NuSeen: a tool framework for
the NuSMYV model checker

Paolo Arcaini
Charles University
Faculty of Mathematics and Physics, Czech Republic
Email: arcaini@d3s.mff.cuni.cz

Abstract—NuSMYV is a well-known tool for system verification
that permits to verify both CTL and LTL properties. Although
the tool is very powerful, it offers a minimal support for the
editing and validation (e.g., by simulation) of models and of
requirements specified as temporal properties. In this paper, we
propose NuSeen, a framework that assists a designer during the
modeling and V&V activities when using NuSMYV. In addition
to an editor furnished with syntax highlighting, autocompletion,
and outline, NuSeen also provides some tools for visualizing the
variable dependencies, and graphically visualizing the counterex-
amples. It helps the designer in validating the model by checking
certain qualities like minimality and completeness. Moreover, the
framework also provides facilities for model-based testing by
means of a test suite generator that is able to generate tests
achieving value and decision coverage for NuSMV models.

I. INTRODUCTION

NuSMYV [10], [19] is a symbolic model checker derived
from SMV [18]. The NuSMV project aims at the development
of a state-of-the-art symbolic model checker, designed to
be applicable in technology transfer projects: it is a well
structured, open, flexible and documented platform for model
checking, and is robust and close to industrial systems stan-
dards [9]. NuSMV has a rich and powerful language to
describe complex systems: the specification of the system
behaviour is given in terms of finite state machines, and
its expected requirements are specified as temporal formulas.
Property verification is supported by a BDD-based symbolic
model checker, and a bounded model checker.

NuSMYV is used more and more, not only as simple model
checker, but also as a tool supporting the validation and
verification (V&V) activities of complex systems, from re-
quirements capture to their validation and verification. For this
reason, besides the essential model checker, designers should
benefit from other accompanying tools like editors, visualizers,
static and dynamic analyzers, and so on. When performing
system design and verification, particular attention should be
put on the correctness of the model itself and on the properties
we want to prove: If the model and/or the properties are not
correct, any verification result is useless. Indeed, there is the
risk of proving either wrong properties for correct specifi-
cations or correct properties for wrong specifications, where
correctness means that it captures the intended behaviour. In
our experience in teaching NuSMV to master students, we
observed that this risk is real. In order to assist the designers

University of Bergamo, Italy
Email:

Elvinia Riccobene
Department of Computer Science
University of Milan, Italy
angelo.gargantini @unibg.it Email: elvinia.riccobene @unimi.it

Angelo Gargantini
DIGIP

in modeling with NuSMYV, we have developed in the last few
years the NuSeen' framework that provides tools for editing,
visualizing, and validating NuSMV models.

The framework provides basic functionalities for model
editing as syntax highlighting, autocompletion, and outline.
Execution of models is integrated in the framework, allowing
to set all the execution options that are allowed by NuSMYV,
but in a more friendly way. Moreover, NuSeen provides
a graphical tabular representation of the counterexamples
returned by the model checker, that eases the process of
counterexample inspection.

The framework further provides two additional tools for
model validation. The model advisor [2] permits to check
some particular guality attributes that any NuSMV model
should have as: all the variables are read, all the updates are
executed, the properties are not vacuously satisfied, and so
on. Moreover, another tool permits to graphically visualize
(by means of a dependency graph) the dependencies among
the variables of the model; this allows the designer to debug
its model. The dependency visualizer also permits to visualize
the strongly connected components of variables, i.e., variables
that all depend on each other: such visualization is particular
useful when we want to divide the model in different modules.

Model checkers as NuSMV are not only used for ver-
ification, but they are also frequently used for test case
generation [14]. NuSeen provides a fest case generator for
NuSMV models [4]; it permits to generate tests achieving
value and decision coverage.

Sect. II briefly introduces the NuSMV notation, and Sect. 11
presents all the tools of the NuSeen framework. Sect. IV
describes how the framework has been implemented, Sect. V
discusses some lessons we have learned in developing and
using NuSeen, and Sect. VI concludes the paper.

II. NUSMYV NOTATION

NuSMYV [10], [19] is a well-known tool that performs sym-
bolic model checking. It permits to represent synchronous and
asynchronous finite state systems, and supports the verification
of specifications expressed in Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL).
and sourced at

'NuSeen is freely available

http://nuseen.sourceforge.net/

open

A NuSMV model describes the behaviour of a Finite State
Machine (FSM) in terms of a “possible next state” relation
between states. A model must have a VAR section containing
variable declarations; possible variable types are boolean,
integer defined over intervals or sets, or an enumeration of
symbolic constants. The model state is given by the assignment
of values to variables. State transitions are determined by
variables updates declared in the ASSIGN section; the variable
value can be determined in the initial state by the instruction
init, and in the next state by the instruction next. Alternatively
(instead of the init/next instructions), an expression can be
used to define the value of a variable in each state. A DEFINE
statement can also be used as a macro to syntactically replace
an alias with the expression it is associated with. The syntax
of these four commands is as follows:

ASSIGN init(identifier) := simple_expression —— init value
ASSIGN next(identifier) := next_expression —— next value
ASSIGN identifier := simple_expression —— simple assignment
DEFINE alias := simple_expression —— macro

where identifier is a variable identifier, simple_expressions can
only refer to variables in the current state, while next_expres-
sion can refer to variables both in the current and in the next
state. Accessing the value of a variable in the next state can
be done with the next operator?.

Expressions can contain conditions. Conditional expressions
are:

« if-then-else expression cond? expl: exp2 which evaluates
to expl if the condition cond evaluates to true, and to exp2
otherwise.

e case expression:

case
leftExpression; : rightExpression;;

leftExpression,, : rightExpression,, ;
esac

where left expressions must be boolean, and the right
expressions must all have the same type. The case ex-
pression returns the value of the first rightExpression;
whose leftExpression; condition evaluates to true, and
the previous -1 left expressions evaluate to false. If all
the left expressions evaluate to false, an error occurs. To
avoid these kinds of errors, NuSMV performs a static
analysis and, if it believes that in some states no left
expression may be true, it forces the user to add a default
case with leftExpression equal to TRUE.

An alternative way of defining initial states and the tran-
sition relation is by means of INIT and TRANS constraints.
An INIT constraint is a boolean simple expression (i.e., not
containing the next operator) that must be satisfied by the
variables values in the initial states; a TRANS constraint,
instead is a boolean next expression (i.e., it can contain the
next operator) describing the relation between variables in

2See the NuSMV User Manual [7] for more details on the assignment
syntax and restriction rules for assignments

MODULE main
VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case
state = ready & request: busy;
state = busy: {ready, busy};
TRUE: ready;
esac;

CTLSPEC AG(request —> AF(state = busy))

Code 1: NuSMV model of a simple producer

the current and in the next state. It is also possible to define
invariant constraints in the INVAR section.

CTLSPEC and LTLSPEC allow to specify CTL and LTL
temporal specifications to be verified. Properties can be named
(by keyword NAME) in order to ask the model checker to
check only a particular property.

Code 1 shows a simple NuSMV model of a producer
(adapted from an example of the NuSMV tutorial [19]).
Variable state models the state of the producer that can be
busy in producing goods or ready to accept new requests.
Boolean variable request models the fact that a request has
been submitted to the producer. The state of the producer
is initially ready. When it receives a request while ready, it
becomes busy; when it is busy, it can nondeterministically
decide to remain busy or become ready again; otherwise, when
it is ready and there is no request, it remains ready. A temporal
property checks that, whenever there is a request, the state of
the producer will be eventually busy in handling it.

III. NUSEEN: A NUSMYV ECLIPSE-BASED ENVIRONMENT

NuSeen is a series of tools, integrated within the eclipse
IDE, that aim at helping NuSMV users during their V&V
activities. It focuses in easing the use of the NuSMV by means
of graphical elements like buttons, menu, text highlighting, and
so on. It provides also some auxiliary tools that show model
information by means of graphical elements (like dependency
graphs, tables, etc.). Moreover, it helps the designer in the
reuse of formal models for other purposes, like documentation
and testing of the real system. It features:

o A language defined by a grammar (concrete syntax)
and provided with a metamodel (abstract syntax), with a
rich (automatically generated) Java APIs useful to access
NuSMV models.

e An editor that can be used to write NuSMV models
and provides a useful feedback, like syntax highlighting,
autocompletion, and outline.

e A way to execute the NuSMV model checker inside
eclipse (in a batch mode or interactively).

3 Ytext Syntex Graph £1

FrozenVariableDeclaratior

TransConstraint

ModuleElement —

v

InvarConstraint

g

g
g
&
)
g

= = g HBIG
SIHIBIEIE HIHIEIHIEIE
EIEE S e s
”g!E!E-E-EEE il
o) Oy RERRERY S SR

e
E
:
i
1
3

i

VariableDeclaration

Figure 1: Syntax graph of the NuSeen grammar

o A counterexample visualizer that shows traces in a more
friendly manner than the simple text (or XML) produced
by NuSMV.

« An integrated version of a model advisor, which can be
executed in eclipse, to check model quality properties.

o A dependency analyzer that, by means of simple graphs,
helps in understanding how the model is structured and
how it can be modularized.

o A test case generation that permits to exploit NuSMV for
model-based testing.

A. Language and editor

NuSeen introduces the definition of the language and of the
editor for NuSMV by Xtext [11], [22]. Xtext is a framework
for the development of programming languages and domain
specific languages. It covers all aspects of a complete language
infrastructure, from parsers, linker, compiler or interpreter, to
fully-blown top-notch eclipse IDE integration. It comes with
good default solutions for all these aspects and, at the same
time, every single aspect can be tailored to the user’s needs.
We have defined a grammar for the NuSMV notation in the
Xtext format. Fig. 1 shows an excerpt of the grammar syntax
graph. From the grammar, Xtext automatically produces:

1) a meta-model for the language in the form of an EMF
(eclipse metamodeling framework) model in the ecore
format. It represents the abstract syntax of our language
in terms of classes and relations. From the metamodel,
we automatically obtained the Java APIs that are able to
manage (query, create, and modify) NuSMV models and

= producersmy 3 = B &= Outline 22 = 8

1=MODULE main &l v
2=VAR v producer

3 request: boolean; h @E‘CAR

4 state: {ready, busy}; Y

5= ASSIGN i= state

6 init(state) := ready; ~ [AssiGN

7 next(state) := I init{state)

- i= nest(state)

8 case CTLSPEC : line 14
9 state = ready & request: busy;

10 state = busy: {ready, busy};

11 TRUE: ready;

12 esac;

13
{14 CTLSPEC AG(request -> AF(state = busy))

Figure 2: Editor and outline

Run As > B 1 ModelAdvisor
Debug As » # 2NuSMV
Team b

Run Cenfigurations...

Figure 3: Executing NuSMV models

parts of them. This allows the integration of NuSMV with
other Java-based tools.

2) an editor with syntax coloring based on the lexical struc-
ture. Content assist that proposes valid code completions
at any place in the document, helping users with the
syntactical details of the language. Other features are
validation and quick fixes, linking of errors, the outline
view, etc.

The editor can be easily extended in order to support extra
semantic validation rules, particular rules for indentation and
outlining, and other ad hoc editing rules.

NuSeen provides a special type of projects (i.e., NuSMV
Project) where to add the NuSMV models. Moreover, it
provides a wizard that creates a simple specification.

Fig. 2 shows the model editor and the outline view for the
model presented in Code 1.

B. Running NuSMV models

NuSMV models can be run in batch mode or in interactive
mode. In batch mode, all the temporal specifications are
checked and the result is shown in the eclipse console. In
interactive mode, instead, the user is provided with a shell
from which (s)he can perform different activities: simulate the
model, verify particular properties, set options, etc.

In NuSeen, the model is executed through the Run As
extension of eclipse, as shown in Fig. 3. If the user does
not specify any configuration, the model is executed in batch
mode. Otherwise, the user can set some execution options as
shown in Fig. 4. Some of the available options are:

o run interactively: the NuSMV interactive shell is open
in the eclipse console. The user can perform the same
actions (s)he can do in the classical interactive shell of
NuSMV.

o disable computation of counterexamples: the computation
of counterexamples is disabled and only whether the
property is true or false is reported to the user.

2 X | E
type filter text

% Eclipse Applicat
] Java Applet
[3] Java Application
Ju JUnit
Ju JUnit Plug-in Te
[B] MWE Workflow
[F] Mwe2 Launch
v % NuSMV Model
New_config|
MNuSMVModel Al
4 05Gi Frameworl
¥ Task Context Pl
Juy Task Context Teg
< 3

Filter matched 13 of 13

MName: | New_cenfiguration

Main

Program:

Browse

1 run interactively (-int)

[disable computation of counterexamples (-dcx)

[verify AG formulas only using an ad hoc algorithm (-AG)
[] enable cone of influence reduction (-coi)

[] enable dynamic reordering of variables (-dynamic)

other options |

Revert Apphy

'/?j' Run Close

Figure 4: Configuration of NuSMV execution

BV M R

Figure 5: NuSeen toolbar

= Tasks % CTL: YEF (state = busy & EX request)) 2

! request state
FALSE ready
FALSE busy
TRUE ready

Figure 6: Counterexample visualization

e enable cone of influence reduction: NuSMV applies the
cone of influence reduction technique [6] (i.e., variables
that are not involved in the verified properties are re-
moved from the model) that can speed up the verification
process.

¢ Other NuSMYV options as dynamic and AG can be selected
through checkboxes. Other less common options, can be
specified by the user in the final textbox.

C. Counterexample visualizer

One of the strengths of the model checker is its capability
of generating a counterexample whenever a property is proved
false. This makes model checking an efficient bug hunting
technique and not only a correctness verifier. A counterexam-
ple is a valid system trace for which the temporal property is
violated. By looking at the counterexample, the designer can
understand better if either the bug is in the system behaviour or
in the temporal property. Moreover, designers often introduce
a false property p in order to check that the actual behaviour
of the system violates p and to observe the trace that falsifies
p. However, understanding and navigating a trace can be quite
difficult. For this reason, NuSeen provides a counterexample
visualizer that can be invoked by a button in the NuSeen
toolbar (first button in Fig. 5). The tool shows the trace in
a tabular format as shown in Fig. 6. In the example, given the

model from Code 1, the user is interested in finding a path in
which the producer is busy and, in the next state, it receives a
request; in order to obtain such a path, (s)he specifies the CTL
property !EF(state = busy & EX(request)) stating that there is no
future state in which state is busy with a possible next state
in which request is true. The model checker finds that the
property is false and the returned counterexample is shown as
in Fig. 6. The counterexample is presented in a compact way
as a table where the columns are the variables and the rows are
the states; changes from the previous state in variable values
are displayed in yellow. Note that such representation is much
more readable than the standard counterexample representation
of NuSMYV in which only the variables that changed their value
are shown: in that visualization, the user has to scroll the
counterexample to retrieve the information about the whole
state.

D. Model advisor

Before verifying any property, the user should validate the
model itself. In [2], we devised some quality attributes that
any NuSMV model should have. These quality attributes are
expressed by the following predicates, called meta-properties
(MP):

MP1: Every assignment condition can be true.

MP2: Every assignment is eventually applied.

MP3: The assignment conditions are mutually exclusive.

MP4: For every assignment terminated by a default condition
TRUE, at least one assignment condition is true.

MPS5: No assignment is always trivial.

MP6: Every variable can take any value in its domain.

MP7: Every variable not explicitly assigned is used.

MPS: Every independent variable is used.

MP9: Every property is proved true.

MP10: No property is vacuously satisfied.

The satisfaction of these MPs guarantees the required qual-
ity attributes; therefore, MPs can be assumed as a measure
of the model quality. We can divide the MPs in three main
categories.

o Consistency requires that there are no conflicting model
statements (variable assignments, propriety specifications,
behaviours, etc.). MP3 and MP9 belong to this category.

o Completeness requires that every system behaviour is
explicitly modeled. The category contains MP7 requiring
the explicit assignment of variables, and MP4 requiring
that at least one assignment condition (apart from the
default condition) is true.

e Minimality requires that the model does not contain
elements (variables, assignments, domain elements, etc.)
defined or declared in the model but never used, i.e.,
it is not over-specified. The category contains MP1 and
MP2 requiring that every assignment can be performed,
and MPS5 requiring that each assignment is really useful.
Moreover, it contains MP6 requiring that every value

El 3P~ ame: | New_configuration
x| #® N N fig

type filter text Main | Meta Properties

£ Eclipse Application

] Java Applet

57 Java Application [MP1: Every assignment condition can be true

Ju JUnit MP2: Every assignment is eventually applied

30 JUnit Plug-in Test [1MP3: The assignment conditions are mutually exclusive

[B] MwE Workfiow [C1MP4: For every assignment terminated by a default condition true, at least an assignment condition is true

B Mwe2 Launch [CIMPS: No assignment is always trivial

B NuSMV Model

Y oce [MPE: Every variable can take any value in its type

i NuSMVMod

v u o
Hrrre— I MP7: Every variable not explicitly assigned is used

& OSGi Framework [MP8: Every independent variable is used

7% Task Context Plug-in Test | | [Z] MP9 and MP10: Every property is true and no property is vacuously satisfied

Juy Task Context Test

Revert Appl

Filter matched 13 of 13 items o BB
@

Figure 7: Model advisor — Selection of meta-properties

MODULE main
VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
request := FALSE; —— fault
next(state) :=
case
state = ready & request: busy;
state = busy: {ready, busy};
TRUE: ready;
esac;

CTLSPEC AG(request —> AF(state = busy))

Code 2: Faulty version of the NuSMV model of the producer

in the domains is necessary, and MP7? and MPS8 re-
quiring that every variable is used. Finally, also MP10,
checking that property specifications are not vacuously
satisfied [17], belongs to this category.

The model advisor analyzes a NuSMV specification using
NuSMYV itself. Each meta-property is encoded as a suitable
CTL property whose satisfaction means that the corresponding
meta-property holds. The NuSMV models are read and queried
by the model advisor by using the API generated from
the metamodel introduced by the language component. The
selection of the meta-properties to check is shown in Fig. 7.

Code 2 reports a faulty version of the model shown in
Code 1. The designer wrongly specified that request is always
false (probably (s)he wanted to initialize it to false). Checking
the model with the model advisor, we obtain the output shown
in Fig. 8. Meta-property MP2 is violated because the update of
variable state to busy is never executed; indeed the update can
be performed only when there is a request. Moreover, since
state never becomes busy, also the second update is never
executed. Also meta-property MP10 is violated: the property
is vacuously true because the antecedent of the implication is
always false (i.e., there is never a request).

3Note that MP7 belongs to two categories, since it captures two different
quality characteristics.

— MP2: Assignment in next assignments never applied -
Module main

in next (state) the following updates are never executed
cond = "state = ready & request" value = "busy"

cond = "state = busy" value = "{ready, busy}"

Module main

Property "AG (request -> AF state = busy)" is true.
is wvacuously true for phi = "state = busy"

is partially wvacuous

Figure 8: Output of the model advisor

ReleaseEnable

ReadyStn

{ StnBReady } [WeaponType]

TargetDesig

Figure 9: Variable Dependency Graph

MasterFcnSwitch

[kd2nmi } [Overflown]

E. Dependencies visualization

Variables of a NuSMV specification can be analyzed in
order to discover their dependencies. We here first introduce
the concepts of variables dependency and dependency graph
(originally defined in [4]).

Definition I (Dependency): Given two variables v,w of a
NuSMV model, we say that v directly depends on w if w
(primed or not primed) occurs in the definition (init, next,
or simple assignment) of v, or they both appear in the same
TRANS, INIT, or INVAR constraint.

A variable is considered primed if it is accessed through the
next operator.

Definition 2 (Dependency graph): We call dependency
graph of a NuSMV model M the directed graph DG =
(V, E), where V is the set of variables of M and (v,w) € F
iff v directly depends on w.

The dependency graph can be used to better understand
mutual dependencies among behaviours. NuSeen is able to
build and show the dependency graph of a NuSMV model*
as shown in Fig. 9. In the figure, the designer understands
that BombRelease depends on MissDistance, Weapon, and
ReleaseEnable. The inputs of the system are easy to identify,
since they are the nodes in the graph that have no exiting edges
(i.e, they do not depend on any other variable).

It is a simplified specification of the bomb release requirements of an
attack aircraft [13].

locked

[locked, digit]

(a) Variable dependency graph (b) SCV dependency graph

Figure 10: Dependency graphs

Moreover, NuSeen is able to identify clusters of variables
that depend one on the other and this can help the designer to
better understand the subsystem of a model M and eventually
to decompose M in different modules.

Definition 3 (Strongly Connected Variables set): Given a
dependency graph DG = (V, E) of a NuSMV model M, each
strongly connected component of DG identifies a strongly
connected variables set (SCV).

Any two variables in an SCV depend one on the other.
Intuitively, they constitute a group of interdependent quanti-
ties. Furthermore, some variables in an SCV may also directly
depend on some variables of other SCVs. In this way, one can
build the SCV dependency graph. Each SCV can be seen as
a submodule and this decomposition can help the designer to
decompose the system (in order to facilitate system analysis
and test generation as, for example, in [4]).

NuSeen can build and show the SCV dependency graph of a
NuSMV model, as shown in Fig. 10 for a small example taken
from [4]. The variable dependency graph (Fig. 10a) shows that
locked and digit depend one on the other. Thus, they constitute
an SCV. The resulting SCV graph is shown in Fig. 10b.

The visualizer can be invoked from the NuSeen toolbar
shown in Fig. 5: the V button shows the variable dependency
graph, and the M button shows the SCV dependency graph.

NuSeen provides also some automatic layouts for graphs,
like vertical and horizontal trees, radiants, grid, spring tree, in
order to help the user in organizing the graphs visualization.
For example, Fig. 11 shows a spring layout for an SCV
dependency graph.

F. Test case generator

In model-based testing (MBT) [16], [21], the model describ-
ing the expected behaviour of the system is used for testing
purposes. A classical MBT technique uses model checkers to
produce abstract tests [12], [14], [15]; the technique exploits
the capability of model checkers to produce counterexamples.

Definition 4 (Test): A test is a finite system execution.

Tests are usually generated to observe some particular
system behaviours, called festing goals, formally represented
by test predicates.

| Tasks 4% DependencyGraph <% DependencylModuleGraph 52 N e

[TargetDesig]

[Stn1Ready]
[[ACAirborne]]'/\[[Weapons

[k42nmi]

[WeaponType]

Figure 11: Dependency Graph in Spring Layout

Definition 5 (Test predicate): A test predicate is a temporal
formula, and assesses whether the corresponding testing goal
is reached.

A common pattern used to build test predicates is the LTL
property F(¢), that requires that ¢ holds in some future state;
@ is usually a predicate over the model state.

Test predicates are generated by coverage criteria.

Definition 6 (Coverage criterion): A coverage criterion C
is a function that derives a set of test predicates from a formal
model. A test suite 7S satisfies a coverage criterion C' if each
test predicate generated with C' is satisfied in at least one state
of a test in TS.

Different coverage criteria for transition systems (as those
described by NuSMV) have been proposed [1]. Those cur-
rently supported by NuSeen are:

e value coverage: each value of each variable is covered;

e decision coverage: each decision of each init, next, and
simple assignment is covered once to true and once to
false.

As future work, we plan to support other criteria as con-
dition coverage and Modified Condition/Decision Coverage
(MCDC) [8].

Example 1: The value coverage criterion applied to the
NuSMV model shown in Code 1 produces the following
test predicates: F(request), F(!request), F(state = ready), and
F(state = busy).

The test generation with model checkers works as follows.
For each test predicate tp, the trap property —tp is verified.
There are three possible outcomes of the verification:

« the trap property is false. This means that the test pred-
icate tp is feasible; the returned counterexample is the
test covering tp.

« the trap property is true. In this case, the test predicate
tp is unfeasible and there is no test that can cover it.

« the model checker terminates without providing any re-
sult, usually because of the state explosion problem [6].
In this case, the user does not know whether the trap
property can be covered or not. In [4], we have proposed
a technique that mitigates the state explosion problem in
test generation, using a decomposition technique based on
the strongly connected variables sets presented in Def. 3.

The test generator for value and decision coverage can be

invoked from the NuSeen toolbar shown in Fig. 5 (last two
buttons). Given a model and a coverage criterion, the generator

- State 1 -
request =
state =
- State
request =
state =
- State
request = FALSE
state = busy

Figure 12: Test for test predicate F(state = busy)

builds all the test predicates and generates a test for each
feasible test predicate. Each test is saved in a different text
file (having the name of the test predicate) in a folder having
the name of the model. The list of unfeasible test predicates
is reported in a separate file. As an example, Fig. 12 shows
the test produced for covering the test predicate F(state = busy)
over the model shown in Code 1. We can see that the original
test goal (i.e., observing state with the value busy) is achieved
in the last state of the test.

Note that the test reported in Fig. 12 covers all the test
predicates generated for value coverage (i.e., those reported
in Ex. 1). As future work, we plan to integrate monitoring
techniques in the tool, in order to avoid generating tests for
test predicates that are already covered by some previously
generated test.

IV. NUSEEN IMPLEMENTATION

A preliminary description of the framework architecture was
presented in [5]. NuSeen is divided in 6 main components, as
shown in Fig. 13, each divided in one or more plugin eclipse
projects:

1) The component containing the definition of the language
and the editor (dsl by Xtext), which is divided into two
plugins: one contains the definition of the grammar and
the other the classes for the editor.

2) The component containing the runner, which simply
introduces the launching framework for the execution of
NuSMV.

3) The dependency visualizer that depends on the lan-
guage module (since it analyzes NuSMV models) and
on two other external libraries, namely ZEST for graph
visualization and JGraphT for graph algorithms (like the
Tarjan algorithm used to discover SCVs).

4) The model advisor which contains the model advisor
itself, its Ul part in order to integrate it within eclipse
and NuSeen, and a third project which allows the user to
call the model advisor from outside eclipse. This latter
plugin wraps everything needed by the model advisor in
an executable jar file.

5) The test generator module which depends on both the
NuSMYV language and the NuSMV runner (since it uses
NuSMYV itself for test generation).

6) The counterexample visualizer that takes a counterex-
ample as produced by NuSMV and builds the graphical
table.

We have taken full advantage of the eclipse Plug-in
Development Environment (PDE) by defining buttons, ac-
tions, and views as extensions of proper eclipse extension
points. For instance, toolbar buttons use the extension point
org.eclipse.ui.menus. To run NuSMV and the model advisor,
we rely on the eclipse launching framework. This has facili-
tated the integration of NuSeen within eclipse and gives the
user a consistent Ul

NuSeen can be installed as eclipse plugin through the update
site> or through the eclipse marketplace.

V. LESSON LEARNED

The starting motivation of developing NuSeen has been
having a NuSMV grammar that we could exploit for our work
in validating NuSMV models by model review [2]; to this
purpose, Xtext gave us the perfect tool to specify the grammar
quickly, and we also obtained for free different other artifacts
like the feature-rich editor. Our experience in using Xtext is
very positive both as a mean for defining a Domain Specific
Language together with its parser and for generating the EMF
metamodels and the Java APIs useful to query and modify
NuSMV models.

We have been using NuSeen in our courses on formal
methods and on model-based testing where we teach NuSMV
(for the last four years), and we observed that the students
benefit from its use: for example, the simple syntactic check
done in the editor allows saving some time in debugging
models. We also use the model advisor during our lectures; we
have observed that students tend to misunderstand (or forget)
the semantics of the case expression (i.e., the first condition
that evaluates to true is selected): using the model advisor, they
can easily check (by meta-properties MP1, MP2, and MP3) if
there are some guards that cannot be executed because masked
by some previous guard.

With the same aim of assisting designers (and our students)
in using NuSMV, NuSeen has been further improved by
the counterexample visualizer and the dependency visualizer.
We observed that the counterexample visualizer is particular
useful, since students have sometimes problems in identifying
the whole state by inspecting the classical textual NuSMV
counterexample (particularly in the long ones). As a general
lesson learned, we confirm that visualization can help design-
ers in better understanding formal specifications.

The dependency analyzer, moreover, is a key component for
model decomposition techniques. It has permitted to achieve
a significant improvement in test case generation for decom-
posable systems [3], [4].

VI. CONCLUSION AND FUTURE WORK

This paper presents a tool framework that assists a designer
when using the NuSMV model checker. It provides functional-
ities for model editing (as syntax highlighting, autocompletion,

Shttp://svn.code.sf.net/p/nuseen/code/trunk/updatesite/

dependency visualizer

model advisor

ui - depbuilder

modeladvisor

JGraphT
Y

test generator

ui testgenerator

NuSMV runner

dsl by xtext
language

runner

cex visualizer

Y
emf 'eclipse.core' eclipse.ui '

NUSMV

cexvisualizer

Figure 13: NuSeen architecture

and outline), and tools for model validation, namely a model
advisor, a counterexample visualizer, and a visualizer of the
dependency graph. In addition, it also supports model-based
testing by a generator of abstract tests from the model.

Currently, we assume that the user has already installed
NuSMV which must be in the system path. As future work,
we plan to integrate the installation of NuSMV together with
NuSeen, using technologies like JNA.

Right now, the output of the model advisor is shown in the
console and the designer must find in the model the source
of the meta-property violation. As future work, we plan to
directly show the cause of a violation in the editor by using
appropriate markers.

Regarding the test case generator, we plan to support
additional coverage criteria and to implement a monitoring
approach to minimize the size of the generated test suite.
Currently, generated tests are meant for model-based testing,
i.e., to be executed on the system implementation after a
suitable concretization; however, they could also be used
for validating the model itself: we plan to show them to
the designer that should assess whether the tests are correct
scenarios of the expected behaviour.

Finally, we plan to support the new infinite state model
checker nuXmv [20].

VII. ACKNOWLEDGEMENTS

The research reported in this paper has been partially
supported by the Czech Science Foundation project number
17-124658S.

We would like to thank Paolo Vavassori and several master
students of the universities of Bergamo and Milano for their
work on the NuSeen implementation.

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[2] P. Arcaini, A. Gargantini, and E. Riccobene. A model advisor for
NuSMV specifications. Innovations in Systems and Software Engineer-
ing, 7:97-107, 2011.

[3] P. Arcaini, A. Gargantini, and E. Riccobene. An abstraction technique
for testing decomposable systems by model checking. In M. Seidl and
N. Tillmann, editors, Tests and Proofs, volume 8570 of Lecture Notes
in Computer Science, pages 36-52. Springer International Publishing,
2014.

[4] P. Arcaini, A. Gargantini, and E. Riccobene. Improving model-based
test generation by model decomposition. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 119-130, New York, NY, USA, 2015. ACM.

[5] P. Arcaini, A. Gargantini, and P. Vavassori. NuSeen: an eclipse-based
environment for the NuSMV model checker. In E. Riccobene, editor,
Eclipse-IT 2013: Proceedings of VIII Workshop of the Italian Eclipse
Community, volume abs/1310.2464, 2013.

[6] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[7]1 R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti,
M. Pistore, M. Roveri, and A. Tchaltsev. NuSMV 2.5 User Manual.
http://nusmv.fbk.eu/, 2010.

[8] J.J. Chilenski and S. P. Miller. Applicability of modified condition/de-
cision coverage to software testing. Software Engineering Journal,
9(5):193-200, 1994.

[9]1 A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new

symbolic model checker. International Journal on Software Tools for

Technology Transfer (STTT), 2(4):410-425, Mar. 2000.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2:

An OpenSource Tool for Symbolic Model Checking. In Proceedings

International Conference on Computer-Aided Verification (CAV 2002),

volume 2404 of Lecture Notes in Computer Science. Springer, July 2002.

M. Eysholdt and H. Behrens. Xtext: Implement your language faster

than the quick and dirty way. In Proceedings of the ACM International

Conference Companion on Object Oriented Programming Systems Lan-

guages and Applications, OOPSLA ’10, pages 307-309, New York, NY,

USA, 2010. ACM.

G. Fraser and A. Gargantini. An evaluation of model checkers for

specification based test case generation. In ICST 2009, 1-4 April 2009,

Denver, Colorado, USA, pages 41-50. IEEE Computer Society, 2009.

G. Fraser, A. Gargantini, and F. Wotawa. On the order of test goals

in specification-based testing. The Journal of Logic and Algebraic

Programming, 78(6):472-490, 2009.

G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers:

A survey. Softw. Test. Verif. Reliab., 19(3):215-261, Sept. 2009.

A. Gargantini and C. Heitmeyer. Using model checking to generate

tests from requirements specifications. SIGSOFT Softw. Eng. Notes,

24(6):146-162, Oct. 1999.

R. Hierons and J. Derrick. Editorial: special issue on specification-based

testing. Software Testing, Verification and Reliability, 10(4):201-202,

2000.

O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model

checking. International Journal on Software Tools for Technology

Transfer (STTT), 4(2):224-233, 2003.

K. L. McMillan. The SMV system, symbolic model checking -

an approach. Technical Report CMU-CS-92-131, Carnegie Mellon

University, 1992.

The NuSMV website. http:/nusmv.fbk.eu/, 2017.

nuXmv. https://es-static.fbk.eu/tools/nuxmv/.

M. Utting and B. Legeard. Practical Model-Based Testing: A Tools

Approach. Morgan-Kaufmann, 2006.

Xtext. http://www.eclipse.org/xtext/.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

