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Combining Formal Methods and MDE Techniques
for Model-driven System Design and Analysis

Angelo GargantiniMember, IEEE Elvinia Riccobene, and Patrizia Scandurra

Abstract—The use offormal methods (FMs), based on rigorous  phases of the development process. Indeed, an abstract mode
mathematical foundations, is essential for system specification of the system can be used to understand if the system under
and proof, especially for safety critical systems. On the other development satisfies the given requirements (by simulatio

hand, Model-driven Engineering (MDE) is emerging as nhew d del-based testi d ¢ tai i
approach to software development based on the systematic usk o and model-based testing), and guarantees certain preperti

models as primary artifacts throughout the engineering life-cycle by formal analysis (validation & verification).
by combining domain-specific modeling languages (DSMLs) with Disadvantages of FMsWhile there are several cases proving
model transformers, analyzers, and generators. _ the applicability of formal methods in industrial applicats

In this paper, we present our position and experience on 44 showing very good results, many practitioners are still

combining flexibility and automation of the MDE approach with -
rigorousness and preciseness of FMs to achieve significant boosts reluctant to adopt formal methods. Besides the well-known

in both productivity and quality in model-driven design and  lack of training, this skepticism is mainly due to: the com-
analysis of software and systems. We propose ain-the-loop  plex notations that formal techniques use rather than other
integration where, on one hand, MDE principles are used to |ightweight and more intuitive graphical notations, likeet
engineer a language and a tool-set around a formal method Unified Modeling Language (UML) [4]; the lack of easy-

for its practical adoption in systems development life cycle, t tool ti devel duri the Iif |
and, on the other hand, the same FM is used in the same '©-US€ l0OIS Supporting a developer during the liie cycie

MDE context to endow modeling languages with a precise and activities of system development, possibly in a seamless
(possibly) executable semantics and to perform formal analysis of manner; and the lack of integration among formal methods
systems models written in those languages. A concrete scenario of themselves and their associated tools.

in-the-loop integration is presented in terms of the Abstract Stag¢ Advantages of MDE MDE technologies with a greater focus

Machine formal method and the Eclipse Modeling Framework. X . . .
This integration allows system design using the EMF frame- O architecture and automation yield higher levels of aostr

work and formal system analysis by ASMs in a seamless and tion in system development by promoting models as first-
systematic way, as shown by a concrete case study. class artifacts to maintain, analyze, simulate, and eadigtu

Keywords-Formal methods, Model Driven Engineering, Ab- féduce into code or transform into other models. Meta-
stract State Machines, model semantics, model execution and modeling is a key concept of the MDE paradigm and it is
analysis; intended as a way to endow a language or a formalism with

an abstract notation, so separating the abstract syntazeand
|. INTRODUCTION mantics of the language from its different concrete notegio

Using Formal Methods(EMs), which have rigorous math- Altho_ugh the foyndann consntuents of the MI.DE. are still
evolving, some implementations of the MDE principles can

ematical foundations, for system development is nowadayge found in meta-modeling/programming frameworks like
extremely important, especially for high-integrity syste

where safety or security need to be formally proved. Or;[he OMG MDA (Model Driven Architecture) [5], Model-

the other hand, theodel-driven EngineeringMDE) [2], integrated Computing (MIC) [6], Software Factories and

. : : . . . Microsoft DSL Tools [7], Eclipse/EMF [8], etc. Metamodel-
[3] is emerging as a new paradigm in software engineering,

which bases system development on (meta-)modeling and
model transformations, and provides methods to build lesdg

between similar or different technical spaces and domains. Advantages Disadvantages
Both approaches have advantages and disadvantages that we ; : )
. . * User-friendly notation * Lack of semantics
here shortly summarize (see Fig. 1). MDE

* Derivative artifacts for *
tool development

Unfit for model

Advantages of FMs The use of formal methods in system analysis

engineering is becoming essential, especially during &nky e « Automated model

Angelo Gargantini and Patrizia Scandurra are with the Dip@nto di transformations

Ingegneria dell'Informazione e Metodi Matematici (DIIMM),rliversita di * Ri h ical
Bergamo, Viale Marconi, 5 - 24044 Dalmine (BG), ltaly, e-maianf FM lgorous mathematica

ard notation

gelo.gargantini,patrizia.scandurra}@unibg.it foundation * Lack of tools
Elvinia Riccobene is with the Dipartimento di Tecnologieldielormazione * Suitable for model . ) )
(DTI), Universita degli Studi di Milano, via Bramante 65 - 260Crema (CR), analysis Lack of integration

Italy, e-mail: elvinia.riccobene@dti.unimi.it
This paper is the extended version of the conference paper [1
This work is supported in part by the PRIN Italian MIUR prdj@&ASAP: Fig. 1: Formal methods and MDE
Architetture Software Adattabili e Affidabili per Sisten@rasivi



INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE - JAN 2010 2

based modeling languages are increasingly being defined ahdws how MDE-based technologies are used to define a
adopted for specific domains of interest addressing thdlinalmetamodel-based language for the Tic-Tac-Toe, and the ASM-
ity of third-generation languages to alleviate the comipyex based semantic framework is used to define an executable
of platforms and express domain concepts effectively [3]. semantics of the language and to support semantics validati
Disadvantages of MDE Although the definition of a lan- and formal verification of models.
guage abstract syntax by a metamodel is well mas-Section IX shows how to get a tighter integration between
tered and supported by many meta-modeling enviroASM and EMF byclosing the loopi.e. by using the ASM
ments (EMF/Ecore, GME/MetaGME, AMMA/KM3, XMF- formal method itself to define the semantics of the ASMs in
Mosaic/Xcore, etc.), the semantics definition of this clagke EMF framework. Section X sketches some related work.
of languages is an open and crucial issue. Currently, meBnally, our conclusion and future directions are provided
modeling environments are able to cope well with moSection XI.
syntactic and transformation definition issues, but thek la
of any standard and_ rigorous support to pr_ovid_e the (pq;ss_ibl Il. MDE FORFMs
executable) semantics of metamodels, which is usuallyngive ) o
in natural language. This implies that most currently addpt APPlying the MDE development principles to a formal
metamodel-based languages are not yet suitable for efiectnethod has the overall goal of engineering a language and
model analysis due to their lack of a strong semantiés!o0l-sét around the formal method in order to support its
necessary for a formal model analysis assisted by tools. Practical use in systems development life cycle.
The MDE methodology for engineering software languages
In [1], we discussed how these two approaches can isevell established in the context of domain-specific lamgsa
combined showing how the advantages of one can be exploit8li Nevertheless, this model-driven development process
to cover or weaken the disadvantages of the other. In t#ig adapted to formal methods, too.
paper, we extend and deepen this combination view with theThe first step of this engineering process is theice of a
final goal of developing a model-driven approach for designi metamodeling framework and its supporting technolagies
systems according to the MDE princip|esl and ana|yzirfyinCip|e, the choice of a SpECiﬁC meta—modeling framework
models by exploiting formal techniques. should not prevent the use of models in other different meta-
In Section Il we describe an overall process, based on th@deling spaces, since model transformations among meta-
MDE approach, for engineering a language and a tool-set fodeling framework should be theoretically supported t®y th
a formal method. This allows to overcome the lack of useenvironments. However, although in theory one could switch
friendly notations, of integration of techniques, and ogith framework later, a commitment with a precise meta-modeling
tool inter-operability. This deficiency still poses a siigant framework is better done at the very early stage of the
challenge for formal methods. development process, mainly for practical reasons. Theeaho
On the other hand, in Section IIl, we present an approaPE framework should support easy (e.g. graphical) editing
to endow language metamodels with precise executable 8&(meta) models, model to model transformations, and text t
mantics, and we discuss techniques for formal analysis tta@del and model to texts mappings to assist the development
can be used once formal models are associated to langug@ijgoncrete notations in textual form. It should also preva
terminal models by, possibly, automatic model mappingsThinapping towards programming languages (i.e. API artifacts
addresses the problem of expressing semantics of metamotfegllow the integration with other software applications.
based languages and performing model validation and formaOnce a metamodeling framework has been chosen, the
verification. further main steps, that might require iterative processof
In order to combine in a tight way rigorousness and préi€ process are the following.
ciseness of FMs with flexibility and automation of the MDEDesign of a language abstract syntaxin the MDE context,
in Section IV we propose ain-the-loop integration where the abstract syntayof a specification language is defined by
the same MDE technology and FM techniques are involved inmeans of ametamode[10]. It is an object-oriented model
both the two activities: MDE for FMs and FMs for MDE. of the vocabulary of the language. It represents concepts
Section V provides basic concepts concerning the Abstracprovided by the language, the relationships existing among
State Machine formal method which is later used to implementhose concepts, and how they may be combined to create
the in-the-loop approach. models. Precise guide lines exist (e.g. [9]) to drive this
Sections VI and VII show a concrete scenario of in-the- modeling activity that leads to an instantiation of the @ros
loop integration between the ASM formal method and themetamodeling framework for a specific domain of interest.
EMF framework. On one side, we report our experience inThis is a critical process step since the metamodel is the
exploiting MDE methodology to engineer a language andstarting point for tool development.
a tool-set for the ASMs in order to support their practicdbevelopment of tools. Software tools are developed starting
use in systems development life cycle. On the other sidefrom the language metamodel. They can be classified in
we show how ASMs can be used to provide semantics togeneratedbased andintegrated depending on the decreas-
languages defined in the MDE context and how to performing use of MDE generative technologies for their develop-
formal analysis of models developed by MDE technology. ment. The effort required by the user increases, instead.
A complete case study is presented in Section VIII which Software tools automatically derived from the metamodel
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are considered generated. Based tools are those developed AmL
exploiting artifacts (APIs and other concrete syntaxes) an A
contain a considerable amount of code that has not been
generated. Integrated tools are external and existings tool w ", Ms

that are connected to the language artifacts: a tool may use -~ _——" "~ T

just the XMI format, other tools may use the APIs or other A“‘/ M “‘A/ M \S’ _g
derivatives. In the sequel we explain these kinds of tools. A n

1) Development of language artifactsrom the language «: W'

metamodel, severalanguage artifactsare generated for M M L
model handling — i.e. model creation, storage, exchange!™' m! I~ Mg(m) = Mg(m/)
access, manipulatation —, and these artifacts can be reused

during the development of other applications. Artifacts ar Fig. 2: The building function/

obtained by exploiting standard or proprietary mappings
from the metamodeling framework to several technical ] ] )
spaces, as XMLware for model serialization and interchandgodels conforming ta. and (b) provide several techniques
and Javaware for model representation in terms of pr80d methods for the formal analysis (e.g. validation, priype
grammable objects (through standard APIs). proving, model checking, etc. ) of such models.

2) Definition and validation ofconcrete syntax(es). Lan-

guage concrete notations (textual, graphical or both) @n R. Language semantics definition

introduced for the human use of editing models conforming

to the metamodel. Several tools exist to define (or deriv 2: . X A o .
concrete textual grammars for metamodels. For exampﬁes 'f. a semantic domqlrﬂ IS .|dent|f|ed and a semantic
) mapping Mg : A — S is provided [13] between thd.'’s

EMFText [11] allows defining text syntax for languages deélgstract syntaxd (i.e. the metamodel of.) and S to give

scribed by an Ecore metamodel and it generates an ANTE eaning to syntactic concepts &fin terms of the semantic

) m
grammar file. TCS [12] (Textual Concrete Syntax) enabl.%somain clements.

the specification of textual concrete syntaxes for Domain- . : .
Specific Languages (DSLs) by attaching syntactic informa- The semantic domai$' and the mappingl/s can be de-

tion to metamodels written in KM3. A similar approach igc"ioed In vanying degrees of formality, from natural lange
followed by the TEF (Textual Editing Framewotk)Other g i y 1mp

tools, like the Xtext by openArchitectureWarefollowing and My are defined in a precise, clear, and readable way.

. L The semantic domairs is usually defined in some formal,
different approaches, may fit in our process as well. De- . 7
. ) ; mathematical framework (transition systems, pomsetsega
pending on the degree of automation provided by the chosegn . ) .
4 the set of natural numbers with its underlying properties, a
framework, concrete syntax tools can be classified between

generated and based software examples of semantic domains). The semantic mappifig

) . is not so often given in a formal and precise way, possibly
Besides to be defined, concrete grammars must be afso : . :
; o . . eaving some doubts about the semanticg oThus, a precise
validated. To this aim, a pool of models written in the ST )
formal approach to define it is desirable.

. an
concrete syntax and acting as benchmark has to be selecte . . . .
ometimes, in order to give the semantics of a language

During this activity it is important to collect information . .
about the coverage of language constructs (classesum'sibamther helper languad€, whose semantics is clearly defined
and well established, is introduced. Therefold; and S’

and relations) to check that all them are used by the exam- ) PR :
ples. Writing wrong models and checking that they are nnboum be already vx{ell-defm('ad fai’. L" can be exploited
accepted is important as well. Coverage evaluation can edefm_e the semantics dj by: _ _
performed by using a code coverage tool and instrumentin%) taking 5’ as semantic domain faf too, i.e.5 = 5,
the parser accordingly. This validation activity is als@fus ) introducing abuilding functionA/ : A — A', being A’
to provide confidence that the metamodel correctly captures the abstract syntax af’, which associates an element of
concepts and constructs of the underline formal method. 4’ to every construct off, and
3) Development of other tooldMetamodel, language arti- 3) defining the semantic mappings : A — 5 as
facts, and concrete syntaxes are the foqndations over which Mg = MyoM
new tools can be developed and existing ones can be
integrated. The M functionhooksthe semantics oA to the S’ semantic
domain of the languagé’. The complexity of this approach
1. EMs FORMDE depends on the complexity of building the functidh.

Note that the functio/ can be applied to terminal models
aﬁonforming to A in order to obtain models conforming to
A’, as shown in Fig. 2. In this way, the semantic mapping
Mg : A — S associates a well-formed terminal model
Lhttp://mww2.informatik.hu-berlin.de/sam/meta-tools/tef conforming to A with its semantic modelMs(m), by first
2http://www.openarchitectureware.org/ translatingm to m’ conforming to A’ by means of theM

A metamodel-based languadehas a well-defined seman-

Applying a formal method to a language defined in a
meta-modeling framework should have the following over
goals: (a) allow the definition of the behaviors (semantafs)
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function, and then applying the mappidg; which is already MDE apply MDE to FM F M‘_
well-defined. (1) S
To be a good candidate, a languageshould (i) be abstract ‘.
and formal to rigorously define model behavior at different "
levels of abstraction, but without formal overkill; (i) kable am?®

to capture heterogeneous models of computation (MoC) in apply FM to MDE (2)

order to smoothly integrate different behavioral modeiig); (

be endowed with a model refinement mechanism leading to
correct-by-construction system artifacts. FurthermasaMDE
specific requirement (iv),L’ should be possibly endowed
with a metamodel-based definition in order to automatizatended semantics df, and it must be performed before any
the application of building functiom/ by exploiting MDE formal analysis of models. Indeed every later formal attivi
techniques of automatic model transformation. on models written inL is based on\/ and a faultyM would

jeopardize the results obtained.

Fig. 3: In the loop integration of FM and MDE

B. Formal analysis

. . . IV. IN-THE-LOOP INTEGRATION
Besides the above stated requirements about the expressive

power of L as notation, it is important that formal analysis of Although the two activities of applying the MDE to a FM
models written inL’ is supported by a set of tools for modelnd apply a FM to the MDE can be considered unrelated and
execution, as simulation or testing, and for model verifirat could be performed in parallel even by using two different
Indeed, the main goal of applying a formal notation to theotations for the MDE and FMs, the best results can be
semantics ofL is to allow formal analysis of the modelsobtained by a tight integration between the MDE and a FM
written in L. in an in-the-loopintegration approach. In this approach, the
As main formal activities that are allowed by applying &DE framework and the FM notation are the same in both
formal method to a languag®, we identify at leastmodel Of the above activities and the application of the MDE to the
validation and property verification FM is carried out before the application of the FM to the
Validation is intended as the process of investigating MIDE. Thanks to the first activity, the FM will be endowed
model (intended as formal specification) with respect to i#ith @ metamodel and possibly a set of tools (e.g. a grammar,
user perceptions, in order to ensure that the specificagiaiyr artifacts, etc.) which can be used in the second activity to
reflects the user needs and statements about the applicaftiomatize (meta-)model transformations and apply seitab
and to detect faults in the specification as early as possibf®ls for formal analysis (i.e. validation and verificafjoof
with limited effort. Techniques for validation includeenarios models. Indeed, although for applying FM to the MDE it
generation when the user builds scenarios describing tHg in principle not required that the FM is provided with a
behavior of a system by looking at the observable interastiometamodel (see Sect. Ill), a formal notation endowed with
between the system and its environment in specific situsitio® representation of its concepts in terms of a metamodel
simulation when the user provides certain input and observiuld allow the use of MDE transformation languages (as
if the output is the expected one or not (it is similar t\TL?) to define the building function\/ and to automatize
code debugging)model-based testingvhen the specification the application of}/ as model transformation by means of
is used as oracle to compute test cases for a given criti@airansformation engine. Therefore, having a metamodel is a
behavior of the system at the same level of the specificatidHrther constraint for an helper language, and it justifies
These abstract test cases cannot be executed at code el ¥y the second activity must precede the first one.
they are at a wrong level of abstraction. Executable tesiscas Sect. VI and VII present our instantiation of tirethe-loop
must be derived from the abstract ones and executed at céfegration with the EMF (Eclipse Modeling Framework) as
level to guarantee conformance between model and code. MDE framework and the ASMs (Abstract State Machines)
In any case, validation should precede the application @ formal method. This choice is justified by the following
more expensive and accurate methods, tiguirements for- Mmotivations:
mal analysisand verification of propertiesthat should be « EMF is based on an open-source Eclipse framework and
applied only when a designer has enough confidence that unifies the three well known technologies, i.e. Java, XML,
the specification captures all informal requirements. Fdrm and UML, currently used for software development.
verification has to be intended as the mathematical proof ofe ASMs own all the characteristics of preciseness, ab-
system properties, which can be performed by hand or by the straction, refinement, executability, metamodel-baséd de
aid of model checkers (which are usable when the variable inition that we identified as the desirable properties a
ranges are finite) or of theorem provers (which require stron ~ FM should have in order to be a good candidate for
user skills to drive the proof). integration.

Model validation techniques can be also used during the|n order to make a further step in the direction of a tighter

development of the language semantics [offor semantic jntegration between ASM and EMF, Sect. IX shows how
validation This activity consists in checking (or proving, if

possible) that the building functiod/ really captures the 3hitp://iwww.eclipse.org/m2m/atl/
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effectively we canclose the loop(see Fig. 3) by describing ture®, namely all domain, function and predicate declarations.
the semantics of ASMs representation in the EMF framework The body of an ASM consists of (static) domain and
by using the ASM formal method itself. (static/derived) function definitions according to domaind
function declarations in the signature of the ASM. It also
contains declarations (definitions) of transition rules aief-
V. ABSTRACT STATE MACHINES initions of axioms for invariants one wants to assume for
domains and functions of the ASM.

Abstract State Machines are an extension of FSMs [14], The (unique)main ruleis a transition rule and represents the
where unstructured control states are replaced by states catarting point of the machine program (i.e. it calls all thiees
prising arbitrary complex data. Thstatesof an ASM are ASM transition rules defined in the body). The main rule is
multi-sorted first-order structures, i.e. domains of otgegith closed(i.e. it does not have parameters) and since there are no
functions and predicates (boolean functions) defined omthefree global variables in the rule declarations of an ASM, the
while thetransition relationis specified by “rules” describing notion of a move does not depend on a variable assignment,
the modification of the functions from one state to the nextbut only on the state of the machine.

Basically, a transition rule has the form giiarded update  The initialization of an ASM is a characterization of the
“if Condition then Update$ where Updatesare a set of initial states. An initial state defines an initial value for
function updates of the fornf(¢y,...,t,) := t which are domains and functions declared in the signature of the ASM.
simultaneously executédvhen Condition is true. An ASM Executingan ASM means executing its main rule starting from
M is therefore a finite set of rules for such guarded multipi specified initial state.
function updates. A complete mathematical definition of the ASM method

Function are classified akerivedfunctions, i.e. those com- can be found in [15], together with a presentation of the
ing with a specification or computation mechanism given i@reat variety of its successful application in differentidse
terms of other functions, anbasic functions which can be such as: definition of industrial standards for programnaind
static(never change during any run of the machinejiymamic modelling languages, design and re-engineering of ingistr
(may change as a consequence of agent actionpdatey. control systems, modelling e-commerce and web services,
Dynamic functions are further classified intoonitored(only — design and analysis of protocols, architectural desigiyuage
read, as events provided by the environmeraptrolled (read design, verification of compilation schemas and compiler

and write),sharedand output (only write) functions. back-ends, etc.
These is a limited but powerful set afile constructors
that allow to express simultaneous parallel actiopar(), VI. EMF FORASMs
sequential actionseq), iterations (t er at e, whi | e, r ec- In addition to its mathematical-based foundation, a

whi | e), and submachine invocations returning values. Apnetamodel-based definition for ASMs has been given [16],
propriate rule constructors also allow non-determinismiste [17]. This ASM metamodel allowed us to apply MDE
tential quantificationchoose) and unrestricted synchronoustechniques for developing a general framework, called
parallelism (universal quantificationor al I'). ASMmMETA- modeling frameworkASMETA) [18], for a wide

A computationof an ASM M is a finite or infinite sequence inter-operability and integration of new and existing ol
So0, 51, ..., Sy, ... of states ofM, whereS, is an initial state around ASMs (ASM model editors, ASM model repositories,
and eachS,,;; is obtained fromsS,, by firing simultaneously ASM model validators, ASM model verifiers, ASM simula-
all of the transition rules which are enabled. tors, ASM-to-Any code generators, etc.).

The notion of ASMs formalizes simultaneous parallel ac-
tions of a single agent, either in an atomic wBgsic ASMs A ASM Metamodel

or in a structured and recursive wa$tructured or Turbo We started by defining a metamodel [18], [19], [16], [17].

ASMS Furthgrmore, .it Squort? a generalization where m%e Abstract State Machine Metamod@smM), as abstract
tiple agents interact in parallel in a synchronous/asyoubus syntax description of a language for ASMs. The aim was

Wayl, ﬁync::rol: ous/SA'\jynchLondous Multl-ggﬁ nt ASMS that of developing aunified abstract notation for the ASMs,
Although the A method comes with a rigorous matq- dependent from any specific implementation syntax and

ematical foundation, ASMs provide accurate yet practicg lowing a more direct encoding of the ASM mathematical
industrially viable behavioral semantics for pseudocode %oncepts and constructs

arbitrary data str_uctures. We quote here mdBkingdgfinition The complete AsmM metamodel is organized in one pack-
pf. .ar|1. A.SM defined as a tupleh¢ader body main rule age calledasMETA containing 115 classes, 114 associations,

initialization). i o and 150 OCL class invariants, approximatively. TA&mETA
The headercontains thenameof the ASM and itssigna- package is further divided into four packages as shown in
Fig. 4. Each package covers different aspects of the ASMs.

4f is an arbitraryn-ary function and1, ..., t,, t are first-order terms. To
fire this rule to a state5;, « > 0, evaluate all termgy,...,t,,t at.S; and SFor multi-agent ASM, the header contains also the macthimport
update the functiory to ¢t on parameters,,...,t,. This produces another and export clausesnamely all names for functions and rules which are,

stateS;1 which differs fromsS; only in the new interpretation of the function respectively, imported from another ASMs, and exported fitbi current
. one. We assume that there are no name clashes in these signature
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«metamodel»
ASMETA +headerSection

— | Asm Header +exportClause ExportClause

o e T
- H S seeesesesennan,,, + importClause

agm

-

Deftiions | .-~ Terms | i TransitionRules P ImportClause
s - 0.1
|- Fom] 4
..... RN
¥ ' A : ' ! : Signature
: 1 EE | H o : + signature
| FurtherTerms "'. - [ Tﬁ{boTranswtlonRules H DerivedTransitionRules ‘ + bodySection

+ axiom

*

Transition System + domainDefinition

DomainDefinition

Fig. 4: Package structure of the AsmM metamodel

+ functionDefinition

FunctionDefinition

*

+ruleDeclaration
The dashed gray ovals in Fig. 4 denote packages represen N puisheckrten [Snporague
the notions ofStateand Transition Systerrespectively. The —_— FexportedRule
St ruct ur e package defines architectural constructs (mo
ules and machines) required to specify the backbone of 0.+ defaultintialSate &

+domaininitialization

ASM model. TheDefi ni ti ons package contains all basic
constructs (functions, domains, constraints, rule datilams,
etc..) which characterize algebraic specifications. Taens
package provides all kinds of syntactic expressions whash ¢
be evaluated in a state of an ASM. Theansi ti onRul es
package contains all possible transition rules schemessitB
and Turbo ASMs. Allderivedtransition rule& are contained
in the Der i vedTr ansi ti onRul es package. All relations orerated [ T based _|A_sm_EE_| |_As_m§a§|_ T
between packages are of typses | Asmetal.c
We present here only a very small fragment of the AsmM | Agmetal | L 1 L 1"
whose complete description can be found in [16], [18]. Fig. 5 I | yi, : l
shows the backbone of lzasic ASM " & @ oY — !
An instance of the root clagss mrepresents an entire ASM L ! S
specification. According to the definition given in Sect. V, .
a basic ASM has aane and is defined by aleader (to Fig. 6: TheASMETA tool set
establish the signature),Body (to define domains, functions,

and rules), arai n rul e, and a set of initial states (instances ) .
ofthel ni ti al i zati on class). All possible initial states aretN® ASMETA framework that provides a global infrastructure

linked to an ASM by the association endhi ti al St at e for the interoperability of ASM tools (new and existing ophes
and one initial state is elected dsfault (see the association [21]- . .
enddef aul t I nitial State). ASM rule constructors are 1€ ASMETA tool set (see Fig. 6) includes (among other

represented by subclasses of the cRuise, not reported here. tings) & textual concrete syntadsmetal. to write ASM
models (conforming to the AsmM) in a textual and human-

comprehensible form; a text-to-model compilésmetal¢

Initialization Domainlnitialization
*
+functioninitialization  « | Fynctioninitialization

Fig. 5: Backbone

*

+initalState

|Asmetav| | AsmetaSMV | |

B. ASMETA tool-set to parse AsmetalL models and check for their consistency
From the AsmM, by exploiting the MDE approach andV-I-t. the AsmM constraints expressed in OCh simulator,
its facilities (derivative artifacts, APIs, transformaii li- AsmetaSto execute ASM models; thévalla language for

braries, etc.), we obtained in a generative manner (i.ei-se§fenario-based validation of ASM models, with its supporti
automatically) several artifacts (an interchange formd|s, tool, theAsmetaWalidator; a model checkgksmetaSM\[22]
etc__) for the Creation, Storage' interchange, access mﬂbm for model verification by NUSMV, theATGT tool that is an
ulation of ASM models [20]. The AsmM and the combinatiofr\SM-based test case generator based upon the SPIN model
of these language artifacts lead to an instantiation of ti& E checker; a graphical front-end call&SMEE (ASM Eclipse
metamodeling framework for the ASM application domairEnvironment) which acts as IDE and it is an eclipse plug-in.
All the above artifacts/tools are classified igenerated
6The AsmM metamodel in Figure 4 includes other ASM transitiore rulbased andintegrated Generated artifacts/tools are derivatives

schemes derived from the basic and the turbo ones, respgectlthough  gptained (semi-)automatically by applvina appropriaterec
they could be easily expressed at model level in terms of otkistirey rule ( ) y by applying approp

schemes, they are considered “syntactic sugar’ and thereiey have been Projections to the technical spaces Javaware, XMLware, and

included in the metamodel. Example of such rules are the césexna the
(turbo) iterative/recursive while-rule. hitp://www.omg.org/technology/documents/formal/ocl.htm
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—  CONfOrMS to

grammarware. Based artifacts/tools are those developed ex T et defiton
ploiting the ASMETA environment and related derivatives; arf®™meamed MoF E@j—j o
example of such a tool is the simulator AsmetaS). Integrated / LN s st
artifacts/tools are external and existing tools that arsmeocted / AsmM
to the ASMETA environment. metamodel Lgemned e DI
A t@\\‘ i intializationi ‘
VII. ASMs FOREMF i **********

We here describe how the ASM formal method can bede aply e rg/%cii@ g \
exploited as helper language to define a forrsamantic m%\g """"""" ’G)‘: ..... RGN N
framework to provide languages with their (possibbxe- Eﬁ%@

cutable semantics natively with their metamodels. We also = 9 ?
describe how the ASM tool-set provides a concrete support

. Fig. 7: Semantic hookin
for model analysis. 9 9

A. Language semantics definition Examples of applying the semantic hooking technique to
Recall, from Sect. IIl, that the problem of giving the semarfl€fine the semantics of a metamodel-based language can be
tics of a metamodel-based langualyés reduced to define the found in [23] for a metamodel of Finite State Machines and
function M : A — A’, being A and A’ the language and the " [1] for a mej[amodel of the Petri net formallsm. The latter i
helper language abstract syntaxes, respectively. Letausras /SO reported in Appendix A and can be viewed as an example
the ASMs as helper language satisfying the requiremen‘f‘g,"‘:h faC|I|t_|es the readerm_understandmg our approactes
given in Sect. Ill, of having a mathematical well-founded sd¢h® semantics of Petri nets is well-known.
mantics and a metamodel-based representation. The semanti
domainS asma is the first-order logic extended with the logicB- Formal analysis
for function updates and for transition rule constructareed The ASM-based semantic framework supports formal anal-
in [15] and thesemantic mappind/s : AsmM — Sasmam  ysis of ASM models by exploiting thasMETA tool-set (see
to relate syntactic concepts to those of the semantic dom&ection VI-B for details) for model validation and verifitat.
is given in [20]. 1) Model validation: Simple model validation can be per-
The semantics of a metamodel-based language is expredsehed bysimulating ASM models with the ASM simulator
in terms of ASM transition rules by providing the building(see Section VI-B) to check a system model with respect to the
function M : A — AsmM. As already mentioned, thedesired behavior to ensure that the specification reallgats]
definition of the functionM may be accomplished by differentthe user needs and statements about the system, and to detect
techniques (see [23]), which differ in the way a terminal mlodfaults in the specification as early as possible with limited
is mapped into an ASM. As example of such techniques, tkeéort.
semantic hookingechnique is presented below. This technique The AsmetaS simulator can be used in a standalone way
is used in Section VIII-B to provide behavioral semantics db provide basic simulation of the overall system behaar.
the language in our case study. key features for model validation, AsmetaS supp@tsom
Thesemantic hookingndows a language metamodelith  checkingto check whether axioms expressed over the currently
a semantics by means of a uniqgue ASM for any model coexecuted ASM model are satisfied or nobnsistent updates
forming to A. By using this technique, designdmsokto the checkingfor revealing inconsistent updateandom simulation
language metamodél an abstract state machiiigy, which is  where random values for monitored functions are provided by
an instance oAsmMand contains all data structures modelinthe environmentjnteractive simulatiorwhen required input
elements ofA with their relationships, and all transition rulesare provided interactively during simulation, and confajie
representing behavioural aspects of the languBgedoes not loggingfacilities to inspect the machine state. Axiom checking
contain the initialization of functions and domains, whigti and random simulation allow the user to perform a draft
depend on the particular instance A&f The function which system validation with minimal effort, while interactivins
adds the initialization part is called Formally, the building ulation, although more accurate, requires the user irtierac
function M is given by M(m) = t4(Ta,m), for all m The most powerful validation approach is tlseenario-
conforming to A. based validation[24] by the ASM validator (see Section
I'x: AsmM, is an abstract state machine which containgl-B). The AsmetaV validator is based on the AsmetaS simu-
only declarations of functions and domains (the signatane) lator and on the Avalla modelling language. This last presid
the behavioral semantics éfin terms of ASM transition rules. constructs to express execution scenarios in an algodthmi
ta: AsmM x A — AsmM, properly initializes the way as interaction sequences consistin@gctionscommitted
machine..4 is defined on an ASM: and a terminal model by the user actorto set the environment (i.e. the values
m instance of4; it navigatesm and sets the initial values for of monitored/shared functions), ttheck the machine state,
the functions and the initial elements in the domains dedlarto ask for theexecution of certain transition rules, and to
in the signature ofi. The. 4 function is applied td"4 and to enforce the machine itself to make ogtep (or a sequence
the terminal modet for which it yields the final ASM. of steps byst ep until) as reaction of the actor actions.
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model benchmark — hooking —{ ASM models

AsmetaV reads a user scenario written in Avalla, it build oncton

00,0 PASS/FAIL
the scenario as instance of the Avalla metamodel by mes [[1] g % ’
of a parser, it transforms the scenario and the Asmet [] @@@ COVERAGE

specification which the scenario refers to, to an executable

AsmM model. Then, AsmetaV invokes the AsmetaS inter-

preter to simulate the scenario. During simulation the user Fig. 8: Semantic validation by AsmetaV

can pause the simulation and watch the current state and valu

of the update set at every step, through a watching windc Hoqure PP ———
During simulation, AsmetaV captures any check violatiod ar | i 5 = symbol : Skind £ Skind

if none occurs it finishes with a “PASS” verdict. Besides * 3 [squarelnRow - ﬁﬂﬁt
“PASS"/“FAIL" verdict, during the scenario running Asméfa e

collects in a final report some information about tweverage
of the original model; this is useful to check which trarsiti
rules have been exercised.

2) Model checking:The ASMETA tool-set provides support
for temporal properties verification of ASM models by mean
of the model checker AsmetaSMV [22], which takes in input
ASM models written in Asmetal and maps these models into
specifications for the model checker NuSMV [25].

AsmetaSMV supports both the declarationGdmputation
Tree Logic(CTL) andLinear Temporal Logi¢LTL) formulas.

CTL/LTL properties to verify are declared directly into the aq 5 case study, we consider Tic-Tac-Toe as a language

ASM model as (special) axioms of the form: where a Tic-Tac-Toe board is an instance of the language.
We use MDE-based technologies to define a metamodel for a
axiom over(ctl | Itl] :  p description language of the Tic-Tac-Toe game, and the ASM-
based semantic framework for the definition of the execution
where the over section specifies jifis a CTL or a LTL semantics of a board (for playing) including correctnessckh
formula. No knowledge of the NuSMV syntax is required tdng by validation and verification.
the user in order to use AsmetaSMV.

3) Language semantics validationfthe ASMETA tool-set
and the validation techniques can also be useddonguage
semantics validatiorindeed, this activity is performed through  Fig. 9 shows the metamodel for the Tic-Tac-Toe. It describes
the validation of the hooking function/ presented in Section the static structure of a board (tfBoar d class) maintain-
VII-A by applying it to a collection of meaningful examples.ing data seen by users: rows (tlRew class) and squares
The ASM models obtained form the application &f to (the Squar e class). A board has (see referendasows,
the examples can be validated in different ways providing ows, and dr ows): three horizontal rows, three vertical
increasing degrees of confidence in the semantics corsstneows, and two diagonal rows. Totally, in a board there are
Random simulatiorllows checking if errors like inconsistentnine squares (see the referersmuar e), three per each row
updates and type errors, occunteractive simulationcan (thesquar el nRowreference). Th&Ki nd enumeration type
provide evidence that the semantics captures the intengled §enotes the kind of symbols a square can contain (cross,
havior, but it requires the user to provide the correct is@utd nought, empty). The default symbol is empty.
to judge the correctness of the observed behavior. The mosgach square is contained in one row and one vertical row.
pOWErfUI validation approach is tlezenario-based validation Some squares may be contained in more than one row. The
As shown in Fig. 8, a suitable set of models are selectgguare in the center, for example, is contained in the middle
as benchmark for language semantic validation; these modgdrtical row and horizontal row, and in the two diagonal rows

are translated into ASM models by the hooking functith Al these structural constraints can be expressed in OCL. Fo
moreover, a set of scenarios specifying the expected behaxample, the following OCL invariant

of the models must be provided by the user and are used

for validation. These scenarios can be written from scraich i(il(\)/ntF?ci(vtv:C%?uarrrl(rijommonSquares-

the Avalla I_anguage, or alternatlv_ely, if the Iang_uagehas self.hrow.squareinRows

already a simulator, these scenarios may be derived from thgytersection (self.vrow.squarelnRowpsize ()=1
execution traces generated by such a simulator. The second

approach is useful to check the conformance of the semantitates that an horizontal row and a vertical row can only have
implemented byLs with respect to the semantics define@xactly one square in common.

by the hooking functionM. The ASM validator provides Fig. 10 shows (using a graphical concrete syntax) examples
also useful information about the coverage obtained by tbé Tic-Tac-Toe boards as instances (terminal models) of the
scenarios. Tic-Tac-Toe metamodel in Fig 9.

drow| Yrow

2

hrow
3

row

Fig. 9: A metamodel for Tic-Tac-Toe

VIII. THE TiIC-TAC-TOE EXAMPLE

A. Tic-Tac-Toe abstract syntax



INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE - JAN 2010 9

X X XX X|X|0 X|X|0 X|x|0 ot . i
o o o o o Listing 1: I'ric—Tac—Toe Signature
X olx asm Tictactoe
signature:
. . . /[For representing a board

Fig. 10: Examples of Tic-Tac-Toe boards enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain Squaresubsetofinteger
domain Row subsetofinteger

. . L static squaresinRow: Prod(Row,Integer> Square
B. Tic-Tac-Toe semantics definition controlled symbol: Square-> Skind

According to the hooking tec_h_nique, first_ we have to :specifym:or managing the game
an ASM I'ric_Tac—Toe CONtaining the signature and the enum domain Finalres = {PLAYERX|PC|TIE}
behavioral semantics of the Tic-Tac-Toe metamodel in termgnum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC
of ASM transition r_u_les. Listings 1 (for t_he signature),_ 2 monitored playerx:SquL(r;eﬁ'\rAn%(\?;/EfF?(
and 3 (for the transition rules) report portions of a possibl controlled status: Status
T ric—Tac—Toe IN Asmetal for a computer (symbol O) vs user controlled whoWon: Finalres
(symbol X) Tic-Tac-Toe game. The complete ASM model fis g:;:xgg Eg?g#ﬂ:&iﬁgrggg‘f}s‘fsmn@> Boolean
reported in Appendix B.
The signature (see Listing 1) introduces domains and func/For PC strategies
tions for representing a board such as the enumerstomd, | ggﬂgggegpg%’nns},L";‘;g%oolean
domains for squares and rows as subsets of the predefinedntrolled lastMoveX: Square
I nt eger domain, and so on. The signature also providesstatic isCorer: Square-> Boolean
domain and functions for managing the overall game. Eaciai ::Egggfgtéi::fgglglzgn
player takes alternating turns (see the functi®hat us) derived hasTwo: Row—> Boolean
trying to earn three of their symbols in a row horizontally, static opposite: Square-> Square
vertically, or diagonally. The game can end with a player
winning (represented by thehoWbn function) by getting
three of his/her symbol in row (as denoted by the function
hasThree(Of) or end in a draw, i.e. no spaces left on théisting 3), as first player the computer has three possible
board with none winning (as denoted by theSquar eLeft positions to mark during the first turn. Superficially, it rinig
function). The winner is determined by position of board; neeem that there are nine possible positions, corresponding
history needs to be recorded (only board position before atalthe nine squares in the board. However, by rotating the
after turn). If there is no winner after nine clicks, thereais board, we will find that in the first turn, every corner mark
tie. Note that the square selected by the player X (the user)s strategically equivalent to every other corner mark. The
represented by a monitored functiomveX, and therefore is same is true of every edge mark. For strategy purposes, there
provided at each step as input value to the ASM; the computee therefore only three possible first marks: corner, edge,
move (the square to mark) is instead calculated accordingcenter. The computer can win or force a draw from any of these
some playing strategies. Further domains and functions atarting marks; however, playing the corner gives the oppbn
introduced in the signature to implement these PC stragegithe smallest choice of squares which must be played to avoid
as better explained later in the text. losing. In ther_opening_strategyule, the computer chooses
The behavior of the overall game is provided by the maiterefore a corner (see the ruleplayACorne) in case of first
rule r_Main (see Listing 2) where at each step a check for@layer. As second player, the computer must respond to X's
winner or a tie (rule_checkForAWinnéror a move of a player opening mark in such a way as to avoid the forced win. The
is executed depending on the status of the game. The two rudemputer (player O) must always respond to a corner opening
r_movePlayerXandr_movePCspecify the execution behaviorwith a center mark, and to a center opening with a corner
of the two players. The behavior of the user (player X) imark. An edge opening must be answered either with a center
straightforward as the square to mark is provided interelsti mark, a corner mark next to the X, or an edge mark opposite
through the monitored functionoveX. The behavior of the the X. For semplicity, in this case we play always the censer a
computer depends instead by the chosen strategy as foeahaliormalized in the_opening_strategyule. Any other responses
by the invokedr_tryStrategyrule. will allow X to force the win. Once the opening is completed,
Listing 3 reports the definition of the tryStrategyrule and O’s task is to follow the below draw strategy in order to force
of the invoked macro rules for making a computer play thide draw, or else to gain a win if X makes a weak play.
game. To this goal, we formalize by ASM rules a children’s For the draw phase (see thedraw_strategyrule in Listing
strategy that is divided in two phasespening phaséopening  3), the PC try adraw strategywith no fork creation or block.
of the game) andliraw phase(after opening of both players). Essentially, the computer can play Tic-Tac-Toe if it ch@ose
For the opening phase (see theopening_strategyule in  the move with the highest priority in the following list:
1. Win: you have two in a row, play the third to get three in
8Note that to build an unbeatable opponent (especially if watvio learn a row.

a computer to play it), we need to usergnimaxapproach of Game Theory. . . .
We remark that this is out of the scope of this work. So, here imit to 2 Block: the opponent has two in a row, play the third to

express a children’s strategy. block.
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Listing 2: T'ric—Tac—Toe transition rules for game management  Listing 3: I'ric—7ac—Toe transition rules for the game strategies

asm Tictactoe asm Tictactoe
rule r_movePC =par /IA very naive player: choose an empty square and mark it.
r_tryStrategy[NOUGHT] rule r_naive_strategy ($symbah Skind)=
count := count + 1 choose$sin Squarewith symbol($s)=EMPTY
status := CHECKPC do symbol($s):= $symbol
endpar
rule r_playACorner($symboin Skind) =
rule r_movePlayerX =f symbol(playerX)= EMPTY choose$sin Squarewith (symbol($s)=EMPTY and isCorner($s))
then par do symbol($s):= $symbol
symbol(playerX):= CROSS
count := count + 1 //Opening strategy
lastMoveX := playerX rule r_opening_strategy ($symbui Skind)=
status := CHECKX if (count=0)//first mark
endpar then r_playACorner[$symbol]
elsestatus := TURNX else//second mark
endif if symbol(5) = EMPTYthen symbol(5):=$symbol/play the cente
elser_playACorner[$symbol}/we play a corner
endif
rule r_checkForAWinner($symbah Skind) = endif
IIGAME OVER WITH A WINNER?
if (exist $rin Row with hasThreeOf($r,$symbolthen /IMark with $symbol the last empty square within row $r
par rule r_markLastEmpty ($in Row, $symbolin Skind) =
status := GAMEOVER choose$x in {1,2,3} with symbol(squaresinRow($r,$x))=EMPTY
if $symbol = CROSShen whoWon:= PLAYERX do symbol(squaresinRow($r,$x)) := $symbol
elsewhoWon:= PC
endif //Draw strategy (with no fork creation/block)
endpar rule r_draw_strategy ($symbah Skind) =
/IGAME TIE? choose$wr in Row with hasTwo($wr)
else if ( noSquarelLeft ) do r_markLastEmpty[$wr,$symbolf1. Win or 2. Block
then par ifnone
status := GAMEOVER if (symbol(5)=EMPTY)
whoWon := TIE then symbol(5):=$symbol/3. Center
endpar else if (isCorner(lastMoveX) and symbol(opposite(lastMoveX))4ET|Y)
else then symbol(opposite(lastMoveX)):= $symbi#t. Opposite corner
if $symbol = CROSShen status:= TURNPC else chooseés in Squarewith (symbol($s)=EMPTY and isCorner($s))
elsestatus:= TURNX do symbol($s):= $symbal/5. Empty Corner
endif endif endif ifnone r_naive_strategy[$symbol]6. Empty edge
endif endif
main rule r_Main =
if status = TURNXthen r_movePlayerX]] /IComputer strategy selection
else if status = CHECKXthen r_checkForAWinner[CROSS] rule r_tryStrategy ($symbah Skind) =
else if status = TURNPGhen r_movePCJ[] if openingPhaséhen r_opening_strategy[$symbol]
else if status = CHECKPQhen r_checkForAWinner[NOUGHT elser_draw_strategy[$symbol]
endif endif endif endif endif
3. Center: Play the center. C. Tic-Tac-Toe semantic validation

4. Opposite Corner: the opponent is in the corner, play the
opposite corner.

5. Empty Corner: Play an empty corner.
6. Empty Side: Play an empty edge.

The validation of the semantics of the Tic-Tac-Toe case
study consists in checking that the mapping function defined
in VIII-B really captures the intended semantics of the case
study language. Among the semantics validation techniques
discussed in Section VII-B, we have used interactive and

i Tue_10. the initialization necessary to make the ASNFcenario-based simulation. By interactive simulation,haee

model executable do not present variability among terminﬁ?ted t?e IAS';/I s_;l?_ec_llflcatll_on ar|1d the AsmetatS smti:(:g;)r o
models (unless one want to start playing from a partial e;r?r:: IV:S),/N? ay dICI- af{:' ﬁe (P atyer vsﬂ::orgpu_ eg Enh .
full board). In this case,r;._Tuc—Toe IS t0 be intended as a atthe model actually captures the aesired benhavior.

constant function always producing in the target ASM model For scenario-based simulation, Listing 4 reports a scenari

the same ASM initial state. One possible, for example, is ‘L%Avalla corre_-sponding_ to the board configurations shown in
Fig. 10. In this scenario, the player opens by crossing cell

For this example, the functionr;._1.._T1.c that adds to

follows: . . .

2 (line 3), the PC responds in the cell 5 (line 7), and the
default init sO: player crosses cell 1. At this point the PC correctly resgond
function symbol($sin Square) = EMPTY by occupying cell 3 (line 12). If the player puts the cross in
/A polite computer: it allows the user (X) to play first cell 8 (line 13), the PC takes advantage of that and wins. This
function status = TURNX scenario shows the smart opening of the PC (as second player)

function count = 0 and that the PC is able both to block the player to win and to



INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE - JAN 2010

Listing 4: A winning scenario for player O

scenario winPC

load Tictactoe.asm

set playerX := 2;

step until status = TURNPC;
step until status = TURNX;
check symbol(2)=CROSS;
check symbol(5)=NOUGHT;
set playerX = 1;

step until status = TURNPC;
(L0 step until status = TURNX;
1 check symbol(1)=CROSS;
2 check symbol(3)=NOUGHT;
L3 setplayerX :=8;

4 step until status = GAMEOVER;
15 check symbol(7)=NOUGHT;
6 check whoWon = PC;

©CoO~NOTO~WNE

take advantage of the opportunity to win.

D. Tic-Tac-Toe formal verification

11

MDE FM
apply MDE to FM
pply oy

« X (1) .

[
.
.
«a 14

apply FM to MDE (2)

Fig. 11: Closing the in-the-loop integration

between the formal method (ASM) and the MDE framework
(EMF), as depicted in Fig. 11.

A. AsmM semantics

We have to specify, in general, an ASMyz s (i.€.
a model conforming to the AsmM metamodel) containing
declarations of functions and domains (the signature) bad t
behavioral semantics of the AsmM metamodel itself in terms
of ASM transition rules.

ASM rule constructors are represented in the AsmM meta-

Once we were confident that the semantics of the Tic-Tagrodel by subclasses of the cld@sl e. Fig. 12 shows a subset
Toe as specified really captures the intended behavior i@ trof pasic forms of a transition rule under the class hierarchy
to model ancprovesome formal properties. The first one stategoted by the clasBasi cRul e: update-rule, conditional-
that the specification is fair and allows both player to wia. Tryle, skip, do-in-parallel (block-rule), extend, etc.
model this fact, we have introduced in the specification the | jsting 5 reports a fragmerit 4,,,,s in AsmetalL notation,
following three temporal properties written in Computatid for the interpretation of an ASM update-rule. It contains

Tree Logic (CTL).

/Ithe player can win

axiom over CTL: EF(whoWon=PLAYER)
/lthe computer can win

axiom over CTL: EF(whoWon=PC)

/lthe match can terminate tie

axiom over CTL: EF(whoWon=TIE)

domains and function declarations induced from the AsmM
metaclasses themselves for static/structural conceptmgt
rule constructors, etc.). Further domains and functiores ar
introduced to denote run-time concepts like locationsyes)|
updates, etc., according to the theoretical definitiongrgiwn
[15] to construct theun of the ASM model under simulation.

A supporting execution engine has to keep the current state
of the ASM model and, on request, evaluates the values of

The meaning ofEF(¢) is given by theE (exis) operator terms and computes (and applies) the update set to obtain the
which means along at least one path (possibly) and thgxt state. To this purpose, an abstract domaihue and
F operator which means finally: eventually has to hold jts sub-domains are introduced to denote all possible salue
(somewhere on the subsequent path). We have automaticgflyasm terms. The functioreval computes the value for

proved the three properties via model checking by using tR@ery term (expression) in the current ASM state. The atistra

AsmetaSMV component [22].

domain Locat i on represents the ASM concept of basic

We wanted also to prove that the match always finishes aggject containers (memory units), namedations abstracting

we added the following property:
axiom over CTL: AF((status = GAMEOVER))

It means that on all path) starting from the initial state, ¢ signature, and an optional argumeént, . .

from particular memory addressing and object referencing

mechanisms. Functionsi gnt and el enent s denote, re-
spectively, the pair of a function namg which is fixed by
.,Vn), Which is

status will eventually ) become GAMEOVER This was formed by a list of dynamic parameter valuesof whatever

proved false by the model checker which provided a cou
example for it. Analyzing the counter example, we notic

ea’pe, forming a location. Two functionsur r ent St at e,

hich represents the state of an ASM, anfddat eSet ,

that the player can indefinitely postpone the end of a game Qy,ich represents an update set, are used as tables to denote

keeping to try to put a cross in an already occupied cell.

IX. CLOSING THELOOP

location-value pairgloc,v) (updates) and are the basic units
of state change. Thassi gnnent function maps location

variables to their values for variable assignment in a state

This section shows a portion of the definition of the ex- The very crucial task is that of computing at each step
ecutable semantics of the AsmM metamodel itself by usinje ASM update set. To this purpose, there exist a rule
the ASM-based semantic framework outlined in Sect. Ill. Wei si t (Rul eType R) for everyRul eType subclass of the
apply the semantic hooking approach on a small portion of tRell e class of the AsmM. Given a rulB, the matching visit
AsmM metamodel concerning the interpretation of the AShethod is invoked accordingly to the type Bfto obtain the
update-rule. In this way, we close the in-the-loop intagrat update set oR. As example of such a kind of rule, Listing
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+elseRule 0.1 ———

12

| Rule

+doRul
+thenRule 7

e

0..1 | +extendRule

‘CondiﬁonaIRule ‘ ’ UpdateRule ‘ ‘SkipRuIe ‘ BlockRule ExtendRule
+ules:RuleCollection
+updatingTerm lilocation +extendRule 0.1 gextendRule
1 0.1 "
Term
+guard 1
+boundvar 1% 1 t-extendedDomain
VariableTerm AbstractTD

(from ASMETA::Terms::BasicTerms)

(from ASMETA:: Definitions::Domains)

Fig. 12: A fragment of the AsmM metamodel for function terms and tpdales

5 reports the rule _vi si t to compute the update set for a
update-rule type.

One has also to define a functiarbr which adds to
T asmas the initialization necessary to make the ASM mod
executable. Any model transformation tool can be used
automatize thewaq.,0s Mapping by retrieving data from &
terminal modebn and creating the corresponding ASM initig
state in the target ASM model. A model transformation eng
may implement such a mapping. Essentially, for each cl
instance of the terminal model, a static O-ary function
created in the signature of the ASM modeél,, s in order
to initialize the domain corresponding to the underlyingssl.
Moreover, class instances with their properties valuediakd
are inspected to initialize the ASM functions declared ia t
ASM signature.

B. AsmM semantics validation

We applied the scenario-based approach for the valida
of the semantics. We initially collected a set of Asmeta
examples representing all ASM constructs. In order to by
an extensive set of scenario specifying the expected baha
of the system, instead of writing the scenario by hand,
simulated the original examples with AsmetaS (the simulg
of AsmetalL models, see Sect. VI) itself, parsed the log fi
produced by AsmetaS in order to obtain valid scenario files
the Avalla syntax. Then we run the validator with the scessar
and the translation of the input examples by the sema
proposed above. In this way we have checked the conforma
of AsmetaS with the semantics of the ASM as defined by
hooking function/.

X. RELATED WORK

Concerning the metamodeling technique for language e
neering, we can mention the official metamodels supported
the OM@ for MOF itself, for UML, for OCL, etc. A recent

http://www.omg.org/

n

L|St|ng 5: FAs'm M

sm AsmM_hooking

ignature:
RKasignature induced from the AsmM metamodel:
\ abstract domain Function

abstract domain Term
1l concrete domainVariableTermsubsetof Term
neoncrete domainFunctionTermsubsetof Term
n&gncrete domainLocationTermsubsetof FunctionTerm

IRibstract domain Rule
concrete domainUpdateRulesubsetofRule

controlled updatingTerm: UpdateRule > TupleTerm
controlled location: UpdateRule-> Term

=

/I Signature for run-time concepts:

abstract domain Value

abstract domain Location

controlled signt: Location—> Function

controlled elements: Location-> Seq(Value)
idfrunction for the evaluation of ASM terms
iI_static eval: Term—> Value

ilgFunctions for the current state of the ASM and memory gslat
vicontrolled currentState: Locatior-> Value
ontrolled updateSet: Locationr-> Value
r’ ontrolled assignment: VariableTerm> Value
0..
@lefinitions:
.rule r_visit($r in UpdateRule) =
Net ( content = eval(updatingTerm($r)in
if isLocationTerm(location($r))
ntic then extend Locatiorwith $I do

ince

par
signt($l):= funct(location($r))
he

elements($l):= values(eval(arguments(location($r))))
updateSet($l):= content
endpar
else ifisVariableTerm(location($r))
then assignment(location($r)):= content
. endif
Ngl- endif
bgndlet
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result [26] shows how to apply metamodel-based technadogi®rmal models are introduced into MDE as domain specific
for the creation of a language description for Sudoku. Thianguages by developing their metamodels. Then, transfor-
is on the same line of our approach of exploiting MDHEnation rules are defined to obtain notation bridges. At last,
technologies to develop a tool-set around ASMs. model-text syntax rules are developed, so as to map models
Formal methods communities like the Graph Transformé& programs. As case study, the approach was applied for
tion community [27], [28] and the Petri Net community [29]bridging MARTE to LOTOS. The main goal of their work is
have also started to settle their tools on general metamod®l integrate different formal methods in software develepm
and XML-based formats. A metamodel for the ITU languagand not directly providing semantics of formal notations.
SDL-2000 has been also developed [30]. The authors presenConcerning the problem of specifying the semantics of
also a semi-automatireverse engineeringnethodology that metamodel-based languages, some recent works, such as
allows the derivation of a metamodel from a formal syntakermeta [41], aim at providing executability into current
definition of an existing language. The SDL metamodel hasetamodelling frameworks. Another effort toward this same
been derived from the SDL grammar using this methodologyirection is presented in [42] where the authors descrilee th
A very similar method to bridggrammarwareandmodelware M3Actions framework to support operational semantics for
is also proposed by other authors in [31] and in [32]. The®MF models.
approaches are complementary to the development processn the application of ASMs for specifying the execution
presented in Sect. Il. Our approach has to be consideredemnantics of metamodel-based languages in a MDE style,
forward engineeringorocess consisting in deriving a concretgve can mention the translational approach described in [43]
textual notation from an abstract metamodel. Other more-commhey propose aemantic anchoringp well-established formal
plex MOF-to-text tools, capable of generating text gransnamodels of computation (such as FSMs, data flow, and discrete
from specific MOF based repositories, exist [33], [34]. Thesevent systems) built upon AsmiP (an ASM dialect), by using
tools render the content of a MOF-based repository (knowhe transformation language GME/GReAT (Graph Rewriting
as a MOFlet) in textual form, conforming to some syntactignd Transformation language) [44]. The proposed approach
rules (grammar). However, although automatic, since thiey affers up predefined and well-defined setssefnantic units
designed to work with any MOF model and generate thefsr future (conventional) anchoring efforts. However, vee s
target grammar based on predefined patterns, they do te$ main disadvantages in this approach: first, it requires
permit a detailed customization of the generated languagewell understood and safe behavioral language units and it
Recently, a metamodel for the AsmL language is availabie not clear how to specify the language semantics from
as part of a zoo of metamodels defined by using the KMggratch when these language units do not yet exist; second,
meta-language [35]. However, this metamodel is not appropih heterogeneous systemmgpecifying the language semantics
ately documented or described elsewhere, so this prevestecis composition of some selected primary semantic units for
to evaluate it for our purposes. Developing a grammar for thgsic behavioral categories [45] is not always possiblegesi
ASMs from the metamodel was challenging and led us to tiigere may exist complex behaviors which are not easily
definition of a bridge between grammars and metamodels raglucible to a combination of existing ones. Still concegni
explained in [36]. This part of the process required at leagie translational category, in [46] the dynamic semantits o
six man month. Although we did not automatize these rulehe AMMA/ATL transformation language was specified in
since we wanted to derive only one grammar for Asmetathe XASM [47], an open source ASM dialect. A direct
the rules could be easily reused for other formalisms. mapping from the AMMA meta-language KM3 to an XASM
On the problem of integrating graphical notations anghetamodel is used to represent metamodels in terms of ASM
formal methods, [37] shows how the process algebra CGRiverses and functions, and this ASM model is taken as
and the specification language Object-Z, can be integrated ibasis for the dynamic semantics specification of the ATL
an object-oriented software engineering process empdayi@ metamodel. However, this mapping is neither formally define
UML as a modeling and Java as an implementation languager the ATL transformation code which implements it have
In [38], the author presents an approach to formal methogeen made available in the ATL transformations Zoo or as ATL
technology exploitation which introduces formal notationto use case [48]; only the Atlantic XASM Zét a mirror of the
critical systems development processes. Furthermorgpf89 Atlantic Zoo metamodels expressed in XASM (as a collection
poses a metamodel-based transformation technique, whiclfi universes and functions), has been made available. Adurt
founded by a set of structural and semantic mappings betweedent result [49] propose ASMs, Prolog, and Scheme as
UML and B, to assist derivation of formal B specificationgiescription languages in a framework named EProvide 2.0
from UML diagrams. All these approaches are based @dr prototyping the operational semantics of metamodskba
translating graphical models to formal specifications, arel |anguages. Their approach is also translational as it ischas
similar to our approach on moving from terminal models of three bridges: a physical, a logical, and a pragmaticalgerid
metamodel-based language to an ASM specification. Howevgstween grammarware language and modeling framework.
they are tailored for the UML, while our approach refer to By exploiting our ASM-based semantic framework [23], we

generic metamodel-based languages, and they realize pely giso defined the semantics of the AVALLA language [50] of
side of the in-the-loop integration.

An MDE-based approach for i.ntegrating Qiﬁerent formal 10ntp://research.microsoft.com/foundations/AsmL/
methods was recently proposed in [40]. As in our approach Mhttp:/iwww.eclipse.org/gmt/am3/zoos/atlanticXASMZoo/
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the AsmetaV validator, a domain-specific modeling languagg]
for scenario-based validation of ASM models. Moreover, in
[51] we adapted one of the techniques in [23], tmeta-

hooking for UML profiles, and we shew its application to

the SystemC Process (SCP) state machifoesalism of the
SystemC UML profile [52].

X1l. CONCLUSION AND FUTURE DIRECTIONS

On the basis of our experience in developing NsvMETA
toolset, we believe a formal method can gain benefits from the
use of MDE automation means either for itself and toward the
integration of different formal techniques and their tauter-
operability. Indeed, the metamodel-based approach has
advantage of being suitable to derive from the same metamode
several artifacts (concrete syntaxes, interchange fe;mdls,

etc.). They are useful to create, manage and interchange

(10]

(11]

(12]

(23]

models in a model-driven development context, settlingreth [15]
fore, a flexible infrastructure for tools development anidin
operability. Moreover, metamodeling allows to establish (361
“global framework” to enable otherwise dissimilar langaag
(of possibly different domains) to be used in an inter-opkra [17]
manner by defining precisbridges (or projectiong among

different domain-specific languages to automatically aiec
model transformations. That is in sympathy with t&&lI

Evidential Tool Bus ided53], and can contribute positively 4
to solve inter-operability issues among formal methodsirth

notations, and their tools.
On the other hand, the definition of a means for specifyi S
rigorously the semantics of metamodels is a necessary step |anguage and a simulation engine for abstract state machihedCS
in order to develop formal analysis techniques and tools
in the model-driven context. Along this research line, fdfl]
example, we are tackling the problem of formally analyzing
visual models developed with the SystemC UML Profile [54]22]
Formal ASM models obtained from graphical SystemC-UML
models can potentially drive practical SoC model analykes | [23]
simulation, architecture evaluation and design explorati
In conclusion, we believe MDE principles and technologie[§4]
combined with formal methods elevate the current level of
automation in system development and provide the widely
demanded formal analysis support.
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Fig. 13: A metamodel for basic Petri nets
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APPENDIXA
BASIC PETRI NETS SEMANTICS

A concrete example is here provided by applying the
semantic hooking technique to a possible metamodel for the
Petri net formalism. The results of this activity are exabls
semantic models for Petri nets which can be made available
in a model repository either in textual form using Asmetal
or also in abstract form as instance model of the AsmM
metamodel.

Fig. 13 shows the metamodel for the basic Petri net for-
malism. It describes the static structure of a net consist-
ing of places and transitions (the two clasddsace and
Transi ti on), and of directed arcs (represented in terms of

the ASM method for Validation & Verification of Embedded Systéms associations between the clasgsace andTransi ti On)
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Norwell, MA

from a place to a transition, or from a transition to a place.
The places from which an arc runs to a transition are called
the input places of the transition; the places to which anes r
from a transition are called the output places of the tramsit
Places may contain (see the attribtitekens of the Pl ace
class) any non-negative number of tokens, i.e. infinite ciépa
Moreover, arcs are assumed to have a unary weight. Fig. 14
shows (using a graphical concrete syntax) an example of Petr
net (with its initial marking) that can be intended as ins&n
(a terminal model) of the Petri net metamodel in Fig 13.
According to the semantic hooking approach, first we have
to specify an ASM pr (i.e. a model conforming to the AsmM
metamodel) containing only declarations of functions and
domains (the signature) and the behavioral semantics of the
Petri net metamodel in terms of ASM transition rules. Ligtin
6 reports a possibl&€ pr in Asmetal notation. It introduces
abstract domains for the nets themselves, transitions, and
places. The static functioisEnabledis a predicate denoting
whether a transition is enabled or not. The behavior of a
generic Petri net is provided by two rulesfire, which express
the semantics of token updates upon firing of transitions,
and r_PetriNetReacgt which formalizes the firing of a non-
deterministic subset of all enabled transitions. The mala r
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Listing 6: T'pr

16

Listing 7: tpr(Tpr, mpT)

asm PT_hooking

signature:
abstract domain Net
abstract domain Place
abstract domain Transition

/I[Functions on Net
controlled places: Net—> Powerset(Place)
controlled transitions: Net—> Powerset(Transition)

/[Functions on Place
controlled tokens : Place-> Integer

/[Functions on Transition
controlled inputPlaces: Transitior-> Powerset(Places)
controlled outputPlaces: Transitior> Powerset(Places)
static isEnabled : Transition-> Boolean

definitions:
function isEnabled ($tin Transition) =
(forall $p in inputPlaces($tyvith tokens($p)>0)

asm PT_hooking
signature:

static myNet: Net
static P1,P2,P3,P4:Place
static t1,t2: Transition

default init sO:

/I[Functions on Net

function places($nin Net) = at({myNet—> {p1,p2,p3,p4}},$n)
function transitions($nn Net) = at({myNet—> {t1,t2}},$n)

/[Functions on Place (the "initial marking")
function tokens($pin Places) =
at({p1—>1,p2—>0,p3->2,p4—>1},$p)

/[Functions on Transition

function inputPlaces($tn Transition) =
at({tl—>p1,t2—>{p2,p3}},5t)

function outputPlaces($in Transition) =
at({tl—>{p2,p3},12—>{p4,p1}},$t)

rule r_fire($tin Transition) =
seq
forall $i in inputPlaces($tplo tokens($i) := tokens($i) 1
forall $oin outputPlaces($tlo tokens($o) := tokens($o)+1
endseq

rule r_PetriNetReact($in Net) =
choose$transSein Powerset(Transitions($n))

APPENDIXB
ASM SPECIFICATION FORTIC-TAC-TOE

Listing 8: I'ric—Tac—Toe - the complete signature

with (forall $tin $transSetwith isEnabled($t))do
iterate let ($t = chooseOne($transSet)) par
remove($t,$transSet)
if isEnabled($txhen r_fire[$t] endif
endpar endlet

//Run all Petri nets
main rule r_Main =forall $nin Netdo r_PetriNetReact[$n]

executes all nets in thet set.

One has also to define a functiopr which adds td" pr the
initialization necessary to make the ASM model executal
Any model transformation tool can be used to automatize
Lp7 Mapping by retrieving data from a terminal modeland
creating the corresponding ASM initial state in the targ&t\A
model. We adopted the ATL model transformation engine
implement such a mapping. Essentially, for each classninsts
of the terminal model, a static 0-ary function is createdhia t
signature of the ASM model'pr in order to initialize the
domain corresponding to the underlying class. Moreovas<|
instances with their properties values and links are insgeo
initialize the ASM functions declared in the ASM signatur
For example, for the Petri netipr shown in Fig. 14, the
tp7 Mapping would automatically add to the originBpr
the initial state (and therefore the initial marking) leaglito
the final ASM model shown in Listing 7. The initialization o
the abstract domainblet , Tr ansi ti on, and Pl ace, and
of all functions defined over these domains, are added to
original T'pr.

asm Tictactoe
signature:
/[For representing a board
enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain Squaresubsetofinteger
domain Row subsetofinteger
domain Threesubsetofinteger
static squaresinRow: Prod(Row,Three}> Square
controlled symbol: Square-> Skind
/[For managing the game
enum domain Finalres = {PLAYERX|PC|TIE}
enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC
|GAMEOQOVER}
monitored playerX:Squard/ move of X
|é:ontrolled status: Status
controlled whoWon: Finalres
th@rived noSquareLeft : Boolean
derived hasThreeOf: Prod(Row,Skind)> Boolean
/[For PC strategies
domain Countsubsetofinteger
t@ontrolled count: Count
derived openingPhase: Boolean
controlled lastMoveX: Square
static isCorner: Square-> Boolean
static isEdge: Square-> Boolean
static isCenter: Square-> Boolean
derived hasTwo: Row—> Boolean
static opposite: Square-> Square

e

definitions:
domain Square = {1..9}
domain Count = {0..9}
domain Row = {1..8}

f domain Three = {1..3}

function squaresinRow($in Row,$xin Three) =

thﬁ$r = 1then if $x = 1then 1 else if $x = 2 then 2 else3 endif endif
else if $r = 2 then if $x = 1then 4 else if $x = 2 then 5 else6 endif endi
else if $r = 3then if $x = 1then 7 else if $x = 2 then 8 else9 endif endi
else if $r = 4 then if $x = 1then 1 else if $x = 2 then 4 else 7 endif endi
else if $r = 5then if $x = 1 then 2 else if $x = 2 then 5 else8 endif endi
else if $r = 6 then if $x = 1 then 3 else if $x = 2 then 6 else 9 endif endi
else if$r = 7 then if $x = 1then 1 else if $x = 2then 5 else 9 endif endi
else if $x = 1 then 3 else if $x = 2 then 5 else7 endif endif
endif endif endif endif endif endif endif
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function noSquareLeft = not(exist §a Squarewith symbol($s)=EMPTY

function hasThreeOf ($in Row, $symbolin Skind) =
(symbol(squaresinRow($r,0)) = $symbol) and
(symbol(squaresinRow($r,0)) = symbol(squaresinRow(JrAnd

(symbol(squaresinRow($r,0)) = symbol(squaresinRow(¥r,2)

function openingPhase = count=0 or count=1

function isCenter($sn Square) = $s =5
function isCorner($sn Square) = $s =1 or $s=3 or $s=7 or $s=9
function isEdge($sn Square) = $s =2 or $s =4 or $s=6 or $s=8

[Ireturn true iff $r has two equal symbols and the third squar EMPTY
function hasTwo($rin Row) =
(exist $ilin Three, $i2in Three, $i3in Three
with ($i1!=$i2 and $i1!=$i3 and $i2!=$i3 and
(symbol(squaresinRow($r,$i1)) = symbol(squaresinRow{$))) and
(symbol(squaresinRow($r,$i1)) = EMPTY) and
(symbol(squaresinRow($r,$i3)) = EMPTY)))

function opposite($sn Square) =
if $s=1then 9 else if $s=3then 7 else if $s=7then 3
else if $s=9then 1 endif endif endif endif
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Listing 9: T'1ic—Tac—Toe transition rules

/IA very naive player: choose an empty square and mark it.
rule r_naive_strategy ($symbah Skind)=
choose$sin Squarewith symbol($s)=EMPTY
do symbol($s):= $symbol

rule r_playACorner($symboin Skind) =
choose$sin Squarewith (symbol($s)=EMPTY and isCorner($s))
do symbol($s):= $symbol

//Opening strategy
rule r_opening_strategy ($symbui Skind)=
if (count=0)then r_playACorner[$symbol]
else if symbol(5) = EMPTYthen symbol(5):=$symbol/play the center
elser_playACorner[$symbol}/we play a corner
endif endif

/IMark with $symbol the last empty square within row $r
rule r_markLastEmpty ($in Row, $symbolin Skind) =
choose$x in {1,2,3} with symbol(squaresinRow($r,$x))=EMPTY
do symbol(squaresinRow($r,$x)) := $symbol

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbah Skind) =
choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbolf1. Win or 2. Block
ifnone
if (symbol(5)=EMPTY)then symbol(5):=$symbol/3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMoveX))AETY
then symbol(opposite(lastMoveX)):= $symbbs#. Opposite corner
else choosés in Squarewith (symbol($s)=EMPTY and isCorner($s)
do symbol($s):= $symbal/5. Empty Corner
ifnone r_naive_strategy[$symbol]6. Empty edge
endif endif

/IComputer strategy selection

rule r_tryStrategy ($symbaih Skind) =
if openingPhaséhen r_opening_strategy[$symbol]
elser_draw_strategy[$symboBndif

rule r_movePC =par r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC
endpar

rule r_movePlayerX =f symbol(playerX)= EMPTY
then par symbol(playerX):= CROSS
count := count + 1
lastMoveX := playerX
status := CHECKX
endpar
elsestatus := TURNXendif

rule r_checkForAWinner($symbadh Skind) =
/IGAME OVER WITH A WINNER?
if (exist $rin Row with hasThreeOf($r,$symbolthen
par status := GAMEOVER
if $symbol = CROSShen whoWon:= PLAYERX
elsewhoWon:= PCendif
endpar
else if ( noSquareLeft YYJGAME TIE?
then par status := GAMEOVER whoWon := TIEndpar
else if $symbol = CROSShen status:= TURNPC
elsestatus:= TURNXendif endif endif

main rule r_Main =if status = TURNXthen r_movePlayerX[]
else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPQhen r_movePC[]
else if status = CHECKPQhen r_checkForAWinner[NOUGHT
endif endif endif endif




