward method. For the sequential net PCseqNet1, using the
backward method is useless, because the test predicates that have not been
covered by the forward methods are actually infeasible. For the sequential net
PCseqNet2, the backward method permits to cover, on average, almost two
test predicates that have not been covered by the basic method; the retrying
method, instead, is powerful enough to cover all the feasible test predicates,
and so the backward method is useless in this case. For the sequential net
PCseqNet3, the backward method permits to cover test predicates that have
not been covered by both forward methods. The forward methods have not
been able to reach the particular initial state from which those test predicates
can be covered.

As expected, the experiments suggest that a forward method together
with the backward method can improve the testing coverage at the expenses of
an increase in test generation time. Note that, the backward method together
with the basic method requires more time than together with the retrying
method. The backward method is very expensive in terms of computation
time, and therefore the more coverage is obtained by a forward method, the
smaller the total time is.

25

7. Threats to validity

Since the approach is based on finite state model checking, some limi-
tations exist on the set of specifications that can be verified: for example,
only finite domains can be used. Moreover, some limitations are due to the
translation tools: for example, some complex data structures (e.g., sets) are
difficult to map in the model checker syntax and so they are not admitted.

Another source of incompleteness for the basic and retrying methods can
be the use of non-preservable coverage criteria, i.e., criteria that can be sat-
isfied without requiring the passage of control to another machine, although
the passage is possible. In these cases, a machine could not be covered since
it never receives the control from another machine. See [5] for a detailed dis-
cussion about preservable criteria which, however, are quite rare in practice.

In this paper, we do not experiment the scalability of our approach: ex-
periments show that the use of the backward method is very expensive in
terms of time and this may limit the scalability of our approach. We have
already demonstrated for sequential nets without information passing that
decomposing a system can greatly improve the scalability of test genera-
tion [5]. In the future, we plan to experiment scalability also for sequential
nets with information passing and with the use of the backward method. We
also plan to measure the incompleteness of the proposed methods for a wide
set of sequential nets.

8. Related work

Our work presents a model-based testing (MBT) approach, in which tests
are derived from formal specifications. For a survey on tools and techniques
for MBT, using also other notations, see [3]. For instance, [1] combines the
use of UML state machines and the formal notation B for test generation.

Besides our previous work [9, 4], another approach about test generation
from ASMs is described in [15, 16]; they simulate an ASM and, at the same
time, build a corresponding FSM and produce some test sequences. Dif-
ferently from our approach, although they acknowledge that their approach
suffers form the state explosion problem, they do not propose any solution
to reduce it.

Our approach tries to mitigate the state space explosion problem during
model checking for test generation. Traditionally several techniques attempt
to solve the same problem for the verification of properties. They share the

26

concept of building an abstract version of the original system that preserves
properties.

The cone of influence (coi) technique [17] reduces the size of the transi-
tion graph by removing from the model the variables that do not influence
the variables in the property one wants to check. In [18] the cone of influence
technique is used to reduce the state space of fFSM models, a variant of
Harel’s Statecharts; models that could not be verified before, have been ver-
ified successfully after its application. The data abstraction technique [17],
instead, consists of creating a mapping between the data values and a small
set of abstract data values; the mapping, extended to states and transitions,
usually reduces the state space, but it may not preserve properties. In [19]
a technique to iteratively refine an abstract model is presented. The tech-
nique assures that, if a property is true in the abstract model, so it is in
the initial model; if it is false in the abstract model, instead, the spurious
counterexample may be the result of some behavior in the abstract model
not present in the original model. The counterexample itself is used to refine
the abstraction so that the wrong behavior is eliminated.

A technique for sequential modular decomposition for property verifica-
tion of complex programs is presented in [20]. The approach consists in
partitioning the program into sequentially composed subprograms (instead
of the typical solution of partitioning the design into units running in paral-
lel). Based on this partition, the authors present a model checking algorithm
for software that arrives at its conclusion by examining each subprogram
in separation. Similarly to our approach, they identify ending states in the
component where the computation is continued in another component and
some information passed to the next subprogram. The algorithm then tries
to formally prove the property in each component finding the necessary as-
sumptions about the initial (entering) states of the component. The algo-
rithm proceeds backwards until it finds that the property is true in every
sub-component starting from any initial state of the system. Since the goal
is formal verification, the algorithm must guarantee that the property holds
in any state, while, since we want to find only a counterexample, we just
need to find a path leading to interesting states.

For test generation, these techniques may need to be modified, since they
do not have to preserve properties but counterexamples to be used as tests.
The coi technique can be used as it is also for test generation, but it may not
simplify our models, since the currAsm function, which is used in the test
goals, may be influenced by all the functions.

27

An approach performing test generation by decomposing sequential pro-
grams, called SMART, is presented in [21]. Although it starts from programs
instead of models, it proposes a sequential decomposition technique similar
to ours: given a program calling several functions inside it, these called func-
tions are tested in isolation and complete tests are composed only at the
end. The main difference is that tests for sub-functions are not real tests
but they are expressed as summaries using input preconditions and output
postconditions, and then re-used when testing higher-level functions. The
main advantage is that SMART is both sound and complete compared to
monolithic test generation (like our product machine), while our approach is
only sound. A disadvantage is that SMART must maintain the summaries
and it can solve them only at the end. Sometimes constraints on some inputs
can not be expressed (for instance a hash function) and sometimes all the
collected constraints are very hard to solve, leaving some issues still open.

9. Conclusion and Future work

We have tried to address the state explosion problem in test generation
by model checking. For sequential nets of ASMs, even in the presence of
information passing, we are able to exploit the system structure and decom-
pose it in order to facilitate the test generation. In order to obtain valid test
sequences for the whole system, our approach performs test generation for
single submachines together with the exploration of the graph representing
the sequential net.

We assume that the designer keeps the models separated from the begin-
ning; as future work, we plan to study a decomposition methodology able, if
possible, to split an existing complex ASM in a sequential net of ASMs.

Although our method shows its great usefulness when used in combination
with (explicit state) model checking for test generation, we believe that any
test generation technique can benefit from dividing the model in submodels,
even those techniques which do not suffer so much from the size of the model
under test.

Regarding the incompleteness of the backward method, we plan to extend
it by letting it visit the same machine several times with different initial states
(similarly to what is done by the forward retrying method).

28

References

[1] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Ap-
proach, Morgan-Kaufmann, 2006.

[2] R. Hierons, J. Derrick, Editorial: special issue on specification-based
testing, Software Testing, Verification and Reliability 10 (4) (2000) 201–
202.

[3] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, H. Zedan, Using formal
specifications to support testing, ACM Comput. Surv. 41 (2) (2009)
9:1–9:76.

[4] A. Gargantini, E. Riccobene, S. Rinzivillo, Using Spin to generate
tests from ASM specifications, in: E. Börger, A. Gargantini, E. Ric-
cobene (Eds.), Proceedings of the 10th International Workshop on Ab-
stract State Machines, Advances in Theory and Practice (ASM 2003),
Taormina, Italy, March 3-7, 2003, Vol. 2589 of Lecture Notes in Com-
puter Science, Springer, 2003, pp. 263–277.

[5] P. Arcaini, F. Bolis, A. Gargantini, Test Generation for Sequential Nets
of Abstract State Machines, in: J. Derrick, J. Fitzgerald, S. Gnesi,
S. Khurshid, M. Leuschel, S. Reeves, E. Riccobene (Eds.), Proceedings
of the Third International Conference on Abstract State Machines, Al-
loy, B, VDM, and (ABZ 2012), Pisa, Italy, June 18-21, 2012, Vol. 7316
of Lecture Notes in Computer Science, Springer, 2012, pp. 36–50.

[6] E. Börger, R. Stärk, Abstract State Machines: A Method for High-Level
System Design and Analysis, Springer Verlag, 2003.

[7] G. Fraser, A. Gargantini, An evaluation of model checkers for specifica-
tion based test case generation, in: ICST 2009, 1-4 April 2009, Denver,
Colorado, USA, IEEE Computer Society, 2009, pp. 41–50.

[8] P. Arcaini, A. Gargantini, E. Riccobene, P. Scandurra, A model-driven
process for engineering a toolset for a formal method, Software: Practice
and Experience 41 (2) (2011) 155–166.

29

[9] A. Gargantini, E. Riccobene, ASM-Based Testing: Coverage Criteria
and Automatic Test Sequence Generation, J.UCS 7 (2001) 262–265.

[10] G. Holzmann, The Spin model checker: Primer and Reference manual,
Addison-Wesley Professional, 2003.

[11] M. Veanes, N. Bjørner, Y. Gurevich, W. Schulte, Symbolic Bounded
Model Checking of Abstract State Machines, Int. J. Software and Infor-
matics 3 (2-3) (2009) 149–170.

[12] P. Arcaini, A. Gargantini, E. Riccobene, AsmetaSMV: a way to link
high-level ASM models to low-level NuSMV specifications, in: M. Frap-
pier, U. Glässer, S. Khurshid, R. Laleau, S. Reeves (Eds.), Proceedings
of the Second International Conference on Abstract State Machines, Al-
loy, B and Z (ABZ 2010), Orford, QC, Canada, February 22-25, 2010,
Vol. 5977 of Lecture Notes in Computer Science, Springer, 2010, pp.
61–74.

[13] G. D. Castillo, K. Winter, Model checking support for the ASM high-
level language, in: S. Graf, M. Schwartzbach (Eds.), Tools and Algo-
rithms for Construction and Analysis of Systems, 6th International Con-
ference, TACAS 2000, Vol. 1785 of Lecture Notes in Computer Science,
Springer, 2000, pp. 331–346.

[14] R. Farahbod, U. Glässer, G. Ma, Model Checking CoreASM Specifica-
tions, in: A. Prinz (Ed.), Proceedings of the ASM’07, The 14th Inter-
national ASM Workshop, 2007.

[15] W. Grieskamp, Y. Gurevich, W. Schulte, M. Veanes, Generating finite
state machines from abstract state machines, in: Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and
analysis, ISSTA ’02, ACM, New York, NY, USA, 2002, pp. 112–122.

[16] W. Grieskamp, L. Nachmanson, N. Tillmann, M. Veanes, Test case
generation from AsmL specifications, in: E. Börger, A. Gargantini,
E. Riccobene (Eds.), Proceedings of Abstract State Machines, Ad-
vances in Theory and Practice, 10th International Workshop, ASM 2003,
Taormina, Italy, March 3-7, 2003, Vol. 2589 of Lecture Notes in Com-
puter Science, Springer, 2003, p. 413.

30

[17] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
1999.

[18] S. Park, G. Kwon, Avoidance of State Explosion Using Dependency
Analysis in Model Checking Control Flow Model, in: ICCSA 2006, Vol.
3984 of Lecture Notes in Computer Science, Springer, 2006, pp. 905–911.

[19] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-
Guided Abstraction Refinement for Symbolic Model Checking, J. ACM
50 (2003) 752–794.

[20] K. Laster, O. Grumberg, Modular model checking of software, in:
B. Steffen (Ed.), Tools and Algorithms for the Construction and Analysis
of Systems, Vol. 1384 of Lecture Notes in Computer Science, Springer,
1998, pp. 20–35.

[21] P. Godefroid, Compositional dynamic test generation, in: Proceedings of
the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’07, ACM, New York, NY, USA, 2007,
pp. 47–54.

31

	Introduction
	Background
	Abstract State Machines
	Test generation for ASMs
	Test generation for ASMs by Model Checking

	Sequential Nets of Abstract State Machines
	Definition of sequential net of ASMs
	Modeling a sequential net with a set of ASMs
	Product machine

	Test Generation for Sequential Nets of ASMs
	Generating test suites in absence of information flow
	Combining the test generation and test concatenation for dealing with information passing
	Basic method
	Retrying generation method

	Backward test generation

	Subsumption relations between the test generation methods
	Experiments
	Comparison of the basic and the retrying methods
	Backward method evaluation

	Threats to validity
	Related work
	Conclusion and Future work

