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Abstract—Regular expressions (regexes) permit to describe set
of strings using a pattern-based syntax. Writing a correct regex
that exactly captures the desired set of strings is difficult, also
because a regex is seldom syntactically incorrect, and so it is
rare to detect faults at parse time. We propose a fault-based
approach for generating tests for regexes. We identify fault classes
representing possible mistakes a user can make when writing a
regex, and we introduce the notion of distinguishing string, i.e.,
a string that is able to witness a fault. Then, we provide a tool,
based on the automata representation of regexes, for generating
distinguishing strings exposing the faults introduced in mutated
versions of a regex under test. The basic generation process is
improved by two techniques, namely monitoring and collecting.
Experiments show that the approach produces compact test suites
having a guaranteed fault detection capability, differently from
other test generation approaches.

I. INTRODUCTION

Regular expressions (regexes) provide a synthetic and ab-
stract way to precisely identify a set of strings (i.e., a language)
using a pattern-based syntax. By using a regex, programmers
can specify whether a given string belongs or not to a desired
set of strings. They are commonly used to validate data (like
in web forms), or to match and extract sub-strings in possibly
long texts. Regexes are used in different contexts, as, for
example, DNA sequencing alignment [5], intrusion detection
in networks [1], or prevention of MySQL injection [24].

However, writing a correct regex is a difficult task. Regexes
are often hard to understand, also because their syntax is rather
compact and tolerant. Moreover, the regex syntax varies across
different programming languages. Several studies show that
bugs in regexes occur quite often [14], [20]. Only a limited
form of syntax checking can be performed and most regexes
are free of syntax errors.

To ease the design of regexes, several techniques and tools
have been developed. Some tools try to detect errors by static
checking [20] and others by visual debugging [6]. Erwig
and Gopinath propose a range of independent, complemen-
tary representations that can serve as explanations of regular
expressions [9]. Most approaches and tools are still based on
generation of strings used to validate regexes [14], [16], [17],
[21], [22].

A common assumption is that while writing a regex can
be very difficult, evaluating if a given string belongs to the
desired set of strings can be easily carried out by a human

(provided that the set of strings to be assessed is of reasonable
size). For this reason, two approaches are often used. The first
one consists in providing a set of labeled strings (i.e., strings
together with their evaluation) and then apply some learning
algorithm in order to extract a regex [17]; the second one
consists in generating a meaningful set of examples from a
given regex r (i.e., words that are accepted and words that are
not accepted by r ) and show them to the designer in order to
validate r [14].

The approach we here propose (and the operation of its
supporting tool MUTREX) belongs to the second stream of
works, since it is based on the generation of a set of meaningful
strings together with their evaluation, and, in order to validate
the regex, the user is asked for inspecting all the strings to
confirm or refuse the string evaluation.

However, the novelty refers to the process used for strings
generation. Indeed, MUTREX first produces some mutants
from a regex r according to some fault classes representing
common mistakes that are made when writing regexes; then,
for each mutant m, it generates a string s able to distinguish
m from r , i.e., a string that is evaluated differently in r and m
(in terms of mutation testing, s kills m). The set of generated
strings is a test suite able to detect all the seeded faults. The
basic approach is improved by two techniques, monitoring and
collecting, that permit to obtain more compact test suites.

Our approach advances with respect to the existing literature
in these directions:
• w.r.t. regex testing (like [14], [16], [17], [21], etc.),

we introduce several mutation operators and propose an
original notion of fault coverage that can be used to
measure the quality of the examples the tester uses to
check if the regex captures exactly its intended meaning.

• w.r.t. automatic examples generation (like [14], [22]), we
introduce a way to generate, as examples, only those
strings that are able to identify (or distinguish) the regex
under test from all its faulty mutations. This can signif-
icantly reduce the number of strings for which the user
must assess their validity and/or increase the confidence
of the regex correctness.

The paper is organized as follows. Sect. II introduces some
background on regular expressions, and Sect. III presents
the fault classes and the corresponding mutation operators
we devised. Sect. IV introduces the process we propose to



Name Derivation rule

union intersection ["|" union]

intersection concatenation ["&" intersection]

concatenation repeatexp [concatenation]

repeatexp

repeatexp "?" (zero or one occurrence)
| repeatexp "*" (zero or more occurrences)
| repeatexp "+" (one or more occurrences)
| repeatexp "{"n"}" (n occurrences)
| repeatexp "{"n",}" (n or more occurrences)
| repeatexp "{"n"," m"}" (n to m occurrences)
| complement

complement "~" complement | charclassexp

charclassexp
"[" [charclass]+ "]" (character class)
|"[^" [charclass]+ "]" (negated char class)
| simpleexp

charclass char "-" char (character range)

simpleexp
char
"." (any single character)
"#" (the empty language)
"@" (any string)

special chars \w (word character)
\d (digit)
\s (whitespace character)

not supported ^, $, \A, \Z (anchors)
\b, \B (word boundaries)
(?<= ... (lookahead / lookbehind assertions)

Table I: BNF of the regexes supported by MUTREX

generate some strings that distinguish a regex from its mutants,
and that must be inspected by the user to validate the regex.
Sect. V presents the concept of mutation score for regexes
and describes a way to compute it for a given test suite
and a set of mutants. Sect. VI presents the experiments
we performed, Sect. VII discusses some related work, and
Sect. VIII concludes the paper.

II. BACKGROUND

Definition 1 (Regular expression). A regular expression
(regex) r is a sequence of constants, defined over an alphabet
Σ, and operator symbols. The regex characterizes a set of
words L(r) ⊆ Σ∗ (i.e., a language).

As Σ we support the Unicode alphabet (UTF-16); the
supported grammar is shown in Table I. Note that our approach
applies to regexes that can be represented as automata.

Definition 2 (Acceptance). A string s is accepted by a regex
r iff s ∈ L(r) (i.e., s is a word of L(r)).

We will also use r as a predicate: r(s) = true if s ∈ L(r),
and r(s) = false otherwise.

Normally, acceptance is computed by converting r to an
automaton R, and then checking whether R accepts the string.
Fig. 1 reports an example of automaton accepting all the words
of the regex [a-zA-Z_][a-zA-Z0-9_]*. In this paper, we use
the library dk.brics.automaton [18] to transform a regex r
into an automaton R (by means of function toAutomaton(r))
and perform standard operations on it, as those described as
follows.

A-Z

a-z

_

A-Z

a-z

0-9

_

Figure 1: Automaton of regex [a-zA-Z_][a-zA-Z0-9_]*

LetR be the automaton of a regex r , and L(R) the language
accepted by the automaton R. Two unary operators on R are:
• Complement: R{ accepts all the strings not accepted by
R, i.e., L(R{) = Σ∗ \ L(R).

• Word selection: pickAword(R) returns a string s ac-
cepted by R, i.e., s ∈ L(R).

Let R1 and R2 be the automata of regexes r1 and r2; three
binary operators on R1 and R2 are:
• Intersection:R1∩R2 accepts the strings accepted by both

automata, i.e., L(R1 ∩R2) = L(R1) ∩ L(R2).
• Union:R1∪R2 accepts all the strings accepted by at least

one of the two automata, i.e., L(R1 ∪ R2) = L(R1) ∪
L(R2).

• Symmetric difference: R1 ⊕ R2 = (R{
1 ∩ R2) ∪ (R1 ∩

R{
2) accepts the strings accepted by only one of the two

automata, i.e., L(R1⊕R2) = L(R1) \L(R2)∪L(R2) \
L(R1).

We will also write s ∈ R for a string s accepted by the
automaton R (i.e., s ∈ L(R)).

III. FAULT CLASSES AND MUTATION OPERATORS

Mutation has been applied to various artifacts, mainly pro-
grams, but also specifications and grammars (see Sect. VII). In
this paper, we apply mutation to regexes. As suggested by [23],
to introduce a set of mutation operators producing useful
mutations, we have tried to identify potential fault classes. We
have browsed some Internet sites and read several books ( [11]
is the main reference) which explain the common mistakes
programmers make when defining regexes, and we found the
following fault classes and defined the following mutation
operators. In our setting, a mutation operator is a function
that given a regex r , returns a list of regexes (called mutants)
obtained by mutating r . Every mutation slightly modifies
the regex r under the assumption that the programmer has
defined r close to the correct version (competent programmer
hypothesis [12]).

We identified three families of faults: single character faults
and character class faults are respectively related to wrong
uses of single characters and character classes, other faults
are instead related to wrong uses of the multiplicity and of
the negation operator.
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A. Single character faults
Case Change (CC): Regexes are case sensitive. However,

a user could use them without being aware of this, or (s)he
could simply use the wrong case (either upper or lower). This
operator mutates a regex r by changing the case of characters
appearing in r : a mutant is created for each character of r
not used in a character class, and a mutant is created for each
character class (both chars are changed at the same time).

Example 3. A user could be interested in accepting all strings
starting with ’a’ or ’A’. However, (s)he wrongly writes regex
a[a-z]* that only accepts words starting with ’a’. CC produces
the mutant A[a-z]* that only accepts strings starting with ’A’.
Note that the mutant is not yet what the user has in mind, but
it allows to see that there is a problem in the original regex.
The other mutant produced by CC is a[A-Z]*.

Case Addition (CA): This operator is similar to CC, but
makes both lower and upper cases possible when only one of
the two is used: for each character of the regex r not used in
a character class it creates a mutant with the other case of the
char added as alternative; for each character class, instead, the
mutant adds as alternative a new character class having the
extremes of the interval in the other case.

Example 4. Considering the same example of Ex. 3, operator
CA would mutate regex a[a-z]* in mutants (a|A)[a-z]* and
a[a-zA-Z]*.

Metachar To Char (M2C): In a regex, some characters
can be interpreted as metachars or chars depending on the
context, and there is no mandatory special way to identify
metachars. For example, character ’-’ is interpreted as a
metachar only in character classes, otherwise it matches the
normal dash character. A user may want to use a char c,
but (s)he could wrongly use c as metachar. This operator
transforms a regex r containing a char c interpreted as a
metachar in a regex r ′ in which c is interpreted as a char.
Note that the way to mutate r depends on the metachar c:
for example, M2C applied to ’-’ removes the character class
where ’-’ is used.

Example 5. The user writes the regex [0-9]{3}.[0-9]{3}

for matching a sequence of three digits, followed by a dot,
followed by other three digits. However, in the regex, ’.’ is
a metachar and strings like “123A456” are accepted. M2C
produces the mutant [0-9]{3}\.[0-9]{3} that correctly ex-
presses what the user had in mind.
Another example is when the user writes [a-b]+ for matching
strings as “a”, “b”, “-”, “a-”, “-b”, . . . . However, the regex
accepts only strings as “a”, “b”, “ab”, “ba”, . . . . M2C produces
the mutant (a|-|b)+.

Char To Metachar (C2M): In other cases, instead, the
designer wants to use a metachar c, but, because of the context,
c is interpreted as a simple char. This operator transforms a
regex r containing a c interpreted as a char in a regex r ′ in
which c is interpreted as a metachar. Similarly to M2C, the
way to mutate r depends on the metachar c.

Example 6. The designer, in order to match strings of three
chars, writes the regex \.{3}, where \. is a normal char
and, therefore, only string “...” is accepted. C2M produces
the mutant . that correctly accepts all three char strings.

B. Character class faults

Character Class Creation (CCC): Character classes are
delimited by square brackets []. A user may want to use a
character class and forgets (or ignores) the parentheses. Given
a regex r = c1 − c2, the operator mutates r in r ′ = [c1 − c2].

Example 7. A user could have wrongly written 0-9+ to accept
all the sequences of digits; the CCC operator produces the
correct regex [0-9]+.

Character Class Addition (CCA): The user could have
forgotten a given interval in a set of character classes. Given
a regex r = [cc1 . . . ccn], the operator creates a mutant r ′ =
[cc1 . . . ccnccnew ] for each ccnew not present in r ; ccnew can
be a-z, A-Z, or 0-9.

Example 8. Given the regex [a-z], CCA creates mutants
[a-zA-Z] and [a-z0-9].

Range Modification (RM): The user could have specified
a too tight or too broad interval. Given a regex r = [c1 − c2],
the operator produces a mutant in which c1 or c2 is increased
or decreased (if it is still a valid char).

Example 9. Given the regex [f-m], RM creates mutants
[e-m], [g-m], [f-l], and [f-n].

Character Class Restriction (CCR): The user could have
written a regex that is too permissive since it accepts characters
that should not [17]. Given a regex r = [cc1 . . . ccn], the
operator creates a mutant r ′ = [cc1 . . . cci−1cci+1 . . . ccn] for
each cci (i.e., it removes an interval from the character class).

Example 10. Given the regex [a-zA-Z0-9], CCR creates
mutants [A-Z0-9], [a-z0-9], and [a-zA-Z].

Prefix Addition (PA): Sometimes all the characters of a
string s satisfy some constraints, except for the first character
in s that must satisfy additional constraints; for example,
identifiers in most programming languages cannot start with
a number. This mutation operator, given a repeat expression
regex r = [cc1, . . . , ccn]m (being m the multiplicity), introduces
a prefix that is one of the different character classes cc1, . . . ,
ccn used in r . The obtained mutants are as follows: [cc1][cc1,
. . . , ccn]m, [cc2][cc1, . . . , ccn]m, . . . , [ccn][cc1, . . . , ccn]m.

Example 11. The regex [a-zA-Z0-9]* accepts any character
as first char, while if the correct regex accepted only an alpha-
betic char as first one, the PA mutation [a-zA-Z][a-zA-Z0-9]*

is correct.

Character Class Negation (CCN): Regex [ˆcc1 . . . ccn]
matches any character that is not listed in the character classes
cc1, . . . , ccn. The designer could have forgotten the ˆ symbol
and written [cc1 . . . ccn]. CCN introduces symbol ˆ; it creates
a mutant in which all the character classes are excluded (i.e,
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[ˆcc1 . . . ccn]), and a mutant for each character class cci in
which only cci is excluded (i.e, [cc1] | . . . | [ˆcci] | . . . | [ccn]).

Example 12. The regex [a-zA-Z] is mutated in three al-
ternative regexes, namely: [^a-zA-Z], [^a-z]|[A-Z], and
[a-z]|[^A-Z].

Negated Character Class to Optional (NCCO): Another
common error regarding the use of a negated character class
[ˆcc] is that it requires “to match a character that is not listed”
and not “to not match what is listed” [11]. Therefore, a negated
character class still requires to match a character. A user could
misunderstand the semantics of the operator, thinking that it
simply excludes the character; in some cases, for example at
the end a word, (s)he could be interested in accepting also no
character. Operator NCCO makes ˆ optional, i.e., it mutates
[ˆcc] in [ˆcc]?.

Example 13. Suppose that the designer wants to find all the
words having a ’q’ not followed by an ’u’ [11]; (s)he may
(wrongly) write .*q[^u] that, however, requires to always
have a character different from ’u’ after ’q’: word “Iraq” would
not be accepted. Applying NCCO would produce .*q[^u]?

that also accepts “Iraq”.

C. Other faults

Negation Addition (NA): In a regex r = r1r2 . . . rn, the
user could forget a negation ˆ. The operator creates a mutant
adding a negation wherever possible in r , i.e., ˆr1r2 . . . rn,
r1ˆr2rn, . . . , r1r2 . . . ˆrn.

Example 14. Given the regex [A-Z][a-z], NA creates mu-
tants [^A-Z][a-z] and [A-Z][^a-z].

Quantifier Change (QC): The user could have used the
wrong cardinality. The operator mutates each simple repeat
quantifier in another simple quantifier; moreover, for each
user-defined quantifier, it creates a mutant in which n (or m)
is increased and a mutant in which it is decreased.

Example 15. A user could have wrongly written the regex
[0-9]* to accept all the sequences of digits (that, however,
also accepts the empty string); the QC operator would produce
the correct regex [0-9]+.

D. Classification of mutations

A mutant m of a regex r can modify the accepted language
in four ways, as shown in Fig. 2:
• Arbitrary edit: some words are added to the language and

other words are removed.
• Generalization: some words are added to the language

and no word is removed.
• Specialization: some words are removed from the lan-

guage and no word is added.
• Equivalent: the mutant is equivalent and so the two

languages are the same.

Example 16 (Classification examples). r ′ = [a-z][A-Z]* is
a CC mutant of r = [a-z][a-z]*; it is an arbitrary edit: for

L(r) L(m)

Σ∗

(a) Arbitrary edit

L(r) L(m)

Σ∗

(b) Generalization

L(r) L(m)

Σ∗

(c) Specialization

L(r)= L(m)

Σ∗

(d) Equivalent

Figure 2: Classification of mutations

example, “aA” is accepted only by r ′, and “aa” is accepted
only by r .
r ′ = [a-z]* is a QC mutant of r = [a-z]+; r ′ is a

generalization of r because it accepts the same language plus
the empty word “”. Conversely, r is a specialization of r ′.
r ′ = [a-z][a-z]* is a QC mutant of r = [a-z][a-z]+;

r ′ is an equivalent mutant of r because it accepts the same
language.

Some mutation operators guarantee to always produce mu-
tants of the same type; for example, operator PA (adding a
prefix to a regex) can only reduce the set of accepted strings
and, therefore, it always produces specializations.

An alternative way to define mutation operators

In the previous section, we have introduced several mutation
operators by semantic fault classes, i.e., mistakes done by
programmers which misunderstood regex meaning and seman-
tics. A simple alternative way to define mutation operators for
regexes, would be ignoring fault classes and simply defining
a unique syntactic variation by substituting a character c in a
regex r with another character c′. However, this would lead
to a great number of mutants (and, therefore, a great number
of tests) and would require the use of higher order mutants to
capture even simple faults, like, for example, the programmer
forgets the character class “[” “]”. As it will be apparent in the
following sections, we want to keep the number of mutants
small in order to limit the number of strings generated by
MUTREX.

IV. GENERATION OF FAULT-DETECTING STRINGS

We suppose that a user has written a regex r and (s)he wants
to validate it over some strings; the user may have wrongly
written the regex, but (s)he can correctly assess whether a
string should be accepted or not ((s)he can act as oracle).

We here aim at generating some meaningful strings that
must be shown to the user for regex validation.
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Algorithm 1 GENDS: Generation of a distinguishing string
Require: r1, r2, two regexes

1: function GENDS(r1, r2)
2: R1 ← toAutomaton(r1)
3: R2 ← toAutomaton(r2)
4: return GENDS(R1, R2)
5: end function

Require: R1, R2, two automata
1: function GENDS(R1, R2)
2: U ← R1 ⊕R2

3: if U 6= ∅ then
4: return pickAword(U)
5: else
6: return null

7: end if
8: end function

A. Distinguishing strings

Definition 17 (Distinguishing string). Given two regexes r1
and r2, we say that the string s is distinguishing if it is a word
of the symmetric difference between r1 and r2, i.e.,

s ∈ L(r1 ⊕ r2) = L(r1) \ L(r2) ∪ L(r2) \ L(r1)

A distinguishing string is accepted by r1 and not by r2, or
vice versa. We name as positive the distinguishing strings that
are accepted by r1, and as negative those accepted by r2.

Alg. 1 shows an algorithm that produces a distinguishing
string between two regexes r1 and r2. The function builds
two automata R1 and R2 for the two regexes and then builds
the automaton U corresponding to their symmetric difference.
If U is not empty (i.e., the two regexes are not equivalent),
the function randomly picks a word of U and returns it as
distinguishing string; otherwise, it returns null.

B. Generation of distinguishing strings

We developed the tool MUTREX1 that, given a regex r ,
generates a set of mutants and asks the user to evaluate the
distinguishing strings generated between r and its mutants.

The generation of the distinguishing strings is shown in
Alg. 2. The approach builds a set of mutants muts using the
mutation operators described in Sect. III, and then, for each
mutant m, tries to build a distinguishing string for r and m
(over their automata R and M) using function genDs shown
in Alg. 1: if m and r are not equivalent, a distinguished string
exists and it is added to the set DSs . The set DSs is returned
at the end of the algorithm.

The approach in Alg. 2 can be further improved by two
techniques: monitoring and collecting.

1) Monitoring: Monitoring consists in keeping track of the
previously generated distinguishing strings DSs and, after gen-
erating a mutant, checking whether the mutant is distinguished
by any ds ∈ DSs; if this is the case, we avoid computing a new

1The tool is available as web service at http://cs.unibg.it/mutrex.

Algorithm 2 MUTREX: generation of a distinguishing set
Require: r : initial regex

1: R ← toAutomaton(r)
2: muts ← mutate(r)
3: DSs ← ∅
4: for m ∈ muts do
5: M← toAutomaton(m)
6: ds ← GENDS(R, M)
7: if ds 6= null then . r and m are not equivalent
8: DSs ← DSs ∪ {ds}
9: end if

10: end for
11: return DSs

Algorithm 3 MUTREX: generation of a distinguishing set
using monitoring
Require: r : initial regex

1: R ← toAutomaton(r)
2: muts ← mutate(r)
3: DSs ← ∅
4: for m ∈ muts do
5: M← toAutomaton(m)
6: if ¬∃ds ∈ DSs: ds ∈ R⊕M then . monitoring
7: ds ← GENDS(R, M)
8: if ds 6= null then
9: DSs ← DSs ∪ {ds}

10: end if
11: end if
12: end for
13: return DSs

distinguishing string and we continue from the next mutant.
This permits us to limit the number of strings that are provided
to the user. The modified algorithm is shown in Alg. 3. At
line 6, the algorithm checks whether there exists an already
generated distinguishing string that can also distinguish r and
the new mutant m.

2) Collecting: Collecting consists in trying to generate a
string that distinguishes r from a set of mutants m1, . . . ,mn.
A string ds distinguishes r from a set of mutants m1, . . . ,mn

if ds is accepted by r and not accepted by any mutant in
m1, . . . ,mn, or if ds is not accepted by r and accepted by
all the mutants in m1, . . . ,mn. Therefore, the distinguishing
string is a word of one of these two automata:

D+ = R∩
⋂n

i=1M{
i

D− = R{ ∩
⋂n

i=1Mi

being R, M1, . . . , Mn the automata of r , m1, . . . , mn.
We name D+ and D− as distinguishing automata, and we
further name D+ as positive and D− as negative. The proposed
approach iteratively builds positive and negative distinguishing
automata by collecting different mutants. In order to check
whether a distinguishing automaton D is positive or negative,
we introduce the predicate isPos(D) that is true if D is
positive, false otherwise.
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Algorithm 4 MUTREX: generation of a distinguishing set
using collecting
Require: r : initial regex

1: muts ← mutate(r)
2: R ← toAutomaton(r)
3: DA← ∅
4: for m ∈ muts do
5: M← toAutomaton(m)
6: mAdded ← false
7: for D ∈ DA do
8: if isPos(D) ∧ D ∩M{ 6= ∅ then
9: D ← D ∩M{

10: mAdded ← true
11: break
12: end if
13: if ¬isPos(D) ∧ D ∩M 6= ∅ then
14: D ← D ∩M
15: mAdded ← true
16: break
17: end if
18: end for
19: if ¬mAdded then
20: if R∩M{ 6= ∅ then
21: DA← DA ∪ {R ∩M{}
22: else if R{ ∩M 6= ∅ then
23: DA← DA ∪ {R{ ∩M}
24: end if
25: end if
26: end for
27: DSs ← ∅
28: for D ∈ DA do
29: DSs ← DSs ∪ {pickAword(D)}
30: end for
31: return DSs

The approach is shown in Alg. 4. The algorithm first creates
a set of distinguishing automata DA, initially empty. Then, for
each mutant m, it (randomly) iterates over all the automata
D in DA to find an already existing automaton that can
distinguish M (the automaton of m):

• if D is positive and M{ can be conjuncted with D (i.e.,
D∩M{ is not empty), then the conjunction is performed
and the search terminates (lines 8-11);

• otherwise, it checks whether D is negative and M can
be conjuncted (i.e., D ∩M is not empty); if this is the
case, the search terminates (lines 13-16);

• if neither M{ nor M can be conjuncted with any
existing distinguishing automaton, a new distinguishing
automaton is created. It first tries to create a positive
distinguishing automaton (lines 20-21) and, if not possi-
ble, it tries to build a negative distinguishing automaton2

(lines 22-23). If both cannot be created, it means that R

2Note that we give precedence to positive distinguishing automata. A
different approach could be to randomly choose the precedence.

Algorithm 5 MUTREX: Computing mutation score
Require: S: set of strings

1: muts ← mutate(r)
2: killedMuts ← ∅
3: for m ∈ muts do
4: if ∃s ∈ S: killed(r ,m, s) then
5: killedMuts ← killedMuts ∪ {m}
6: else if m ≡ r then
7: muts ← muts \ {m}
8: end if
9: end for

10: return |killedMuts|/|muts|

and M are equivalent.
After the iteration over all the mutants, each non-equivalent

mutant has been added to a distinguish automaton. The algo-
rithm builds the set of distinguishing strings by taking a word
from each distinguishing automaton (lines 28-29).

V. COMPUTING THE MUTATION SCORE OF A STRING SET

The MUTREX framework can be used also to measure the
quality of a set of strings for a generic regex. As already
observed, a common way to validate a regex r , is to generate
a set of meaningful strings from r (both accepted and rejected
by r ), and submit these strings to the user. If the user confirms
that the strings are correctly labeled as valid and invalid, the
regex r is considered validated. The quality of the string set
is crucial: if there are too banal strings, these may lead to a
false confidence in the correctness of r .

We can use mutants to assess the meaningfulness of a set
of strings. We introduce, as in mutation testing, the concepts
of killing a mutant and mutation score.

Definition 18 (Killed mutant). A mutant m of r is killed by
a string s iff m evaluates s differently from r , i.e., s is a
distinguishing string for r and m. Formally:

killed(r ,m, s) ⇐⇒ s ∈ L(r ⊕m)

Example 19. If r is [a-zA-Z] and the CCR mutant m is
[a-z], then the string “A” kills m, while the string “a” does
not.

Given a set of strings S for a regex r , we can use the
MUTREX function mutate(r) as follows.

Definition 20 (Mutation score). The mutation score of a set
of strings S for a regex r is defined as follows:

|{m ∈ mutate(r): (L(r) 6= L(m) ∧ ∃s ∈ S: killed(r ,m, s))}|
|{m ∈ mutate(r):L(r) 6= L(m)}|

The mutation score is the ratio of non-equivalent mutants
that are killed by at least a string in S. We can compute
the mutation score using the algorithm shown in Alg. 5. The
algorithm iterates over all mutants, collects those that are killed
by at least an s in S (lines 4-5), and identifies the equivalent
ones (removed by the set of mutants at line 7). At the end,
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the mutation score is returned. Note that the test generation
approach of MUTREX (see Algs. 2, 3, and 4) guarantees to
generate test suites having mutation score 1 (by definition of
distinguishing string).

The set of string S can come from different sources. It could
have been obtained from some tools for generating tests for
regexes, as EGRET [14]. In this case, MUTREX is used to
evaluate the fault detection capability of the generated strings.
We will present an experiment is this direction in Sect. VI-A.
S could instead be the set of strings from which the

user synthesized the regex r (for example, by the technique
presented in [17]). In this case, the mutation score tells how
well S represents r ; a low mutation score means that probably
S is not sufficient to guess the right regex and more labeled
strings should be added to S in order to synthesize a better
regex.

VI. EXPERIMENTS

As benchmarks we have taken 33 regexes from different
books and websites3. They are used to detect dates, e-mail
addresses, URLs, credit card numbers, US phone numbers,
palindrome words, floating point numbers, and car identifica-
tion numbers.

Fig. 3 shows the size of each regex in terms of length and
number of operators. The benchmarks are representative of
different kinds of regexes, from small ones, long less than 100
characters and containing less than 20 operators, to big ones,
longer than 100 characters and with more than 20 operators.

All the experiments have been executed on a Linux PC with
Intel(R) Core(TM) i7 CPU and 4 GB of RAM.

RQ1 How many mutants are generated by each mutation
operator?

Fig. 4 shows, for each mutation operator, the number
of mutants generated for all benchmarks. The operator that
produces more mutants is CCR (that removes an interval from
a character class) since character classes are widely used in
regexes. In general, operators that mutate common operators
(e.g., CCN negating a character class, RM modifying the range
of an interval, CCA adding a new interval, . . . ) produce several
mutants. Operators that rely on the presence of seldom used
operators, instead, produce few mutants: NCCO, for example,
applies to negated character classes that are not commonly
used by developers.

RQ2 How are mutants distributed in the classes presented
in Sect. III-D?

Fig. 5 shows, for each mutation class, the classification
of its mutants in generalizations, specializations, arbitrary
edits, and equivalent mutants. As expected, PA only produces
specializations: indeed, adding a prefix to a regex can only
reduce the set of accepted strings. In our experiments, C2M
always produces generalizations because it usually mutates a
normal dot \. in the metachar . and, therefore, it will accept

3All benchmarks can be downloaded from
http://cs.unibg.it/mutrex/mutation2017experiments.txt.

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
1
0

r
1
1

r
1
2

r
1
3

r
1
4

r
1
5

r
1
6

r
1
7

r
1
8

r
1
9

r
2
0

r
2
1

r
2
2

r
2
3

r
2
4

r
2
5

r
2
6

r
2
7

r
2
8

r
2
9

r
3
0

r
3
1

r
3
2

r
3
3

0

100

200

(a) Length

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
1
0

r
1
1

r
1
2

r
1
3

r
1
4

r
1
5

r
1
6

r
1
7

r
1
8

r
1
9

r
2
0

r
2
1

r
2
2

r
2
3

r
2
4

r
2
5

r
2
6

r
2
7

r
2
8

r
2
9

r
3
0

r
3
1

r
3
2

r
3
3

0

10

20

30

(b) Number of operators

Figure 3: Benchmarks size
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more strings (having any character for the metachar). Table II
reports the total number of mutant types, and their percentage
over all the mutations. We can see that most of the mutants
are specializations: this means that mutation operators tend to
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Table II: Mutants classification – All operators

Generalization Specialization Arbitrary edit Equivalent Total

Sum 787 11250 1203 310 13550
Ratio 5.8% 83.0% 8.9% 2.3%
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Figure 6: Test suite size

add further constraints to the regex under test. Only 2.3% of
mutants are equivalent: this means that the equivalent mutants
are not a big problem for regex testing (moreover, detecting
equivalent mutants is decidable in this context).

RQ3 How big are the fault-detecting test suites?

Fig. 6 reports the sizes of the generated test suites for all
the benchmarks and for the three generation techniques: the
basic one shown in Alg. 2, the one using monitoring shown in
Alg. 3, and the one using collecting shown in Alg. 4. For all
the three techniques, the size of the test suite grows linearly
with the size of the regex under test (in the plot, regexes
are ordered according to their length). As expected, collecting
permits to obtain the most compact test suites. On average,
the size of the test suite obtained with collecting is half of the
size of the test suite obtained with the basic approach. Also
monitoring permits to reduce the size of the test suite, but
not as well as collecting; this fact has been observed also in
other contexts [2]. The total size of the test suites for all the
benchmarks is reported in Table III.

Table III: Comparison of techniques

Technique Size Time (sec)

Basic 1214 662
Monitoring 862 1258
Collecting 499 3827
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Figure 7: Generation time (ms)

RQ4 How much time is required by the generation tech-
niques?

The time taken for generating the test suites is shown in
Fig. 7. Table III reports the total time over all the benchmarks;
monitoring takes the double of time of basic, and collecting
is three times slower than monitoring.

RQ5 Is monitoring effective?

W.r.t. the basic approach, monitoring permits to always
obtain smaller test suites (see Fig. 6), but it takes on average
the double of time (see Table III). Note that monitoring is
particularly effective on big regexes that produce a lot of
mutants: in these cases, the basic approach produces a lot of
tests for killing all the mutants, and monitoring permits to
significantly reduce the number of tests needed.

RQ6 Is collecting effective?

In terms of size, collecting is effective w.r.t. both the basic
approach and the monitoring approach. However, it is the
slowest technique (three times slower than the monitoring
approach). Note that the bottleneck of the approach is the
addition of a new automaton to a distinguishing automaton
(lines 9 and 14 in Alg. 4). As future work, we plan to
devise heuristics to improve the scalability of the approach;
a solution could be to limit the number of automata that can
be conjuncted together in a distinguishing automaton.

A. Comparison with other string generator tools

We are interested in studying how MUTREX can be com-
pared with other string generator tools. As comparison, we
have chosen EGRET (Evil Generation of Regular Expression
Tests) which is a very recent tool [14], freely available, and
it promises to generate the most “evil” strings. We have the
following two main research questions.
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Figure 8: EGRET

RQ7 Does MUTREX generate more strings than EGRET?

Fig. 8a reports the size of the tests produced by EGRET
(compared with the size of MUTREX when using collecting).
The data show that EGRET and MUTREX produce test set
of comparable size. For the entire benchmark set, EGRET
produces 603 strings (against 499 of MUTREX when using
collecting and 862 when using monitoring).

RQ8 Is EGRET able to detect faults as MUTREX?

For this question, we can use the mutation score presented
in Sect. V. Recall that MUTREX always generates test suites
having mutation score 100%; we are interested in knowing to
what extent other test generation tools target the fault classes
we defined. Fig. 8b reports the mutation score of the string sets
produced by EGRET. On average, the mutation score is 31%
with a maximum of 96% and a minimum of 0%. Especially
tests for long regexes have a very low mutation score. This
means that most of the faults we have presented can pass
undetected if one relies on EGRET to validate a regex.

VII. RELATED WORK

Mutation is a well known technique in the context of soft-
ware artifacts. It has been mainly applied to programming lan-
guages, but also at the design level to formal specifications [3],
[4], [7], [10], [15], [23]. In particular, Offutt et al. [19]
argue that mutation analysis is a test generation method that
create inputs from syntactic descriptions and it is applicable to
any software artifact on the base of its syntactic description.
They view mutation as an implementation of grammar-based

testing, in the sense that a syntactic description such as a
grammar is used to create tests. Our way of using mutation
for testing regexes perfectly reflects this concept of grammar-
based testing.

Although no specific mutation operators have ever been
defined for regexes, there exist approaches based on suitable
(grammar) transformations, some on regexes, some on strings
accepted by regexes, which resemble mutation. Among these
approaches, Li et al. [17] introduce ReLIE, a learning algo-
rithm that, starting from a plausible initial regex and a set of
labeled strings, tries to learn the correct regex. ReLIE works
on a set of regex transformations, a sort of regex mutation, to
obtain a set of candidate regexes. Similarly, MUTREX allows
to learn the intended regex by a set of strings accepted by
mutated regex.

Closer to our approach and based on string transformations,
is the approach presented in [14] to generate evil strings.
EGRET is a tool for generating test strings for a regex. It
takes a regex as input and generates two lists of test strings:
strings accepted by the regex, and strings rejected. A user
can manually scan both these lists and identify strings that
are incorrectly classified: incorrectly accepted or incorrectly
rejected. In this way, (s)he can have confidence that the regex
works as intended. Generated strings work, therefore, as evil
since they expose errors commonly made by programmers.
As for MUTREX, the approach is based on converting regexes
into nondeterministic finite state automata, generating strings
able to expose possible common mistakes, involving the user
as oracle to decide regex correctness. Furthermore, EGRET
generation of evil strings applies mutation on strings ac-
cepted by the regex (differently from MUTREX that mutates
the regex): altering the number of iteration for each repeat
operators and changing the character used for a character
set. However, MUTREX improves EGRET in terms of fault
detection capability: when a user detects a faulty string, (s)he
also knows the error made in writing the regex (that is the
error induced by the mutation operator), and, as shown by
our experiments on the mutation score of strings generated by
EGRET (see Sect. VI-A,), especially for long regexes, faults
can pass undetected if one relies on EGRET evaluation.

Different tools have been developed for testing regexes.
They are based on random generation of test strings, and
most of them are available on line, as EXREX, Regex101,
RegExr, RegEx Testing, to cite a few. MUTREX can be used
in combination with these tools to evaluate the fault detection
capability of the set of generated strings, as discussed for
EGRET in Sect. VI-A.

Other approaches have been defined for testing purposes,
still based on strings generation, which exploit the symbolic
automaton representation. Veanes et al. [22] have developed
Rex, a general-purpose solver of regexes constraints. Rex
translates a given regex into a symbolic representation of a
finite automaton, i.e., an NFA where transitions are labeled
by formulas representing set of characters rather than single
characters. A symbolic finite automaton is represented in terms
of a set of axioms that describe the acceptance conditions of
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a string by the automaton, and an SMT solver (Z3) is used
for satisfiability checking. Since the SMT solver is able to
generate a model as witness of the satisfiability check, Rex
can be used to build strings accepted by the automaton/regex:
the model represents an accepted string. Rex is used in
combination with Pex [21] for dealing with regex constraints
in parameterized unit tests. Reggae [16] in a tool to generate
string test inputs that are accepted by a given regex. The goal
is to perform branch coverage for programs that use complex
string operation including regex operations. It exploits dy-
namic symbolic execution based on path exploration. Kiezun
et al. [13] propose HAMPI, a solver for string constraints over
bounded string variables. Users of HAMPI specify constraints
using regexws, context-free grammars, equality between string
terms, and typical string operations such as concatenation and
substring extraction. HAMPI then finds a string that satisfies
all the constraints or reports constraints unsatisfiability.

VIII. CONCLUSIONS

In this paper, we have presented a fault-based test gen-
eration approach for regular expressions (regexes). We have
introduced a set of fault classes (and corresponding mutation
operators) representing possible mistakes developers do when
writing a regex, and proposed a technique for generating dis-
tinguishing strings, i.e., strings able to distinguish a regex from
its mutants. The generation approach consists in generating
a distinguishing string for each mutant; the basic approach
is improved (in terms of test suite size) by two techniques,
monitoring and collecting. Experiments show that the two
techniques permit to obtain compact test suites having a
guaranteed maximal mutation score. Moreover, we also found
that existing test generation approaches produce test suites
with a low mutation score, i.e., they are not able to capture
faults of most of the classes we proposed.

As future work, we plan to devise a technique that, once
a fault is detected, tries to repair the faulty regex. Moreover,
we plan to improve the computation time of the collecting
technique by devising some heuristics that avoid to build too
big distinguishing automata. In order to speed up the process,
we also plan to study whether approaches as [8], considering
mutants as part of a family, are applicable also in our context.
Finally, we plan to evaluate whether higher-order mutants can
give any benefit, although heuristics to limit the number of
mutants should be applied in this case.
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