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Abstract: This paper tackles some aspects concerning the exploitation of Abstract
State Machines (ASMs) for testing purposes. We define for ASM specifications a set
of adequacy criteria measuring the coverage achieved by a test suite, and determining
whether sufficient testing has been performed. We introduce a method to automatically
generate from ASM specifications test sequences which accomplish a desired coverage.
This method exploits the counter example generation of the model checker SMV. We
use ASMs as test oracles to predict the expected outputs of units under test.
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1 Introduction

The final goal of the software development process is to produce high-quality
software, i.e. software that satisfies the given requirements and that meets the
user needs. To uncover development and coding errors, to asses its reliability and
dependability, and to convince customers that the performance is acceptable, the
software needs to be tested. However, software testing is extremely costly and
time-consuming. It has been estimated that current testing methods consume
between 40% and 70% of the software development effort [Beizer 1983]. For-
mal methods offer an opportunity to significantly reduce the testing costs, and
recent work [Stocks and Carrington 1996, Hierons and Derrick 2000] addresses
the relationship between testing and formal specifications.

In specification-based testing, a specification plays several roles. First, it can
be used as test oracle [Podgurski and Clarke 1990, Richardson et al. 1992], i.e.
as a means to predict the expected outputs of the system. When testing a soft-
ware the correctness of its behavior should not be left to the judgment of a
human, because for complex and critical software the human assessment is nei-
ther efficient nor dependable. On the contrary, the specification, as authoritative
font of the expected behavior, can assess correctness of implementations.

Second, test adequacy criteria can be derived from a specification
[Zhu et al. 1997]. They determine if a test set, also called test suite, is adequate



to test a software system, whether enough testing has been performed or further
tests are needed. For example, in the classical structural testing, the statement
coverage criterion establishes that a test is adequate for a program if every state-
ment of that program has been exercised. In the context of specification-based
testing, a test adequacy criterion is formally defined as a function that takes
a specification S and a test suite T and returns true if T is adequate, false
otherwise [Frankl and Weyuker 1993].

A specification can also provide selection criteria to choose, among all pos-
sible system behaviors, an adequate test suite. Normally a selection criterion in-
troduces some algorithms or techniques to actually generate test sequences from
formal specifications [Blackburn et al. 1997, Gargantini and Heitmeyer 1999,
Weyuker et al. 1994].

In this paper, we focus on ASM-based testing, and tackle several issues in this
topic. In particular, we attempt to solve the challenging problem concerning the
exploitation of “ASMs for defining and implementing methods for generating
test suites from high-level specifications” [Börger 2000].

[Section 2] briefly overviews the ASM notation, while [Section 3] presents
the Safety Injection System [P.J.Coutois and D.L.Parnas 1993] (SIS in brief)
that we choose as case study to experiment our approach. [Section 4] provides
formal definitions of test sequence and test suite, and discusses the use of ASM
specification as test oracle.

We define in [Section 5] several coverage criteria for ASM specifications. We
provide for each coverage criterion a set of formulas, called test predicates, which
determine the set of states that realizes the coverage. These coverage criteria
can be used as adequacy criteria to measure the degree of coverage achieved by
a test set.

A method to automatically generate test sequences from ASM specification
is presented in [Section 6]. This method exploits the counter example generation
of the model checker SMV to build tests for a given coverage criterion. The
general architecture of the tool developed for automatic test sequence generation
is described in [Section 7], while [Section 8] reports our experimental results in
applying our method to the SIS case study. Related work and future directions
are given in [Section 9] and in [Section 10], respectively.

2 Abstract State Machines

Abstract State Machines (ASMs) represent a semantically well-defined, precise
form of widely used pseudo-code over abstract structures. We provide in the
rest of this section some intuitive explanations which should suffice to correctly
understand and use ASMs for the purposes of this paper. We refer the reader to
[Gurevich 2000] for a detailed mathematical definition.

The states of ASMs are arbitrary structures in the standard sense they are
used in mathematical sciences, i.e. domains of objects with functions and pred-
icates defined on them. The basic operations of ASMs are guarded destructive
assignments of values to functions at given arguments, expressed in the following
form, called guarded transition rule:

If Cond then Updates



where Cond is an arbitrary condition (Boolean expression) formulated in the
given signature, Updates consists of finitely many function updates:

f(t1, . . . , tn) := t

which are executed simultaneously. The terms t1, . . . , tn are arguments at which
the value of the arbitrary function f is set to t. For technical convenience we
treat predicates as Boolean-valued functions.

An ASM M is a finite set of rules for such guarded multiple function updates.
The computation of an ASM is defined in the standard way transition system
runs are defined. Applying one step of M to a state A produces as next state
another state A′, of the same signature, obtained as follows: First evaluate in A,
using the standard interpretation of classical logic, all the guards of all the rules
of M. Then compute in A, for each of the rules of M whose guard evaluates to
true, all the arguments and all the values appearing in the updates of this rule.
Finally replace, simultaneously for each rule and for all the locations in question,
the previous A-function value by the newly computed value if no two required
updates contradict each other.

The state A′ thus obtained differs from A by the new values for those func-
tions at those arguments where the values are updated by a rule of M which
could fire in A. The effect of an ASM M, started in an arbitrary state A, is to
repeatedly apply one step of M as long as an M-rule can fire. Such a machine
terminates only if no rule is applicable any more (and if the monitored functions
do not change in the state where the guards of all the M-rules are false).

ASM functions are distinguished in basic functions and derived functions
(which are defined in terms of basic ones). Within derived or basic functions,
static functions, which remain constant during computations, are distinguished
from dynamic ones, which may change from state to state. Among the dynamic
functions we distinguish the controlled ones from the monitored ones, also called
in-functions or inputs. The controlled functions are subject to change by rule up-
dates. The monitored functions can change only due to the environment or, more
generally, due to actions of other agents. For a complete function classification
see [Börger et al. 2000].

We distinguish for testing purposes controlled dynamic functions in outputs
corresponding to observable controlled functions, and internal functions which
are not observable outside the system.

3 The Safety Injection System Case Study

The system here used as case study is a simplified version of a control system for
a safety injection [P.J.Coutois and D.L.Parnas 1993]. It monitors water pressure
and injects coolant into the reactor core when the pressure falls below some
threshold. The system operator may block this process by pressing a “Block”
switch. The system is reset by a “Reset” switch. To specify the requirements
of the control system, we use the monitored variables WaterPressure, Block
and Reset, and the output controlled variable SafetyInjection to denote the
controlled quantity which can be on, off. To specify the modes the system can
be according to the WaterPressure values (if such values are permitted or the
water pressure is risking to reach threshold values), we introduce the internal



controlled variable Pressure, also called mode, which can take values TooLow,
Normal, High. At any given time, the system must be in one and only one of
these modes. A drop in water pressure below a constant Low causes the system to
enter mode TooLow; an increase in water pressure above a larger constant Permit
causes the system to enter mode High. Otherwise, Pressure is Normal. The
boolean constant Overridden (internal controlled term) is true if safety injection
is blocked, false otherwise. The controller policy is simple: SafetyInjection is
on when Pressure is TooLow and Overridden is false; it is off otherwise.

In our initialization, the constants Low and Permit are assigned the values
900 and 1000. When the plan and the system start their activity, WaterPressure
is 14 and the mode Pressure is TooLow, but Overridden is false and therefore
SafetyInjection is on.

The initial state of this critical system is fundamental and fixed by the cos-
tumer, as well it is crucial that test sequences start from an initial state, otherwise
they would be useless to the testing activity.

The complete ASM specification of the Safety Injection System is reported
in [Appendix A].

4 Test Sequences and Test Suites

We provide in this section some basic terminology. Adapting to our pur-
poses some definitions common in literature for state transition systems
[Ammann et al. 1998, Lee and Yannakakis 1996], we define a test sequence or
test as follows.

Definition 1. A test sequence or test is a finite sequence of states (i) whose
first element belongs to a set of initial states, (ii) each state follows the previous
one by applying transition rules.

A test sequence ends with a state, which might be not final, where the test
goal is achieved. Informally, a test sequence is a partial ASM run and represents
an expected system behavior.

Definition 1 assumes the use of ASM specification as test oracle, since states
supply expected values of outputs. The importance of test oracles is advocated
in [Richardson et al. 1992] because the generation of the sole inputs (often called
test data) does rise the problem of how to evaluate the correctness of the observed
system behavior.

Other approaches [Blackburn and Busser 1996] consider a test as a simple
pair of two consecutive states (often called test vector). The generation of state
vectors is easier than the generation of test sequences, but test vectors are less
useful. A test vector does not give the user the complete scenario of system execu-
tion, and does not provide the tester with any information about the reachability
of the pair of states from a valid initial state – a pair could be not reachable at
all, and even if it is reachable, the input sequence necessary to lead the system
to the first state of the pair is not provided –. Note that obtaining test vectors
from a test sequence is straightforward.

When the tester has access to the internals of the unit under test (UUT),
inputs, outputs, and internal functions provided by test sequences are used; when
the tester can observe only UUT inputs and outputs, values of internal functions



are ignored. For these reasons, our definition of test makes our approach as
general as possible, widely applicable, and neutral with respect to the actual use
of the generated test sequences.

We define a collection of test sequences as follows.

Definition 2. A test set or test suite is a finite set of test sequences.

5 Coverage Criteria for ASMs

There exist several aspects of an ASM model that the designer would like to
cover with a test suite: (a) how the execution of transition rules affects machine
states; (b) how function values may influence the system behavior (sub-domain
partitioning testing [Myers 1979]); (c) under which circumstances conditions and
decisions are true or false; (d) how non deterministic specification features in-
fluence the system behavior.

To test any of these aspects, suitable coverage criteria have to be defined.
Since most of the testable aspects are related to the syntax and semantics of
transition rules, as first step we focus on rules testing.

In the sequel we use the following terminology: let {ri} be a set of consistent
ASM rules, gi be the ri’s guard, and Upsi=fi1(t̄i1) := ti1, . . . , fin(t̄in) := tin be
the ri’s function updates. V al(t, S) yields the interpretation of t in the state S.

For the moment, we do not use constructors extend and choose inside rules.

5.1 Test Predicates

We formally define a coverage using a set of logical predicates, called test predi-
cates. A test predicate is a formula over the state and determines if a particular
testing goal is reached (e.g. a particular condition or a particular event is cov-
ered). A test suite T satisfies a coverage C if each test predicate of C is true in
at least one state of a test sequence of T .

The generation of test sequences that covers test predicates is an undecidable
problem [Weyuker 1979].

5.2 Rule Coverage

Definition 3. A test suite satisfies the rule coverage if for every rule ri there
exists at least one test sequence for which ri fires at least once (i.e. there exists
a state where the guard gi is true) and there exists at least one test sequence for
which ri does not fire at least once (i.e. there exists a state where the guard gi

is false).

According to this definition, to test each rule ri we search for a test sequence
containing at least one state where the guard gi is true, and a test sequence with
a state where the guard gi is false.



Test Predicates

The set of test predicates for the rule coverage criterion is simply the set of the
rule guards and their negations, namely {gi} ∪ {¬gi}.
Therefore, to achieve rule coverage we require that the test suite satisfies the
following property: ∀i (∃S(Val(gi ,S ) = true) ∧ ∃S (Val(gi ,S ) = false)), being S
a state in some test sequence.

Example

Given the rule:

R1) if WaterPressure >= Low & Pressure = TooLow
then Pressure := Normal

a test suite satisfies the rule coverage for R1 if it contains a test sequence
{S0, S1, .. .., Sk} such that Val(WaterPressure >= Low & Pressure = TooLow,
Si) = true for some i = 0, . . . , k, and a test sequence {S ′

0
, S′

1
, . . . , S′

w} such
that Val(WaterPressure >= Low & Pressure = TooLow, S ′

i) = false for some
i = 0, . . . , w.

The number of test sequences to get the rule coverage for a system of n rules
is at most 2n. This figure might be considerably lower because a single test se-
quence could contemporary cover several rules.

Every rule models a particular behavior or decision of the specified soft-
ware. In testing, we like to recreate that behavior or that decision deter-
mining, if possible, when the decision is taken. Moreover, we want to check
the system behavior when the decision is not taken (else cases discussed in
[Gargantini and Heitmeyer 1999]). Since each rule guard models the event or
the state condition under which the decision is taken or the behavior is exposed,
we search for a state where the guard is true (hence the rule fires and the decision
is taken), as well for a state where the guard is false (hence the rule does not
fire and the decision is not taken).

We believe that testers should at minimum provide tests where every rule
fires, and tests where each rule does not fire at least once. Even if this criterion
guarantees only a minimal coverage, it is usually easy to achieve (manually or
automatically). It can be considered a “minimal standard for testing commercial
software”, as advocated in [Beizer 1983] and, more recently, also in [Miller 2001]:
“No one should sell software that hasn’t met at least this requirement. Most soft-
ware developers will exceed this minimal standard, but no professional software
engineer should allow less”.

5.3 Rule Update Coverage

If a guard models a particular event or state condition, rule updates represent the
reaction of the system to particular events or conditions. Therefore, a good test
set should test function updates fij(t̄ij) := tij of each rule ri. To this purpose, for
each update, we look for a test sequence containing a state where the update is
performed and it is not trivial, i.e. location content does change [Gurevich 2000].
Thus we introduce the following new coverage criterion.



Definition 4. A test suite satisfies the rule update coverage if for every rule
ri and for every j-th function update fij(t̄ij) := tij of ri there exists at least
one test sequence for which ri fires at least once and the the j-th update is not
trivial.

Test Predicates

According to this definition, the test predicate to test the j-th update of the
rule ri, is gi ∧ fij(t̄ij) 6= tij . We search, therefore, for a test sequence containing
a state S where Val(gi ,S ) = true and Val(fij (̄tij ),S ) 6= Val(tij ,S ).

Example

Given the rule:

R2) if WaterPressure >= Permit & Pressure = Normal
then Pressure := High

Overridden := false

a test suite satisfies the rule update coverage for R2 and the update Pressure :=
High if it contains a test sequence {S0, S1, . . . , Sk} such that Val(WaterPres-
sure >= Permit & Pressure = Normal, Si) = true for some i = 0, . . . , k, and
Val(Pressure, Si) 6= High.

The number of test sequences to achieve the rule update coverage for a rule
system of altogether m updates, is at most m. As for the previous coverage
criterion, the number of test sequences really necessary to satisfy the update
coverage might be considerably lower, since a test sequence might cover several
updates (for example all the updates of the same rule).

5.4 Advanced Coverage Criteria

Rule coverage and update coverage are essential to achieve minimum confidence
in testing adequacy; however, they test a system only weakly. In order to gain
a better coverage, other criteria can be defined. To this aim we follow two dif-
ferent directions: one exploring the parallel rule application and the detection of
inconsistent updates, and the other analyzing conditions inside rule guards.

The definition of other more powerful coverage criteria is under investigation
(see [Section 10]).

5.4.1 Parallel Rule Coverage

This coverage tests the interaction between rules and can help to discover incon-
sistent updates.

Let R = {ri}i=1,...,m be a set of ASM rules, and n ≤ m.

Definition 5. A n-tuple Tn of rules is unfirable if all the n rules of Tn can never
simultaneously fire.

Definition 6. A test suite satisfies the n-parallel rule coverage for R if for every
n-tuple Tn of rules of R, it holds

(i) either Tn is unfirable;
(ii) or there exists a test sequence containing a state for which all the n rules

of Tn simultaneously fire.



Test Predicates

For each tuple Tn, the test predicate Pn is the conjunction of the n guards of
the rules in Tn. A test sequence covers the tuple Tn if it contains a state S such
that Val(Pn ,S ) = true.

Example

Given n = 2 and the tuple T2 = {R2, R5} with rules:

R2) if WaterPressure >= Permit & Pressure = Normal
then Pressure := High

Overridden := false
R5) if Reset = on & (Pressure = TooLow or Pressure = Normal)

then Overridden := false

a test sequence {S0, S1, . . . , Sq} covers T2 if it contains a state Si, for some i =
0, . . . , q, such that Val(WaterPressure >= Permit & Pressure = Normal, Si)
= true and Val(Reset=on & (Pressure=TooLow or Pressure=Normal), Si) =
true.

Adequacy Measure

The number of the n-tuples Tn of rules of R, and then of the test predicates, is
(

m
n

)

. This number might be high, and therefore getting the complete n-parallel

coverage could be very hard. However, several n-tuples could be unfirable, thus
considerably reducing the number of test sequences required to satisfy the cri-
terion. Consider, for example, the following two rules:

R2) if WaterPressure >= Permit & Pressure = Normal then ...
R1) if WaterPressure >= Low & Pressure = TooLow then ...

Finding a state where both guards are true is impossible. Note that the tool
presented in [Section 7] is able to detect such infeasible cases.

Nevertheless, the number of firable tuples might be still high, and in this
case even a partial coverage is valuable. This suggests to extend – as proposed
in [Zhu et al. 1997]– the definition of test adequacy criterion (given in [Section
1]) as a function, called test adequacy measure, that takes a specification and
a test set and returns a real number between 0 and 1 (from 0 if the test set is
not adequate to 1 if the test set is totally adequate). For the n-parallel coverage
criterion, the test adequacy measure of a test suite T is

numtc + numut
(

m
n

)

where numtc is the number of n-tuples covered by at least a test sequence in T ,
and numut is the number of unfirable n-tuples.



Inconsistent Update Detection

The parallel rule coverage allows to discover inconsistent updates. For exam-
ple, the following two rules (slightly modified version of two SIS rules) would
inconsistently update the location Overridden.

Ra) if Reset = on & Pressure = TooLow
then Overridden = false

Rb) if Block = on & Pressure = TooLow
then Overridden = true

A test sequence generated to cover the 2-tuple T2 = {Ra, Rb} exposes such
inconsistency.

5.4.2 Strong Parallel Rule Coverage

This coverage is a natural extension of the parallel rule coverage.

Definition 7. A test suite T satisfies the strong n-parallel rule coverage for R
if for all k, 1 ≤ k ≤ n, T satisfies the k-parallel rule coverage.

Test predicates and adequacy measure definitions are straightforward.

5.4.3 Modified Condition Decision Coverage

Since often rule guards are complex logical expressions composed of several
atomic literals and conditions (that cannot be split into simpler boolean con-
ditions), in order to test the impact of every atomic condition on the guard
evaluation, we introduce another coverage criterion adapting the Modified Con-
dition Decision Coverage [Chilenski and Miller 1994].

Definition 8. A test suite satisfies the modified condition decision coverage if
for every rule ri and for every atomic condition Cj in the – possibly nested – ri’s
guard, Cj has taken on all possible outcomes at least once (i.e. there exists one
test sequence with Cj true in at least one state of a test sequence, and one test
sequence with Cj false in at least one state of a test sequence), and each atomic
condition has been shown to independently affect the guard outcome by varying
just that condition while holding fixed all other possible atomic conditions.

According to this definition, each atomic condition inside a guard must be true
at least in one state of a test sequence, and false at least in one other state of
a test sequence of the test suite. Moreover, it must be demonstrated that the
guard outcome changes as a result of changing this condition. Therefore, to test
each atomic condition c, we search (a) for a test sequence containing a state S1

where c is true and the guard is true (false); (b) for a test sequence containing
a state S2 where c is false and the guard is false (true); (c) the other atomic
conditions have the same truth value in S1 and in S2.

Test Predicates

The computation of test predicates for MCDC is complex. There exist several
standard algorithms to compute them. For example, [Chilenski and Miller 1994]
suggests to use pairs tables, [Offutt and Liu 1999] to use trees, [Kuhn 1999] to
use boolean derivatives.



Example

Given the rule:

R5) if Reset = on & (Pressure = TooLow or Pressure = Normal)
then Overridden := false

every atomic condition inside the guard is tested by means of six test predicates
as shown in the following table.

Test Pred. Reset=On Pressure=TooLow Pressure=Normal Guard
number Outcome

1 F Pressure = TooLow ∨ Pressure = Normal F

2 T Pressure = TooLow ∨ Pressure = Normal T

3 T F F F

4 T T F T

5 T F F F

6 T F T T

The modified condition decision coverage has a strong reputation and is sug-
gested by the FAA (Federal Aviation Agency) for certification of civil avionics
software. A complete discussion about MCDC and its advantages can be found
in [Chilenski and Miller 1994].

To achieve MCDC of a formula with n atomic conditions, 2n test predicates
are needed. However, only n + 1 test predicates are often enough to get the
coverage thanks to the repetition of the condition truth values (see for example
the condition values at rows 3 and 5 in the table above). In any case, the number
of test sequences necessary to get the modified condition decision coverage for
a rule containing n atomic conditions is always much lower than the number of
tests necessary for the multiple condition coverage [Myers 1979] which requires
to consider all the possible 2n combinations of the atomic condition truth values.

6 Automatic Test Sequence Generation Using Model

Checking

This section introduces a method to automatically generate test sequences from
ASM specifications. Test sequences are generated to achieve a desired coverage
among those presented in [Section 5]. The method can be easily extended for
new coverage criteria.

The method uses SMV [McMillan 1992] as subroutine and exploits SMV’s
counter example generation capability. SMV is a tool for checking finite state
systems against specifications in the branching time temporal logic CTL (Cam-
putation Tree Logic). A system is described in SMV as a set of initial states and
a set of transition relations.

CTL formula are assertions, generally putative invariants of the system,
about a single state or about paths from a state. Among the CTL temporal
operators, AG p means along all paths, all states satisfy p, and EF p means along
some path, some states satisfy p. In comparison with classical temporal opera-
tors, AG is like henceforth (2), while EF is like eventually (3).

SMV uses the OBDD-based symbolic model checking algorithm to efficiently
checking a CTL formula against the system specification. If SMV analyzes all



reachable states and detects no violations, then the property holds. Otherwise,
if the model checker finds a reachable state that violates the property, it returns
a “counterexample”, namely a sequence of reachable states beginning in a valid
initial state and ending with that violating the property.

Our method exploits the counter example generation feature of
SMV. This particular use of a model checker has been already in-
troduced in other approaches [Engels et al. 1997], [Ammann et al. 1998],
[Gargantini and Heitmeyer 1999]. Instead of using the model checker to prove
actual system properties, we check the validity of ad-hoc properties, called trap
properties, whose sole scope is leading the model checker to the generation of
desired counter examples.

The method consists in several steps. First, we compute for a desired coverage
the test predicates set {tpi}. Second, we encode the ASM specification in SMV
following the technique described in [Del Castillo and Winter 1999]. Third, we
compute for each test predicate tpi the test sequence that covers it by running
SMV on the trap property AG(!tpi)(or equivalently !EF(tpi)) stating that tpi is
never true. If SMV finds a state where tpi is true, it stops and prints as counter
example the state sequence leading to that state. This sequence is the test that
covers tpi.

We show here how to generate a test sequence for the rule coverage of rule:

R1) if WaterPressure >= Low & Pressure = TooLow
then Pressure := Normal

The test predicates are the R1’s guard and its negation. For the first one, the
trap property is: AG(!(WaterPressure >= Low & Pressure = TooLow)). Run-
ning SMV, we get the desired test sequence:

-- specification AG (!(WaterPressure >= Low & Pressure = ... is false
-- as demonstrated by the following execution sequence
state 1.1:
Permit = 1000
Low = 900
Block = off
Reset = on
WaterPressure = 14
Pressure = TooLow
Overridden = 0
SafetyInjection = on

state 1.2:
Block = on
Reset = off
WaterPressure = 24
...
... WaterPressure increases
...
state 1.89:
WaterPressure = 902
Overridden = 0

resources used: ...



The counter example ends with a state where the guard of R1 is true (and R1
fires). The test sequence for the R1’s guard negation is generated running SMV
on the trap property AG(WaterPressure >= Low & Pressure = TooLow).

Note that due to the limits of model checking, this approach is applicable to
specifications with finite domains, unless abstraction techniques are exploited.

6.1 Infeasible Tests

We call a test predicate not coverable or infeasible if either it is logically equiv-
alent to false (for example WaterPressure > 0 ∧ WaterPressure < 0), or it is
true only in an unreachable state.

If a test predicate tpi is infeasible, the trap property AG(!tpi) holds and
the model checker, if it terminates, proves it and warns the tester that the test
predicate is not coverable. The model checker, however, might not terminate
and not produce any counter example, generally because of the state explosion
problem. When the model checker does not end, the user does not know if
either the trap property is true (i.e. the test is infeasible) but too difficult to
prove, or the trap property is false and there exists a counter example but it
is too hard to find. When this happens, our method simply alerts the tester
that a test predicate has not been covered, but it might be feasible. The use
of abstraction to reduce the likelihood of such cases is under investigation. The
possible failure of our method does not surprise: the problem of finding a test
that covers a particular predicate is undecidable [Weyuker 1979]. Nevertheless,
in our experience this case is quite rare: for our case study it never happened.

7 Tool Architecture

Figure 1 shows the architecture of the tool we developed in order to automatically
generate test suites for ASM specification. The TEST PREDICATES GENERATOR
takes in input the ASM model and provides in output the test predicates for all
the coverage criteria defined in [Section 5].

counter
example

test suite

SMV file

ASM_2_SMV

ASM spec

ASM spec

EDITOR

SMV

GENERATOR GENERATOR
TEST SUITE

trap property

test predicatesTEST PREDICATES

Figure 1: Tool Architecture

The component ASM 2 SMV receives the ASM specification and a trap prop-



erty, and provides their SMV encoding. The ASM-to-SMV transformation pro-
posed in [Del Castillo and Winter 1999] is used to this purpose.

The SMV model checker is used in the way described in [Section 6] to produce,
if possible, a test sequence. The counterexample generated is given to the TEST
SUITE GENERATOR.

The TEST SUITE GENERATOR checks (a) if the sequence covers other test
predicates; (b) if the sequence can substitute some previously generated test
sequences, that are discharged; (c) if there exists a test predicate not covered
yet. If all the test predicates have been covered, the TEST SUITE GENERATOR
provides in output the test suite; otherwise, it recalls the ASM 2 SMV supplying
the trap property of an uncovered predicate.

The SMV encoding of ASM specifications is still manually done, while test
predicates are automatically generated from ASM specifications written in the
AsmGofer syntax [Schmid 1999]; the test suite generation is completely tool
supported.

8 Experimental Results

We apply our method to the SIS example, used in other papers
[Gargantini and Heitmeyer 1999, Ammann et al. 1998] as case study for testing
purposes. Table 1 reports the experimental results.

Coverage Number of Generated Useful Infeasible
criterion test preds tests tests tests

Rule 18 5 3
Rule update 11 2 2
2-parallel rule 7 / 72 4 1 3

MCDC 38 3 3

Total 74 14 9 3

Table 1: Testing results for the SIS

In the generation of the test sequences, we start from the simplest coverage
criteria, the rule coverage and the update coverage, and then we proceed trying
the stronger criteria, the parallel-rule coverage and the MCDC.

For every test sequence generated for one test predicate, we check if that
sequence also covers other test predicates, to avoid the generation of test se-
quences for test predicates already covered. This explains the reason why the
test sequences generated, as indicated in table 1, are much fewer than the number
of test predicates (14 against 74).

We check during generation if a test sequence is useful or can be discharged
because all the test predicates it covers are already covered by other test sequence
of the test suite. This explains the difference between the corresponding values
of columns generated tests and useful tests, and why the final test suite
includes only 9 test sequences out of the 14 originally generated.



In case of the 2-parallel rule coverage, the tool detected 3 infeasible test
predicates (last column). We considered 7 test predicates over the all 72, namely
R2||R5, R3||R5, R1||R5, R1||R6, R1||R2, R5||R6, R4||R6. The first four gen-
erate test sequences, but only the ones generated by R1||R6 is useful, whereas
R1||R2, R5||R6, R4||R6 generate infeasible cases.

In case of rule update coverage, the test predicates not already covered by
rule coverage, are derived from R2 and R4.

In case of modified condition decision coverage, new test sequences are gen-
erated for rules R5 and R6.

8.1 Practical Use of Test Suites

Test suites allow conformance testing, i.e. checking whether an implementation
conforms to its specification. Our tool provides the tester with text files of test
sequences (sequences of values of inputs, outputs, and internal functions). To
test the conformance of a given implementation P by means of a test sequence
S generated by our tool from an ASM specification of P , a tester should supply
P with inputs of S, and compare outputs of P with the expected outputs in S.

Another interesting use of test suites concerns the validation of specifications
through (graphical) simulation driven by test sequences. Before the implemen-
tation process takes place, simulating suitable scenarios allows the customer to
observe the behavior of the specified system, and to check if the specification
meets the expected requirements.

These aspects concerning the practical use of test suites are beyond the scope
of this paper which focuses on coverage criteria definition and automatic test
suite generation. However, these aspects are currently under investigation. We
refer the reader to [Section 10] for future work.

9 Related Work

The use of formal languages in testing is tackled in [Stocks and Carrington 1996],
where the Z notation is used to define test templates (similar to our test pred-
icates) and to provide a formal framework for the entire testing process. A
further problem is the derivation of such test templates from a specification
[Amla and Ammann 1992] and the definition of coverage criteria for Z opera-
tional specifications, with the main goal of introducing an objective measure of
coverage, independent of the implementation.

Several authors define coverage criteria or selection criteria for formal spec-
ifications, but leave still unsolved the problem of the generation of test suite.
[Fujiwara et al. 1991] defines a test selection method for finite state machines,
but it is not clear how to extend their method to more powerful formalisms
(for example to ASMs). [Offutt et al. 1999] introduces several interesting cover-
age criteria for state based specifications and those might be adapted to ASM
specifications. They present also a tool that semi-automatically derives test data
sequences, but still some intervention of the tester is necessary.

There exist several attempts to avoid any human effort and develop com-
pletely automatic tools. To this purpose, several works exploit the counter ex-
ample generation of the model checking algorithms. One of the earliest ap-
proaches using a model checker to generate test sequences can be found in



[Engels et al. 1997], where a test sequence is generated for a particular test pred-
icate defined by the designer (called testing purpose). A major weakness of this
approach is the reliance on the designer for introducing testing purposes and for
manually translating the specification in Spin. [Ammann et al. 1998] uses the
model checker SMV in combination to the mutation analysis to generate tests
from mutated specifications. The coverage is measured in terms of the number
of incorrect mutations that can be detected (they call this criterion mutation
adequacy). In [Gargantini and Heitmeyer 1999] tests are generated using model
checkers (both SMV and Spin) from SCR specifications to achieve a coverage
similar to the well known branch coverage for programs, or to cover particular
system requirements.

To the best of our knowledge, the only methods for generating test suites
from ASM specifications are those recently developed by the Microsoft group
in Redmond [Barnett et al. 2001, Grieskamp et al. 2001]. In the former, in order
to find a test suite, they extract a finite state machine from ASM specifications
and then use test generation techniques for FSMs [Lee and Yannakakis 1996].
However, the problem of reducing ASMs to FSMs is hard and might be even
undecidable. In the latter, they check an implementation against its ASM spec-
ification by comparing at runtime the observed behavior with the specified one.
To assess the quality of the testing activity, they still need to define some cov-
erage criteria.

10 Future Work

As future work we plan to define more powerful coverage criteria, for example
some criteria defined in [Offutt and Liu 1999, Offutt et al. 1999], missing condi-
tion coverage [Kuhn 1999], the meaningful impact strategy [Weyuker et al. 1994],
and the complete condition coverage. These criteria are adequate to discover
greater classes of errors (e.g. missing or wrong conditions inside guards).

We want to investigate the use of test suites generated by our method for
conformance testing. To drive real programs with the inputs of a test suite, the
tester might have to build an ad-hoc layer of software or a driver, or directly
modify (if possible) the original program.

We also want to study the fault detection capability of coverage criteria to
provide evidence that they lead to good and efficient test suites suitable to find
errors in programs. Testing both mutated programs and programs with injected
faults is a classical way for assessing the fault detection capability of tests. We
plan to apply this technique to evaluate our approach. This activity could lead
to the definition of a hierarchy among criteria.

We still continue working to improve the tool and to add an automatic trans-
lation in the language of the model checker, and to explore the use of other model
checkers, e.g. Spin.

Finally, we are investigating the use of abstractions to avoid the model checker
state explosion problem.
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A SIS ASM Specification

MONITORED VARIABLES
Block : {off,on}; Reset : {off,on}; WaterPressure: 0..2000;

CONTROLLED VARIABLES
Pressure : {TooLow, Normal, High};
Overridden : boolean;
SafetyInjection : {on,off};

STATIC VARIABLES
Low = 900; Permit = 1000;

RULES
R1: WaterPressure becomes greater than Low,

then Pressure from TooLow to Normal
if WaterPressure >= Low and Pressure = TooLow
then Pressure := Normal

R2: Pressure from Normal to High
if WaterPressure >= Permit and Pressure = Normal
then Pressure := High

Overridden := false

R3: Pressure from TooLow to Normal
if WaterPressure < Low and Pressure= Normal
then Pressure := TooLow

R4: Pressure from High to Normal
if WaterPressure < Permit and Pressure = High
then Pressure := Normal

Overridden := false

R5: The controller resets the SIS
if Reset = on and (Pressure = TooLow or Pressure = Normal)
then Overridden := false

R6: The controller ovverrides the SIS
if Block = on and Reset = off and Pressure = TooLow
then Overridden := true

R7+R8: When Pressure is TooLow, SafetyInjection is on
unless the system is Overridden

if Pressure = TooLow
then if Overridden

then SafetyInjection := off
else SafetyInjection := on

R9: When Pressure is Normal or High, SafetyInjection is always off
if Pressure != TooLow

then SafetyInjection := off


