
4 Conformance Testing

Angelo Gargantini

Dipartimento di Matematica e Informatica
University of Catania
gargantini@dmi.unict.it

4.1 Introduction

In this chapter we tackle the problem of conformance testing between finite
state machines. The problem can be briefly described as follows [LY96]. Given
a finite state machine MS which acts as specification and for which we know
its transition diagram, and another finite state machine MI which is the al-
leged implementation and for which we can only observe its behavior, we want
to test whether MI correctly implements or conforms to MS . The problem of
conformance testing is also called fault detection, because we are interested in
uncovering where MI fails to implement MS , or machine verification in the
circuits and switching systems literature.

We assume that the reader is familiar with the definitions given in Chapter
21, that we briefly report here. A finite state Mealy machine (FSM) is a quintuple
M = 〈I ,O ,S , δ, λ〉 where I , O , and S are finite nonempty sets of input symbols,
output symbols, and states, respectively, δ : S × I → S is the state transition
function, λ : S × I → O is the output function. When the machine M is a
current state s in S and receives an input a in I , it moves to the next state
δ(s , a) producing the output λ(s , a). An FSM can be represented by a state
transition diagram as shown in Figure 4.1. n = |S | denotes the number of states
and p = |I | the number of inputs. An input sequence x is a sequence a1, a2, . . . , ak

of input symbols, that takes the machine successively to states si+1 = δ(si , ai),
i = 1, . . . , k , with the final state sk+1 that we denote by δ(s1, x). The input
sequence x produces the output sequence λ(s1, x) = b1, . . . , bk , where bk =
λ(si , ai), i = 1, . . . , k . Given two input sequences x and y, x .y is the input
sequence obtained by concatenating x with y.

The detection of faults in the implementation MI can be performed by the
following experiment. Generate a set of input sequences from the machine MS .
By applying each input sequence to MS , generate the expected output sequences.
Each pair of input sequence and expected output sequence is a test and the set
of tests is a test suite (according to the definitions given in Chapter 20). Apply
each input sequence to MI and observe the output sequence. Compare this actual
output sequence with the expected output sequence and if they differ, then a
fault has been detected. As well known, this procedure of testing, as it has been
presented so far, can only be used to show the presence of bugs, but never to
show their absence1. The goal of this chapter is to present some techniques and

1 Dijkstra, of course

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 87-111, 2005.
 Springer-Verlag Berlin Heidelberg 2005

88 Angelo Gargantini

s1

a/0

b/1

s2
b/1

a/1 s3 a/0

b/0

Fig. 4.1. Machine MS [LY96]

algorithms able to detect faults of a well defined class, and to eventually prove,
under some assumptions, that an implementation conforms to its specification.
This chapter presents methods leaning toward the definition of ideal testing
criteria as advocated in [GG75], i.e. test criteria that can discover any fault in the
implementation (under suitable assumptions). Although this approach is rather
theoretical, Section 4.8 presents the justifications for theoretical assumptions
and the practical implications of the presented results.

Conformance is formally defined as equivalence or isomorphism (as defined in
Chapter 21): MI conforms to its specification MS if and only if their initial states
are equivalent, i.e. they will produce the same output for every input sequence.
To prove this equivalence we look for a set of input sequences that we can apply
to MI to prove that it is equivalent to its specification. Note that successively
applying each input sequence in the test set is equivalent to applying one input
sequence that is obtained concatenating each input sequence in the set. Such an
input sequence is called checking sequence.

Definition 4.1. (Checking sequence) A checking sequence for MS is an input
sequence that distinguishes the class of machines equivalent to MS from all other
machines.

Although all the presented methods share the unique goal to verify that MI

correctly implements MS , generating a checking sequence (or a set of sequences,
that concatenated act as a unique checking sequence), they differ for their cost
to produce test sequences, for the total size of the test suite (i.e. the total length
of the checking sequence), and for their fault detection capability. In fact, test
suites should be rather short to be applicable in practice. On the other hand
a test suite should cover the implementation as much as possible and detect
as many faults as possible. The methods we present in this chapter differ with
respect to the means and techniques they use to achieve these two opposite
goals. However, the main difference among the methods we present regards the
assumptions they make about the machines MS and MI . Some methods are
very efficient to produce a checking sequence but usable only under very strong
assumptions. Others produce exponentially long checking sequences, but perform

4 Conformance Testing 89

the test under more general assumptions. Therefore, the choice of one method
instead of another is driven more by the facts we know or assume about the
machines MS and MI , and these assumptions are of great importance.

4.2 Assumptions

Developing a technique for conformance testing without any assumption is im-
possible, because for every conformance test one can build a faulty machine that
would pass such test. We have to introduce some assumptions about the ma-
chines we want to verify. These first four assumptions are necessary for every
method we present in this chapter.

(1) MS is reduced or minimal : we have to assume that machines are reduced,
because equivalent machines have the same I/O behavior, and it is impossible
to distinguish them by observing the outputs, regardless the method we use
to generate the checking sequence. If MS it is not minimal, we can minimize
it and obtain an equivalent reduced machine (algorithms can be found in
literature [Moo56, LY96] as well as in Chapter 21). In a minimal machine
there are no equivalent states. For every pair of states s and t , there exists
an input sequence x , called separating sequence, that can distinguish s from
t because the outputs produced by applying x to s and t , λ(s , x) and λ(t , x)
differ (see Section 1.3).

(2) MS is completely specified : the state transition function δ and the output
function λ are total: they are defined for every state in S and every input in
I .

(3) MS is strongly connected : every state in the graph is reachable from ev-
ery other state in the machine via one or more state transitions. Note that
some methods require only that all states are reachable from the initial one,
allowing machines with deadlocks or states without any exiting transition.
However these methods must require a reset message (Assumption 7) that
can take the machine back to its initial state, otherwise a deadlock may stop
the test experiment. The reset message makes de facto the machine strongly
connected.

(4) MI does not change during testing. Moreover it has the same sets of inputs
and outputs as MS . This implies that MI can accept and respond to all input
symbols in I (if the input set of MI is a subset of the input set of MS , we
could redefine conformance).

The four properties listed above are requirements. Without them a conformance
test of the type to be discussed is not possible. Unlike the first four requirements,
the following assumptions are convenient but not essential. Throughout this
chapter we present methods that can successfully perform conformance testing
even when these assumptions do not hold.

(5) Initial state: machines MI and MS have an initial state, and MI is in its
initial state before we conduct a conformance test experiment. If MI is not

90 Angelo Gargantini

s1

a/0

b/1

s2
b/1

a/1 s3 a/0

b/1

s1

b/0

a/0

s2
a/1

b/1 s3 b/1

a/0

MI1 MI2

Fig. 4.2. Two faulty implementations of MS

in its initial state we can apply a homing sequence (presented in Section
1.1.3) and then start the conformance test. If the machine MI does not
conform to its specification and the homing sequence fails to bring MI to its
initial state, this will be discovered during the conformance test. We denote
the initial state by s1.

(6) Same number of states : MI has the same number of states as MS , hence
faults do not increase the number of states. Due to this assumption, the
possible faults in MI are of two kinds: output faults, i.e. a transition in
the implementation produces the wrong output, and transfer faults, i.e. the
implementation goes to a wrong state. Figure 4.2 shows two faulty imple-
mentations of the specification machine MS given in Figure 4.1. Machine
MI1 contains only one output fault for the transition from s3 to s1 with the
input b: the output produced by MI1 is 1 instead of 0. Machine MI2 has
several transfer faults: every transition moves the machine to a wrong final
state. Moreover the transitions in MI2 from state s3 and s1 with input b
produce wrong outputs.
Although this assumption is very strong, we show in Section 4.7 that many
methods we present work well with modifications under the more general
assumption that the number of states of MI is bounded by an integer m,
which may be larger than the number of states n in MS .

(7) reset message: MI and MS have a particular input reset (or briefly r) that
from any state of the machine causes a transition which ends in the initial
state s1 and produces no output. Formally, for all s ∈ S , δ(s , reset) = s1 and
λ(s , reset) = −. Starting from Section 4.5 we present some methods that do
not need a reset message.

(8) status message: MI and MS have a particular input status and they respond
to a status message with an output message that uniquely identifies their
current state. Since we label the states s1, s2, ..., sn , we assume that status
outputs the index i when applied to state si . The machines do not change

4 Conformance Testing 91

state. Formally for all si ∈ S , λ(si , status) = i and δ(si , status) = si . This
rather strong assumption is relaxed starting from Section 4.4.

(9) set message: the input set I contains a particular set of inputs set(sj) and
when a set(sj) message is received in the initial system state, the machines
move to state sj without producing any output. Formally for all t ∈ S ,
δ(reset , set(t)) = t and λ(s , set(t)) = −.

Given a machine with all the properties listed above, a simple conformance
test can be performed as described by the simple Algorithm 9 (Chapter 9 of
[Hol91]).

Algorithm 9 Conformance testing with a set message
For all s ∈ S , a ∈ I :

(1) Apply a reset message to bring the MI to the initial state.
(2) Apply a set(s) message to transfer MI to state s.
(3) Apply the input message a.
(4) Verify that the output received conforms to the specification MS , i.e. is equal to

λS (s, a)
(5) Apply the status message and verify that the final state conforms to the specifica-

tion, i.e. it is equal to δS (s, a)

This algorithm verifies that MI correctly implements MS and it is capable
to uncover any output or transfer fault. An output fault would be detected by
step 4 while a transfer fault would be uncovered by step 5. Note that should the
set of input signals I to be tested include the set, reset, and status messages,
the algorithm must test also these messages. To test the status message we
should apply it twice in every state si after the application of set(si). The first
application, given in step 3, is to check that in si the status message correctly
outputs i (if also set is faulty and sets the current state to sj instead of si and the
status message in sj has the wrong output i , we would discover this fault when
testing sj). The second application of status, given by step 5, is to check that the
first application of status did not change the state. Indeed, if the first application
of status in si did change the state to sj and in sj status is wrongly implemented
and outputs i instead of j , we would discover this fault when testing sj . Once
that we are sure that status is correctly implemented, we can test set and reset
applying them in every state and then applying status to check that they take
the machine to the correct state.

Note that the resulting checking sequence obtained by Algorithm 9 is equal
to the concatenation of the sequence reset, set(s), a, and status, repeated for
every s in S and every a in I. The length of the resulting checking sequence is
exactly 4 · p · n where p = |I | is the number of inputs and n = |S | is the number
of states.

The main weakness of Algorithm 9 is that it needs the set message, which
may be not available. To avoid the use of set and to possibly shorten the test

92 Angelo Gargantini

suite, we can build a sequence that traverses the machine and visits every state
and every transition at least once without restarting from the initial state after
every test and without using a set message. Such sequence is called transition
tour. Formally

Definition 4.2. An input sequence x = a1a2 . . . an that takes the machine to
the states s1, s2,. . ., sn such that for all s ∈ S there exists j such that sj = s (x
visits every state) and such that for all b ∈ I and for all s ∈ S there exists j
such that aj = b and sj = s (every input b is applied to each s), is a transition
tour.

In the next section we present some basic techniques for the generation and use
of transition tours for conformance testing that does not assume anymore the
existence of a set message, i.e. relaxing Assumption 9.

4.3 State and Transition Coverage

By applying the transition tour (TT) method, the checking sequence is obtained
from a transition tour, by adding a status message, that we assume reliable, after
every input. Formally if x = a1a2 . . . an is a transition tour, the input sequence
is equal to a1status a2status . . . an status . This is a checking sequence. Indeed,
since every state is checked with its status message after every transition, this
input sequence can discover any transfer fault. Furthermore, every output fault
is uncovered because every transition is tested (by applying the input aj) and
its output observed explicitly.

At best this checking sequence starts with a reset and exercises every tran-
sition exactly once followed by a status message. The length of such sequence
is always greater than 2 · p · n. The shortest transition tour that visits each
transition exactly once is called Euler tour. Since we assume that the machine
is strongly connected (Assumption 3), a sufficient condition for the existence of
an Euler tour is that the FSM is symmetric, i.e. every state is the start state
and end state of the same number of transitions. In this case, an Euler tour
can be found in a time that is linear in the number of transitions, pn [EJ73].
This is a classical result of the graph theory and algorithms for generating an
Euler tour can be found in an introductory book about graphs [LP81] and in
the Chapter 9 of [Hol91]. In non symmetric FSMs searching the shortest tour is
another classical direct graph problem, known as the Chinese Postman Problem,
that can be solved in polynomial time. It was originally introduced by a Chinese
mathematician [Kwa62] and there exist several classical solutions [EJ73] for it.

Example. For the machine in Fig. 4.1 the following checking sequence is obtained
from the transition tour bababa (that is, more precisely, an Euler tour).

checking sequence b status a status b status a status b status a status
start state 1 2 2 2 2 3 3 3 3 1 1 1
output 1 2 1 2 1 3 0 3 0 1 0 1
end state 2 2 2 2 3 3 3 3 1 1 1 1

4 Conformance Testing 93

This checking sequence is able to detect the faults in the machines shown in
Figure 4.2. The fault in MI1 is detected by the application of a b message in
state s3, while the faults in MI2 are immediately detected by the first status
message.

If the status message is unreliable, we have to test it too. Assume that the
status message may produce a wrong output or it may erroneously change the
machine state. Both faults are detected by applying a status message twice in
every state, the first one to test that the previous message has taken the machine
to the correct state and to check that status message produces the correct output
and the second one to verify that the first status message did not change the
state of the machine.

Note the TT method was originally proposed without using a status message
[NT81]. In this case the TT methods achieves only transition coverage. A test
that visits only all the states, but not necessarily all the transitions, is often called
state tour (ST) method [SMIM89] and achieves only state coverage. The coverage
of every transition and the use of a status message are needed to discover every
fault. Indeed, simply generating input sequences covering all the edges of MS

and test whether MI produces the same outputs is not enough, as demonstrated
by the following example.

Example. Consider the machines in Figure 4.2 as alleged equivalent machines
to MS in Figure 4.1. The sequence ababab is an Euler tour. Applying this tour
to MI1 without using the status message, we would discover the output fault of
the transition from s3 to s1: MI1 produces the output sequence 011101 instead
of 011100. However, if we apply this Euler tour to MI2, we do not discover
the faults: MI2 produces the output sequence 011100, identical to the expected
output sequence produced by MS . However MI2 is a faulty implementation of
MS as demonstrated by another tour, namely bababa. This demonstrates that
transition coverage is not capable to detect all the faults, in particular, to detect
transfer faults.

Unfortunately, a status message is seldom available. In the next section we learn
how not to rely on a status message to determine the current state during a test.

4.4 Using Separating Sequences Instead of Status
Messages

We assume now that the machines have no status message (but they still have
a reset message), and we wish to test whether MS is equivalent to MI only
observing the external behavior. In the following we present some methods that
can be unified as proposed by Lee and Yannakakis [LY96]. All these methods
share the same technique to identify a state: they replace the use of the status
message with several kinds of sequences that we can generally call separating
sequences [LY96] and that are able to identify the state to which they have been
applied. Remember that, since MS is minimal, it does not contain two equivalent
states, i.e. for every pair of states si , sj there exists an input sequence x that we

94 Angelo Gargantini

call separating sequence and that distinguishes them because produces different
outputs, i.e. λ(si , x) �= λ(sj , x). Section 1.3 presents a classical algorithm to
compute a separating sequence for two states.

4.4.1 W Method

The W method [Cho78] uses a particular set of separating sequences that is
called characterizing set and another set to visit each transition in the machine,
that is called transition cover set or P set for short, and is defined as follows.

Definition 4.3. (Transition Cover Set) the transition cover set of MS is a
set P of input sequences such that for each state s ∈ S and each input a ∈ I
there exists an input sequence x ∈ P starting from the initial state s1 and ending
with the transition that applies a to state s . Formally for all s ∈ S and for all
a ∈ I there exist an input sequence x ∈ P and an input sequence y ∈ P such
that x = y.a and δ(s1, y) = s .

A P set forces the machine to perform every transition and then stop. A P set
can be built by using a normal breadth-first visit of the transition diagram of
the machine MS . Note that a P set is closed under the operation of selecting a
prefix: if x belongs to P, then any prefix of x is in P too. One way of constructing
P [Cho78] is to build first a testing tree T of MS as explained in Algorithm 10
and then to take the input sequences obtained from all the partial paths of T . A
partial path of T is a sequence of consecutive branches, starting from the root
of T and ending in a terminal or non terminal node. Since every branch in T is
labeled by an input symbol, the input sequence obtained from a partial path q
is the sequence of input symbols on q. The empty input sequence ε is considered
to be part of any P set. Note that Algorithm 10 terminates because the number
of states is finite.

Algorithm 10 Building a test tree
(1) Label the root of the tree T with s1, the initial state of MS . This is the level 1 of

T
(2) Suppose that we have already built the tree T up to the level k . Now we build the

k + 1st level.

(a) consider every node t at level k from left to right
(b) if the node t is equal to another node in T at level j , with j � k , then t is

terminated and must be considered a leaf of T
(c) otherwise, let si be the label of the node t . For every input x , if the machine

MS goes from state si to state sj , we attach to t a branch with label x and a
successor node with label sj

Example. A test tree for MS of Fig. 4.1 is shown in Fig. 4.3. From this test tree
we obtain P = {ε, a, b, ba, bb, bba, bbb}.

4 Conformance Testing 95

s1

a b

s1 s2

a b

s2 s3

a b

s3 s1

Fig. 4.3. A test tree for MS of Figure 4.1

The W method uses a P set to test every transition of MI and uses another set,
called characterizing set of MS or W set, instead of the status message, to verify
that the end state of each transition is the one expected. A characterizing set is
defined as follows.

Definition 4.4. (Characterizing Set) a characterizing set of MS is a set W
of input sequences such that for every pair of distinct states s and t in S , there
exists an input sequence x in W such that λ(s , x) �= λ(t , x)

The characterizing set is briefly called W set or sometimes separating set. The
input sequences in the W set are also called separating sequences. A W set exists
for every machine that is minimal (Assumption 1). The choice of a W set is not
unique and the fewer are the elements in the W set the longer are the separating
sequences in the W set. An algorithm for building a W set follows.

Partition the set of states S into blocks Bi with i = 1, . . . , r . Initially W
is ∅, B1 = S and r = 1. Until every Bi is a singleton, take two distinct states
s and t in a Bi (that contains at least two states) and build their separating
sequence x by means of the algorithm presented in Section 1.3. Add x to W
and partition the states sik in every Bj into smaller blocks Bj1, . . . ,Bjh based
on their different output λ(sik , x). Repeat the process until each Bi becomes
a singleton and r becomes n. For every pair of states si and sj , the resulting
W set contains an input sequence x that separates si from sj . Note that there
are no more than n − 1 partition and therefore W set has no more than n − 1
separating sequences.

The W method consists in using the entire W set instead of the status mes-
sage to test that the end state of each transition is the one expected. Since W
may contain several sequences, we have to visit the same end state of every tran-
sition several times to apply all the separating sequences in a W set and for this
goal we can use a reset message and the sequences in a P set. The set of input
sequences is simply obtained concatenating every input sequence in a P set with
every input sequences in a W set and apply them in order after a reset message
to take the machine back to the initial state. In this way each input sequence pij

96 Angelo Gargantini

is the concatenation of the i-th sequence of a P set (to test the i-th transition)
with the j -th sequence of a W set, with an initial reset input.

Formally, given two sets of input sequences X and Y, we denote with X.Y
the set of input sequences obtained concatenating all the input sequences of X
with all the input sequences of Y. The set of input sequences produced by the
W method is equal to {reset}.P.W.

If we do not observe any fault, the implementation is proved to be correct
[Cho78]. Indeed, any output fault is detected by the application of a sequence
of P, while any transfer fault is detected by the application of W.

Example. For the machine in Fig. 4.1 a characterizing set W is {a,b} (equal to
the input set I). In fact we have:

For state s1, transitions a/0 b/1
For state s2, transitions a/1 b/1
For state s3, transitions a/0 b/0
a distinguishes s1 from s2 and s3 from s2. b distinguishes s1from s3.
P = {ε, a, b, ba, bb, bba, bbb}
The set of test sequences P.W is reported in the following table, where we

indicate with r the reset message.
P ε a b ba bb bba bbb
r.P.W ra rb raa rab rba rbb rbaa rbab rbb rbbb rbbaa rbbab rbbba rbbbb

trans. to
test

s1 ε−→ s1
a/0−−−→ s1 s1

b/1−−−→ s2 s2
a/1−−−→ s2 s2

b/1−−−→ s3 s3
a/0−−−→ s3 s3

b/0−−−→ s1

output 0 1 00 11 11 11 111 111 110 110 1100 1100 1100 1101

The total length of the checking sequence is 52.
The fault in machine MS1 of Figure 4.2 is detected by the input sequence

rbbb, while the transfer faults in machine MS2 are detected by the pair of input
sequences that tests the end state of the transition: for example the fact the
transition from s1 with input a erroneously moves the machine to s2 is detected
by the input sequences raa and rab.

4.4.2 Wp Method

The partial W or Wp method [FvBK+91] has the main advantage of reducing
the length of the test suite with respect to the W method. This is the first
method we present that splits the conformance test in two phases. During the
first phase we test that every state defined in MS also exists in MI , while during
the second phase we check that all the transitions (not already checked during
the first phase) are correctly implemented.

For the first phase, the Wp method uses a state cover set instead of a tran-
sition cover set. The state cover set or Q set, for short, covers only the states, is
smaller than the transition cover set, and it is defined as follows.

Definition 4.5. (State Cover Set) the state cover set is a set Q of input
sequences such that for each s ∈ S , there exists an input sequence x ∈ Q that
takes the machine to s , i.e. δ(s1, x) = s

4 Conformance Testing 97

Using a Q set we can take the machine to every state. A Q set can be built
using a breadth first visit of the transition graph of MS . For the second phase,
the Wp method uses an identification set Wi for state si instead of a unique
characterizing set W for all the states. Wi is a subset of W and is defined as
follows.

Definition 4.6. (Identification Set) an identification set of state si is a set
Wi of input sequences such that for each state sj in S (with i �= j) there exists
an input sequence x of Wi such that λ(si , x) �= λ(sj , x) and no subset of Wi has
this property.

Note that the union of all the identification sets Wi is a characterizing set W.

Wp Method Phase 1 The input sequences for phase one consist in the concate-
nation of a Q set with a characterizing set (W set) after a reset. Formally, the
set of input sequences is {reset}.Q .W . In this way every state is checked in the
implementation with a W set.

We say that a state qi in MI is similar to state si if it produces the same
outputs on all the sequences in a W set. A state qi in MI can be similar to at
most one state of MS , because if we suppose that qi is similar to states si and
sj then si and sj produce the same output for each sequence in a W set, that is
against Definition 4.4. We say that the machine MI is similar to MS if for every
state si of MS , the machine MI has a state similar to si . If MI is similar, since
it has n states (Assumption 6), then there exists a one-to-one correspondence
between similar states of MS and MI .

If the input sequences do not uncover any fault during the first phase, we
can conclude that every state in MS has a similar state in the implementation
and we can say that MI is similar to MS . Note that is not sufficient to verify
that it is also equivalent. The equivalence proof is obtained by the next phase.

Wp Method Phase 2 The second phase tests all the transitions. To this aim,
Wp method uses the identification sets. For every transition from state sj to
state si on input a, we apply a sequence x (after a reset message) that takes the
machine to the state sj along transitions already verified, then we apply the input
a, which takes the machine to si and we apply one identification sequence of Wi .
We repeat this test for every identification sequence in Wi and if these tests do
not uncover any fault, we have verified that the transition in the machine MI

from a state that is similar to sj on input a produces the right output (there is no
output fault) and goes to a state that is similar to si (there is no transfer fault).
By applying these tests to every transition, we can verify that MI conforms to
its specification.

The set of input sequences that covers every transition (and that is closed un-
der the operation of selecting a prefix) is a P set. Therefore, the input sequences
of phase 2 consist of the sequences of a P set ending in state si that are not
contained in the Q set used during phase 1, concatenated with all the sequences
contained in the identification set Wi. Formally if R = P −Q and xi in R ends
in si , the set of sequences applied during the second phase is {reset}.R.Wi .

98 Angelo Gargantini

A complete formal proof of correctness for the Wp method is given in the
paper that introduced the Wp method [FvBK+91].

Example. The machine in Fig. 4.1 has the following state cover set Q = {ε, b,
bb}.

During the first phase we generate the following test sequences:

state to test 1 2 3
Q ε b bb
r.Q.W ra rb rba rbb rbba rbbb
output 0 1 11 11 110 110

During the second phase, we first compute the identification sets.
W1 = {a,b} all the sequences in W are needed to identify s1
W2 = {a} distinguishes the state s2 from all other states
W3 = {b} distinguishes the state s3 from all other states
R = P −Q ={ a, ba, bba, bbb}

R a ba bba bbb
start state 1 2 3 1 1
r.R.Wi raa rab rbaa rbbab rbbba rbbbb
output 00 01 111 1100 1100 1101
end state 1 2 2 1 1 2

The total length of the checking sequence is 44 (note that Wp method yields
a smaller test suite than the W method).

The output fault in machine MI1 of Figure 4.2 is detected during the first
phase again by the input sequence rbbb. Some transfer faults in machine MI2 are
detected during the first phase, while others, like the transfer fault from state s3
with input a is detected only by the input sequences rbbab during phase 2.

4.4.3 UIO Methods

If a Wi set contains only one sequence, this sequence is called state signature
[YL91] or unique input/output (UIO) sequence [SD88] , that is unique for the
state si . UIO sequences are extensively studied in Chapter 3 for state verification.
Remember that applying a UIO sequence we can distinguish state si from any
other state, because the output produced applying a UIO sequence is specific
to si . In this way a UIO sequence can determine the state of a machine before
its application. A UIO sequence has the opposite role of a homing sequence or
a synchronizing sequence, presented in Chapter 1: it identifies the first state in
the sequence instead of the last one. Note that not every state of a FSM has
UIOs and algorithms to check if a state has a UIO sequence and to derive UIOs
provided that they exist, can be found in Chapter 3. If an UIO sequence exists
for every state si , then UIOs can be used to identify each state in the machine; in

4 Conformance Testing 99

this case the UIO sequence acts as status message, except it moves the machine
to another state.

The original UIO method [SD88] builds a set of input sequences that visit
every transition from si to sj by applying a transition cover set P and then check
the end state sj by applying its UIO sequence. In this case the UIO sequence is
used instead of a status message.

Although used in practice, the UIO method does not guarantee to discover
every fault in the implementation [VCI90] because the uniqueness of the UIO
sequences may not hold in a faulty implementation. A faulty implementation
may contain a state s ′ that has the same UIO as another state s (because of
some faults) and a faulty transition ending in s ′ instead of s may be tested as
correct. Note that for this reason the Wp method uses the Wi sets only in the
second phase, while in the first phase it applies the complete W instead.

A modified version of the UIO method, called UIOv, generates correct check-
ing sequences [VCI90]. The UIOv method builds the test suite in three phases:

(1) Uv process : for every state s in MS , apply an input sequence x that begins
with a reset and reaches s and then apply the UIO sequence of s . To reach
each state use a Q set. The set of input sequences consist of the concatenation
of Q with the UIO sequence of the final state of the sequence in Q with an
initial reset.

(2) ¬Uv process : visit every state s and apply the input part of the UIO se-
quences of all other states and check that the obtained output differs from
the output part of the UIO sequence applied. Skip UIO sequences that have
the input part equal to a prefix α of the input part of the UIO sequence of
s . Indeed, in this case, we have already applied α during the Uv process and
we know that the output differs, because two states cannot have the same
input and output part of their UIO sequences. At the end of Uv and ¬Uv
process we have verified that MI is similar to MS .

(3) Transition test phase: check that every transition not already verified in 1
and 2 produces the right output and ends in the right state by applying its
UIO sequence.

Note that the UIOv method can be considered as a special case of Wp method,
where the W set is the union of all the UIO sequences and phase 1 of the Wp
method includes both Uv process and ¬Uv process and phase 2 is the transition
test phase.

Example. For the machine in Fig. 4.1 the UIO sequences are:
UIO1 = ab/01 distinguishes the state s1 from all other states
UIO2 = a/1 distinguishes the state s2 from all other states
UIO3 = b/0 distinguishes the state s3 from all other states
1. Uv process

Q ε b bb
state to test 1 2 3
r.Q.UIO rab rba rbbb
output 01 11 110

100 Angelo Gargantini

2. ¬Uv process

state to test 1 2 3
r.Q.¬UIO rb rbab rbb rbbab rbba
output 1 111 11 1100 110

3. Transition test phase:

transition to test s1
a/0−−−→ s1 s2

a/1−−−→ s2 s3
b/0−−−→ s1 s3

a/0−−−→ s3
input sequence raab rbaa rbbbab rbbab
output 001 111 11001 1100

The output fault of machine MI1 of Figure 4.2 is detected during the Uv process
again by the input sequence rbbb. Some transfer faults in machine MI2 are
detected during the first phases, while others, like the transfer fault from state s3
with input a is detected only by the input sequences rbbab during the transition
test phase.

4.4.4 Distinguishing Sequence Method

In case we can find one sequence that can be used as UIO sequence for every state,
we call such sequence distinguishing sequence (DS) (defined and extensively
studied in Chapter 2). In this situation we can apply the DS method using the
reset message [SL89]. Note that this DS method can be viewed as a particular
case of the W method when the characterizing set W contains only a preset
distinguishing sequence x . The test sequences are simply obtained combining a
P set with x .

Example. For the machine in Fig. 4.1 we can take the sequence x = ab as a
preset distinguishing sequence. In fact

λMs(s1, x) = 01
λMs(s2, x) = 11
λMs(s3, x) = 00

P ε a b ba bb bba bbb
r.P.x rab raab rbab rbaab rbbab rbbaab rbbbab

trans. to test s1 ε−→ s1
a/0−−−→ s1 s1

b/1−−−→ s2 s2
a/1−−−→ s2 s2

b/1−−−→ s3 s3
a/0−−−→ s3 s3

b/0−−−→ s1
output 01 001 111 1111 1100 11000 11001

4 Conformance Testing 101

4.4.5 Cost and Length

All the methods presented in Section 4.4 share the same considerations about
the length of the checking sequence and the cost of producing it. For the W
method, the cost to compute a W set is O(pn2) and a W set contains no more
than n − 1 sequences of length no more than n. The cost to build the tree T set
using the Algorithm 10 is O(pn) and its maximum level is n. The generation
of a P set, by visiting T, takes time O(pn2) and produces up to pn sequences
with the maximum length n. Since we have to concatenate each transition from
in a P set with each transition in a W set, we obtain up to pn2 sequences of
length n + n, for a total length of O(pn3) and a total cost of O(pn3). The Wp
method has the same total cost O(pn3) and same length O(pn3). Experimental
results [FvBK+91] show that checking sequences produced by the Wp method
are generally shorter than the checking sequences produced by the W method.

The UIO method and the method using a preset distinguishing sequence are
more expensive, because determining if a state has UIO sequences or a preset
distinguishing sequence was proved to be PSPACE hard (as shown in Sections
3.2 and 2.3). Note that in practice UIO sequences are more common than distin-
guishing sequences (as explained in Chapter 3). However, as shown in Section 2.4,
finding an adaptive distinguishing sequences has cost O(n2) and adaptive dis-
tinguishing sequences have maximum length n2. We can modify the method of
Section 4.4.4 by using adaptive distinguishing sequences instead of preset dis-
tinguishing sequences. Because there are pn transitions, the total length for the
checking sequence is again pn3.

There are specification machines with a reset message, that require checking
sequences of length Ω(pn3) [Vas73].

4.5 Using Distinguishing Sequences Without Reset

If the machine MS has no reset message, the reset message can be substituted by
a homing sequence, already introduced in Section 1.1.3. However this can lead
to very long test suites and it is seldom used in practice.

On the other hand, since methods like UIO (Section 4.4.3) and DS (Section
4.4.4) require the application of a single input sequence for each state, instead of
a set of separating sequences as in W and Wp methods, they can be easily opti-
mized for the use without reset, using instead a unique checking sequence similar
to a transition tour. These methods can substitute the transition tour method
when a status message is not available and they are often used in practice. The
optimized version of the UIO method without reset is presented by Aho et al.
[ADLU91], while the optimized version of the DS method [Hen64] without reset
is presented in this section. Some tools presented in Chapter 14 are based on
these methods.

To visit the next state to be verified we can use transfer sequences, that are
defined as follows.

Definition 4.7. (Transfer Sequence) A transfer sequence τ(si , sj) is a se-
quence that takes the machine from state si to sj

102 Angelo Gargantini

Such a transfer sequence exists for each pair of states, since MS is strongly
connected (by Assumption 3) and cannot be longer than n − 1. Moreover, if the
machine has a distinguishing sequence x , this sequence can be used as unreliable
status message because it gives a different output for each state. It is like a status
message, except that it moves the machine to another state when applied.

The method presented in this section has, as many methods presented in the
previous section, two phases. It first builds an input sequence that visits each
state using transfer sequences instead of reset and then applies its distinguishing
sequence to test whether MI is similar to MS . It then builds an input sequence
to test each transition to guarantee that MI conforms to MS .

Phase 1 Let ti be the final state when applying the distinguishing sequence
x to the machine from state si , i.e. ti = δ(si , x) and τ(ti , si+1) the transfer
sequence from ti to si+1. For the machine in the initial state s1, the following
input sequence checks the response to the distinguishing sequence in each state.

x τ(t1, s2) x τ(t2, s3) x . . . τ(tn , s1) x (4.1)

This sequence can be depicted as follows.

s1 x t1
τ(t1,s2) s2 x t2

τ(t2,s3) τ(tn ,s1)s1 x

Starting from s1 the first application of the distinguishing sequence x tests
s1 and takes the machine to t1, then the transfer sequence τ1 takes the machine
to s2 and the second application of x tests this state and so on till the end of of
the state tour. At the end, if we observe the expected outputs, we have proved
that every state of MS has a similar state in MI , since we have tested that every
state in MI correctly responds to its distinguishing sequence.

Phase 2 In the second phase, we want to test every transition. To test a transition
from si to sj with input a we can take the machine to si , apply a, observe the
output, and verify that the machine is in sj by applying x . Assuming that the
machine is in state t , to take the machine to si we cannot use τ(t , si) because
faults may alter the final state of τ(t , si). Therefore, we cannot go directly from
t to si . On the other hand, we have already verified by (4.1) that xτ(ti−1, si)
takes the machine from si−1 to si . We can build an input sequence that takes
the machine to si−1 , verifies that the machine is in si−1 applying x and moves
to si using τ(ti−1, si), then applies a, observes the right output, and verifies that
the end state is sj by applying again the distinguishing sequence x :

τ(t , si−1)xτ(ti−1, si)ax (4.2)

4 Conformance Testing 103

t
τ(t,si−1)si−1

xτti−1,si si a sj x tj

Therefore, the sequence (4.2) tests the transition with input a from state si
to sj and moves the machine to tj . We repeat the same process for each transition
to obtain a complete checking sequence.

Example. A distinguishing sequence for the machine in Fig. 4.1 is x = ab and the
corresponding responses from state s1, s2, and s3 are: 01 11, and 00 respectively.
The distinguishing sequence, when applied in states s1, s2, and s3 takes the
machine respectively to t1 = s2, t2 = s3 and t3 = s1. the transfer sequences are
τ(t1, s2) = τ(t2, s3) = τ(t3, s1) = ε.

The sequence (4.1) becomes

x τ(t1, s2) x τ(t2, s3) x τ(t3, s1) x
checking sequence ab ab ab ab
output 01 11 00 01

This input sequence ends in state t1 = s2
The input sequences (4.2) can be concatenated to obtain:

trans. to test s3
b/0−−−→ s1 s2

a/1−−−→ s2 s3
a/0−−−→ s3 s1

a/0−−−→ s1 s2
b/1−−−→ s3 s1

b/1−−−→ s2
τ(t1, s3)bx τ(t1, s2)ax τ(t2, s3)ax τ(t3, s2)ax τ(t1, s2)bx τ(t3, s1)bx

input sequence bbab aab aab aab bab bab
end state 2 3 1 2 1 3
output 1001 111 000 001 100 111

The total length of the checking sequence is 27.
Note that the first input sequence is not able to find the faults in machine MI2

of Fig. 4.2, since MI2 when we apply the input sequence abababab produces the
expected output 01110001. Only during the second phase the faults are detected.

Adaptive DS Instead of using a unique preset distinguishing sequence for
all the states, we can use an adaptive distinguishing sequence as explained in
the following. An adaptive distinguishing sequence (ADS) is a decision tree that
specifies how to choose the next input adaptively based on the observed output to
identify the initial state. Adaptive distinguishing sequences are studied in Section
2.4. In that Chapter, the reader can find the definition (2.12), an algorithm to
check the existence of an ADS and to build an ADS if it exists.

Example. An adaptive distinguishing sequence for the machine in Fig. 4.1 is
depicted in Figure 4.4. We apply the input a and if we observe the output 1 we
know that the machine was in the state s2. If we observe the output 0, we have
to apply b and if we observe the output 1 the machine was in s1 otherwise we
observe 0 and the machine was in s3.

Using adaptive distinguishing sequence for our example, we obtain x1 = ab,
x2 = a, x3 = b, and τ = ε and the sequence (4.1) becomes

104 Angelo Gargantini

x1 τ(t1, s2) x2 τ(t2, s3) x3 τ(t3, s1) x1

input sequence ab a b ab ab

a

0 1

b

0 1

s2

s3 s1

Fig. 4.4. Adaptive distinguishing sequence of machine in Fig. 4.1

Length and Cost An adaptive distinguishing sequence has length O(n2), and
a transfer sequence cannot be longer than n . The sequence (4.1) is long O(n3).
Because there are pn transitions, and every sequence (4.2) has length O(n2),
the cost is again O(pn3) to find the complete checking sequence. Therefore, all
the methods presented in Section 4.4 and in this section, have the same cost.
The advance of the method presented in this section, is that it does not need a
reset message. A comparison among methods from a practical point of view is
presented in Section 4.8.

Minimizing the Sequence Length Note that there exist several techniques
to shorten the length of the checking sequence obtained by applying the distin-
guishing sequence method [UWZ97], but still resulting checking sequences have
length O(pn3). The problem of finding the shortest transition tour covering all
the transitions and then applying an extra sequence, that is a UIO or a DS
sequence in this case, to their end state is called the Rural Chinese Postman
Problem [ADLU91].

4.6 Using Identifying Sequences Instead of Distinguishing
Sequences

Not every finite state machine has distinguishing sequences (as shown in Sec-
tion 2.1). In case the machine has no reset message, no status message, no UIO
sequences, and no distinguishing sequences, we cannot apply the methods pro-
posed so far. We can still use the Assumption 1 and exploit the existence of
separating sequences, that can distinguish a state from any other state in MS .
In this case, conformance testing is still possible [Hen64], although the resulting
checking sequences may be exponentially long.

4 Conformance Testing 105

is
1

3

2

w2

w1 it

2
i

s
i

s’

1 w1

3

w2

i
t

a: in MS b: in MI

Fig. 4.5. Using two separating sequences to identify the state

As usual, we first check that MI is similar to MS . We display for each state si
the responses to all the separating sequences in a characterizing set W (Defini-
tion 4.4). Suppose that W has two separating sequences w1 and w2. We want to
apply the steps shown (in square boxes) in Figure 4.5 (a) : take MI to si , apply
w1 (step 1), take the machine back again to si (step 2) and then apply w2 (step
3). If we observe the right output, we can say that the machine MI has a state qi
similar to si . We can start from i = 1 and proceed to verify all the states with-
out using neither reset nor a distinguishing sequence. The problem is that we do
not know how to bring the machine MI back to si in a verifiable way, because
in a faulty machine, as shown in Figure 4.5 (b), the transfer sequence τ(ti , si)
(step 2) may take the machine to another state s ′i where we could observe the
expected output applying the w2 sequence, without being able to verify that s ′i
is si and without able to apply again w1. We use now the Assumption 6 on page
90, namely that MI has only n states. Let x be an input sequence and n be an
integer, xn is the concatenation n times of x .

Theorem 4.8. Let s be a state of MI , x be an input sequence, o the expected
output sequence produced applying x to s, i.e. o = λ(s , x), τ a transfer sequence
from t = δ(s , x) back to s, and o′ the expected output produced applying τ to t.
By applying the input sequence (x τ)n to state s in MI , if we observe the output
sequence (o o′)n , then the machine ends in a state where applying again x we
observe the same output o.

s

x/o

t

τ/o′
s

xτ/oo′
q1

xτ/oo′ xτ/oo′
qn

x/ o

In MS In MI

Fig. 4.6. Applying n times x and τ

Proof. The scenario described in theorem is shown in Figure 4.6. Suppose that
MI is initially in state s . Applying x τ the machine should come back to s .
However, due to some faults, the machine MI may go to another state q1 even if

106 Angelo Gargantini

the output we observe is the one expected, i.e. o o′. Assume that applying n times
x τ , we observe every time the same output o o′. Let qr be the state of MI after
the application of (x τ)r . Note that even if the n applications of x τ produce n
times the same correct output o o′, we are not sure that s , q1, . . . , qn are the same
state yet. However the n+1 states s , q1, . . . , qn cannot be all distinct, because
MI has n states. Hence qn is equal to some qr with r < n and, therefore, it
would produce the same output o if we apply x .

Example. Consider the machine in Figure 4.1 and take any alleged implementa-
tion MI . Apply the input a (in this case τ = ε) to the initial state s1 of MI and
check that the output is 0. We are not sure that MI is now in state s1 as well. We
can apply again a and observe the output 0 and so on. When we have applied
aaa and observed the output 000, MI may have traversed states s1, q1,q2, and
the final state q3. Because MI has only 3 states, q3 is equal to one of s1, q1, or
q2 and we are sure that if we applied again a we would observe 0.

We use Theorem 4.8 as follows. Assume that MS has the characterizing set
W = {w1,w2} and let si be the state we are going to verify. Let τ be the
transfer sequence that takes MS back to si from ti = δ(w1, si). We first apply
(w1τ)

n to si . If we observe a wrong output we have proved that MI does not
conform to MS . Otherwise we can apply theorem with x = w1 and we are sure
that MI ends in a state that would produce the same output as if we applied w1.
We apply w2 instead. If we observe the specified output we can conclude that si
has a similar state in MI .

We can generalize this method when the characterizing set W contains m
separating sequences. Suppose that the characterizing set is W = {w1, . . . ,wm}.
Let τj be the transfer sequence that takes the machine back to s after the
application of wj , i.e. τj = τ(δ(s ,wj), s). We can define inductively the sequences
βr as follows:

β1 = w1

βr = (βr−1τr−1)nwr (4.3)

By induction, one can prove that applying βr−1 after applying (βr−1τr−1)n

would produce the same output. Considering how βi are defined, this means
that applying w1, . . . ,wr−1 would produce the same output . For this reason we
apply wr after (βr−1τr−1)n . Therefore, one can prove that βm is an identifying
sequence of si , in the following sense: if the implementation machine MI applying
βm produces the same output as that produced by the specification machine
starting from si , then MI has a state that is similar to si and such state is the
state right before the application of the last wm (regardless of which state MI

started from). We indicate the identifying sequence for state si with Ii .
Once we have computed the identifying sequence for every state, we can apply

a method similar to that explained in Section 4.5 to visit each state, verify its
response to the identifying sequence, and then transfer to the next state. Let Ii
be the identifying sequence of state si and τ(ti , si+1) the transfer sequence from

4 Conformance Testing 107

ti = δ(si , Ii) to si+1, by applying the following input sequence we can verify that
MI is similar to MS .

I1 τ(t1, s2) I2τ(t2, s3) . . . I1 (4.4)

s1
I1 t1

τ(t1,s2) s2
I2 t2

τ(t2,s3)
s1

I1

Once we have proved that MI is similar to MS we have to verify the transi-
tions. To do this we can use any Ii as reliable reset. For example, we can take
I1 as reset to the state t1 = δI (s1,wm) and use t1 as the initial state to test
every transition. Indeed, we are sure that if we do not observe any fault, I1 takes
the machine to t1. If we want to reset the machine from the state sk to t1 we
apply τ(sk , s1)I1 and even if τ(sk , s1) fails to take the machine to s1, we are sure
that I1 will take it to t1. Now we proceed as explained in Section 4.4. To test a
transition from si to sj we apply a pseudo reset I1 to t1, then a transfer sequence
along tested transitions to si , then we apply the input, observe the output, and
apply the identifying sequence Ij to check that the end state is sj .

Example. Consider the machine MS in Fig. 4.1. W = {a, b}.
For s1, τ1 = ε, I1 = (w1τ)3w2 = aaa b
For s1, τ1 = ε, I2 = (w1τ)3w2 = aaa b
For s1, τ1 = ε, I3 = (w1τ)3w2 = aaa b
The sequence (4.4) becomes

I1 τ(t1, s2) I2 τ(t2, s3) I3 τ(t3, s1) I1
input sequence aaab ε aaab ε aaab ε aaab

Length and Cost The length of an identifying sequence grows exponentially
with the number of separating sequences and with n the number of the states.
Indeed, by equation 4.3, every βi is n times longer than βi−1, the identifying
sequence I is equal to βm and m is the number of separating sequences that
can be up to n. The resulting checking sequence is exponentially long. The IS
method can be optimized using a different separating family Zi for every state
si [LY96].

4.7 Additional States

The Assumption 6, that the implementation has the same number of states as
the specification, may not hold in general. The problem of testing each edge
in a finite state machine with arbitrary extra states, is similar to the classical
problem of traversing an unknown graph, that is called the universal traversal
problem [LY96].

108 Angelo Gargantini

qs i q2 qK

2

K+1

1

a

K
aa

1

a

Fig. 4.7. A faulty machine MI with K extra states

Assume that a faulty machine MI , depicted in Figure 4.7, is identical to MS

except it has K extra states q1, . . . , qk and except for the transition from state si
on input a1 where MI moves to the extra state q1. Moreover MI moves from q1 to
q2 on input a2, from q2 to q3 on input a3, and so on. Assume the worst case, that
only the transition from state qk on input aK+1 has a wrong output or moves
to a wrong next state. To be sure to test such transition, the input sequence
applied to state si must include all possible input sequences of length K+1, and
thus it must have length pK+1. Such input sequence is also called combination
lock because in order to unlock the machine, it must reach the state qK and
apply the input aK+1. Vasilevski [Vas73] showed that also the lower bound on
the input sequence is multiplied by pK ; i.e. it becomes Ω(pK+1n3) (discussed
also in Section 5 of Chapter 19). Note that such considerations hold for every
state machine MI with K extra state: to test all the transitions we need to try
all possible input combinations of length K+1 from all the states of MI , and
thus the input sequence must have length at least pK+1n.

Using similar considerations, many methods we have presented can be easily
extended to deal with implementations that may add a bounded number of
states. This extension, however, causes an exponential growth of the length of
the checking sequence.

In this section we present how the W method presented in Section 4.4.1 is
extended to test an implementation machine with m states with m > |SS | = n
[Cho78]. Let Q be a set of input sequences and k be an integer, Qk is the
concatenation k times of Q . Let W be a characterizing set (Definition 4.4). The
W method in this case uses instead of a W set another set of sequences called the
distinguishing set Y = (ε∪I ∪I 2∪. . .∪Im−n).W . Therefore, we apply up to m-n
inputs before applying W. The use of Y instead of W has the goal to discover
states that may be added in MI . Let P be a transition cover set. The resulting
set of input sequences is equal to {reset}.P.Y. Each input sequence starts with a
reset, then applies a sequence to test each transition, applies up to m−n inputs,
then applies a separating sequence of W. The set of input sequences P.Y detects
any output or transfer error as long as the implementation has no more than m
states. The proof is given in [Cho78]. If m = n then Y=W and we obtain the W
method of Section 4.4.1.

4 Conformance Testing 109

Example. Consider the machine in Fig. 4.8 as faulty implementation of the spec-
ification machine MS of Fig. 4.1 with one state more, namely s4. The original
sequences generated with the W method assuming that the machine has the
same number of states are not capable to discover the fault. If we use the W
method with m = 4, we generate for bbb in P , b in I and b in W the sequence
rbbbbb that is able to expose the fault.

s1

a/0

b/1

s4

a/0

b/1

s2
b/1

a/1 s3 a/0

b/0

Fig. 4.8. A faulty implementation of machine MS with 4 states

4.8 Summary

In this chapter we have presented several methods, which can uncover any fault
in an implementation under different assumptions and producing checking se-
quences of different length and with different cost. We have initially supposed
that all the assumptions of Section 4.2 hold, mainly that the machines are min-
imal, that the implementation does not add extra states, and that the machines
have reset, status and set messages. Throughout the chapter we have presented
the following methods which are capable to discover faults under a successively
restricted subset of assumptions.

• The method of Section 4.3, the Transition Tour (TT) method, exploits all
the assumptions, except the set message. It uses a status message to check
that the implementation is in the correct state. The checking sequence has
length and cost linear with pn. Without a status message this method does
not guarantee the detection of transfer faults.
• If even a status message is not available, but the machine has still a reset

message, one can use one of the methods proposed in Section 4.4, namely
the W method, the Wp method, the unique input output (UIO) sequence
method, the UIOv method, and the method using distinguishing sequences
(DS) with reset. The DS method requires a distinguishing sequence, the
UIO methods need UIOs, while W and Wp method are always applicable
for minimized machines. The W, Wp, UIOv, and DS methods detect faults

110 Angelo Gargantini

of any kind, while the UIO method may miss some faults. The W, Wp,
and DS method with an adaptive distinguishing sequence produce checking
sequences of length O(pn3) with cost O(pn3). The others have greater cost.
• If even a reset message is not available, but a machine has a distinguishing

sequence, the method presented in Section 4.5 uses transfer sequences instead
of reset, produces checking sequences of length O(pn3) and has cost O(pn3)
when used in conjunction with adaptive distinguishing sequences.
• If the machine has not even a distinguishing sequence nor UIOs, the iden-

tifying sequences (IS) method, presented in Section 4.6, still works. The IS
method uses only the assumptions that the implementation does not add
states and that the machines are minimized and therefore they have sepa-
rating sequences. It produces exponentially long checking sequences.
• The problem of testing finite state machines with extra states is discussed

more in general in Section 4.7, where the method originally presented by
Chow [Cho78] is introduced.

It is of practical interest to compare the fault detection capability of the methods
when the assumptions under which they should be applied, do not hold [SL88,
ZC93]. Indeed, assumptions like the equal number of states for implementation
may be not verifiable in practice. The assumption of the existence of a reset
message is more meaningful, but empirical studies suggest to avoid the use of
the methods using reset messages for the following reason. As shown in Section
4.7, faults in extra states are more likely to be discovered when using long input
sequences. The use of a reset message may prevent the implementation to reach
such extra states where the faults are present. For this reason methods like UIO
or DS method without reset are better in practice than the UIOv method or the
DS method with reset.

Although the study presented in this chapter is rather theoretical, we can
draw some useful guidelines for practice testing for FSMs or for parts of models
that behave like finite state machine and the reader should be aware that many
ideas presented in this chapter are the basics for tools and case studies presented
in Chapters 14 and 15. Such practical suggestions can improve the fault detection
capability of the testing activity.

• Visiting each state in a FSM (like a statement coverage) using a ST method,
should not be considered enough. One should at least visit every transition
using a transition tour (TT) method, that can be considered as a branch
coverage.
• Transition coverage should be used in conjunction of a status message to

really check that the end state of every transition is the one expected. The
presence of a status message in digital circuits is often required by the tester
because it is of great help to uncover faults. If a status message may be not
reliable, a double application of it helps to discover when it fails to reveal
the correct state.
• If a status message is not available (very often in software black box testing),

one should use some extra inputs to verify the states. Such inputs should be
unique, like in Wp, UIO and DS.

4 Conformance Testing 111

• If one suspects that the implementation has more states than the implemen-
tation, he/she should prefer methods that produce long input sequences, like
the DS and the IS method. However, only methods like the W method with
extra states [Cho78], that add some extra inputs after visiting the transition
and before checking the state identity, can guarantee to detect faults in this
case.

	4.1 Introduction
	4.2 Assumptions
	4.3 State and Transition Coverage
	4.4 Using Separating Sequences Instead of Status Messages
	4.5 Using Distinguishing Sequences Without Reset
	4.6 Using Identifying Sequences Instead of Distinguishing Sequences
	4.7 Additional States
	4.8 Summary

