NuSeen: an eclipse-based environment
for the NuSMV model checker

Paolo Arcaini
CNR - IDPA .
paolo.arcaini@idpa.cnr.it

1. INTRODUCTION

NuSMV [5] is a symbolic model checker originated from
the reengineering, reimplementation and extension of CMU
SMV, the original BDD-based model checker developed at
CMU by McMillan [4]. The NuSMV project aims at the
development of a state-of-the-art symbolic model checker,
designed to be applicable in technology transfer projects: it
is a well structured, open, flexible and documented platform
for model checking, and is robust and close to industrial
systems standards [3].

NuSMYV has a rich and powerful language that can be used
to describe complex systems, which contain the specification
of the system behavior as Finite State Machines and its ex-
pected requirements (often given by temporal formula).

It can also be used as a model checker, both as a BDD-
based symbolic model checker, and as a Bounded model
checker. It has around 50 options when it is called in a
batch mode. It is widely used as back end for the verifica-
tion of properties of systems given by means of other formal
notations (as for the Abstract State Machines in [1]).

In [2], we have developed a model advisor for NuSMV
models. The model advisor performs automatic review of
NuSMV models, with the aim of determining if a model is
of sufficient quality, where quality is measured as the absence
of certain faults. Vulnerabilities and defects a developer can
introduce during the modeling activity using NuSMV are
expressed as the violation of formal meta-properties. These
meta-properties are then mapped to temporal logic formu-
las, and the NuSMV model-checker itself is used as the en-
gine of our model advisor to notify meta-properties viola-
tions, so revealing the absence of some quality attributes of
the specification.

2. NUSEEN: A NUSMYV ECLIPSE-BASED
ENVIRONMENT

NuSeen is an eclipse-based environment for NuSMV, with
the aim of helping NuSMV users. It mainly focuses in easing
the use of the NuSMV tool by means of graphical elements
like buttons, menu, text highlighting, and so on. It features:

e A language defined by a grammar (concrete syntax)
and provided with metamodel (abstract syntax)

e An editor that can be used to write NuSMV models
and provides an useful feedback like syntax highlight-
ing, autocompletion, and outline.

e A way to ezvecute the NuSMV model checker inside
eclipse.

Angelo Gargantini
University of Bergamo

angelo.gargantini@unibg.it

Paolo Vavassori
University of Bergamo

paolo.vavassori@unibg.it

e An integrated version of the model advisor which can
be executed in eclipse.

2.1 Language and editor

NuSeen introduces the definition of the language and of
the editor for NuSMV by Xtext [6]. Xtext is a framework
for development of programming languages and domain spe-
cific languages. It covers all aspects of a complete language
infrastructure, from parsers, over linker, compiler or inter-
preter to fully-blown top-notch Eclipse IDE integration. It
comes with good defaults for all these aspects and at the
same time every single aspect can be tailored to your needs.
We have defined a grammar for the NuSMV notation in the
Xtext format. From that, we automatically obtain:

1. a meta-model for the language in the form of an EMF
(eclipse metamodeling framework) model in the ecore
format. It represents the abstract syntax of our lan-
guage in terms of classes and relations. From the meta-
model, we automatically obtain the Java APIs that are
able to manage (query, create, and modify) NuSMV
models and parts of them. This allows the integration
of NuSMV with other Java-based tools.

2. an editor with syntax coloring based on the lexical
structure, content assist that proposes valid code com-
pletions at any place in the document, helping users
with the syntactical details of the language, validation
and quick fizes, linking errors, the outline view, find
references, etc.

The editor can be easily extended in order to support extra
semantics validation rules, particular rules for indentation
and outlining, and other ad hoc editing rules.

2.2 NuSMYV executor

NuSeen allows the user to run NuSMV from within eclipse.
We exploit the launching framework in Eclipse. We have
performed the following steps:

1. The first step consists in declaring a config type for
NuSMV models, by extending the non-ui extension
point launchConfigurationTypes in the (non-ui) pack-
age org.eclipse.debug.core.

2. The extension is implemented in a class that actually
executes NuSMV with the model chosen by the user.

3. We then prepare the launch configuration dialog (often
called LCD) by defining an extension for the extension



=

-]

Profile As 3
Debug As 3
n Run As b % 1 NuSMY
VAR EossagEs ' Run Cenfiguratiens...
1= el Compare With »
13

[

Figure 1: The launch shortcut for NuSMV

Ranlara With

point launchConfigurationTabGroups in the package
org.eclipse.debug.ui. It contains the configuration
with all the options a user can select when launching
NuSMV.

4. We than declare and implement a launch shortcut that
allows users to identify a resource in the workbench
(either via selection or the active editor) and launch
that resource with a single click without bringing up
the launch configuration dialog. An example of its use
is shown in Fig. 1.

2.3 Model Advisor

The model advisor it analyzes a NuSMV specification us-
ing NuSMYV itself. For a detailed theoretical motivation of
the kind of review performed by the model advisor, please
see [2]. The NuSMV models are read and queried by the
model advisor by using the API generated from the meta-
model introduced by the language component. The model
adivsor runs NuSMV using the APIs defined in the execu-
tor. To run the model advisor from the eclipse Ul, we exploit
again the launching framework of eclipse. We

3. ARCHITECTURE

NuSeen is divided in three main components, as shown in
Fig. 2, each divided in one or more plugin eclipse projects:

1. The component containing the definition of the lan-
guage and the editor (dsl by xtext). It is divided into
two plugins: one contains the definition of the gram-
mar and the other the classes for the editor.

2. The component containing the runner, which simply
introduces the launching framework for the execution
of NuSMV.

3. The model advisor which contains the model advisor
itself, its UI part in order to ingrate it within eclipse
and NuSeen, and a third project which allows the user
to call the model advisor form outside eclipse. This
latter plugin wraps everything needed by the model
advisor in an executable jar file.

4. FUTURE WORK

We plan to maintain and extend NuSeen in the following
directions. About the language, we would like to test it
and to add more precise semantic rules. Up to now, the
editor can still consider correct files that are actually invalid
according to the real NuSMV semantics and that can be
checked only by the NuSMV parser. We plan to integrate
the execution of NuSMYV inside eclipse, by releasing the user
from the burden of installing and configuring NuSMV. Up to
now, we assume that the user has already installed NuSMV

model advisor

modeladvisor

runner

dsl by xtext y

language

emf 'eclipse.core' eclipse.ui ' NUSMV '

Figure 2: Architecture

(which must be in the path). We plan to use technologies
like JNA to ship NuSMV together with NuSeen.

The feedback given by the NuSMV parser and by the
model advisor is simply shown in the console. We plan to
read possible errors and warnings found by NuSMV and by
the advisor and show them directly in the editor by using
appropriate markers.

S. ACKNOWLEDGEMENTS

We would like to thank Siamak Haschemi for the initial
version of the XTEXT for NuSMV grammar.

6. REFERENCES

[1] P. Arcaini, A. Gargantini, and E. Riccobene.
AsmetaSMV: a way to link high-level ASM models to
low-level NuSMV specifications. In M. Frappier,

U. Gléisser, S. Khurshid, R. Laleau, and S. Reeves,
editors, ABZ 2010, volume 5977 of Lecture Notes in
Computer Science, pages 61-74. Springer, 2010.

[2] P. Arcaini, A. Gargantini, and E. Riccobene. A model
advisor for NuSMV specifications. Innovations in
Systems and Software Engineering, 7:97-107, 2011.

[3] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NUSMYV: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer
(STTT), 2(4):410-425, Mar. 2000.

[4] K. L. McMillan. The SMV system, symbolic model
checking - an approach. Technical Report
CMU-CS-92-131, Carnegie Mellon University, 1992.

[5] The NuSMV website. http://nusmv.fbk.eu/.

[6] Xtext. http://www.eclipse.org/xtext/.



