
An environment for benchmarking combinatorial
test suite generators

Andrea Bombarda
Department of Engineering

University of Bergamo
Bergamo, Italy

andrea.bombarda@unibg.it

Edoardo Crippa
Department of Engineering

University of Bergamo
Bergamo, Italy

e.crippa4@studenti.unibg.it

Angelo Gargantini
Department of Engineering

University of Bergamo
Bergamo, Italy

angelo.gargantini@unibg.it

Abstract—New tools for combinatorial test generation are
proposed every year. However, different generators may have
different performances on different models, in terms of the
number of tests produced and generation time, so the choice
of which generator has to be used can be challenging. Classical
comparison between CIT generators considers only the number
of tests composing the test suite. Still, especially when the time
dedicated to testing activity is limited, generation time can
be determinant. Thus, we propose a benchmarking framework
including 1) a set of generic benchmark models, 2) an interface
to easily integrate new generators, 3) methods to benchmark
each generator against the others and to check validity and
completeness. We have tested the proposed environment using five
different generators (ACTS, CAgen, CASA, Medici, and PICT),
comparing the obtained results in terms of the number of test
cases and generation times, errors, completeness, and validity.
Finally, we propose a CIT competition, between combinatorial
generators, based on our framework.

Index Terms—Test Suite Generation; Combinatorial Testing;
Benchmarking

I. INTRODUCTION

Combinatorial interaction testing (CIT) has been an active
area of research for many years and has proven to be very
effective to test complex systems, especially for those with
several input parameters. In [15] research groups that actively
work on the CIT area have been listed, and many other
recent groups and tools are not considered in that paper,
while in [14] a lot of algorithms and tools available for
CIT are analyzed. Tools for CIT include combinatorial test
suite generators which exploit different algorithms in order to
generate tests. The search for ever more powerful algorithms
able to generate fewer tests for complex models has caused
the community to introduce new tools for combinatorial test
generation every year. However, benchmarking these new tools
in a fair and effective way is a difficult task and there is
not a well-established methodology nor an environment for
generator comparison yet. Every research group has to come
up with its own procedure. We have identified the following
risks in the evaluation of performances of generators:

1) Only subsets of interesting features in combinatorial
problems may be considered. For instance, a tool may support
some domains but not others (like enumerative or integers) or

it may allow the specification of constraints or not.
2) A tool may support a feature in a limited way, like the

constraints given only in a certain form (like in a Normal
Form). A tool may benefit from exploiting some assumptions
over the combinatorial model.

3) The benchmarks may be selected (also unintentionally)
in a way that penalizes or rewards a tool w.r.t. other chosen
for comparison. For instance, a tool that works very well with
boolean values may use benchmarks with only booleans.

4) The tools that are picked for comparison, may be not
representative of the state of the art in test generation. A group
may select a tool because of its availably or because it is easy
to install or use, while other better-performing tools may be
ignored because they require a bigger effort to make them
work.

Similar problems about benchmarking algorithms and tools
are faced in other fields in software engineering too. For
instance, the SAT community has introduced a competition
among SAT solvers that has helped the people working in
that area to find more powerful tools widely adopted [13].

For these reasons, we have defined a benchmarking envi-
ronment, integrating it with CTWedge [7], for evaluating com-
binatorial test suite generators, both in terms of the number
of tests and generation time. Moreover, we have integrated
methods to check the completeness and validity of the test
suite (TS) and, in this way, to validate generators.

This is a different approach than the one used in classical
generator evaluation since it is usually performed only taking
into account the number of tests1. In some situations, the
classical approach may be not optimal since it does not verify
the completeness and the validity of TS and does not consider
the generation time that, in some real scenarios, may be a
significant value, when the time for testing activities in the SW
development process is limited. We have applied the proposed
framework available at

https://github.com/fmselab/ctwedge

to some generators already available in CTWedge (ACTS and
CASA), we have integrated other new generators (CAgen,

1For instance, the results shown at http://pairwise.org/tools.asp provide only
test suite sizes.

48

2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

978-1-6654-4456-9/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSTW52544.2021.00021

Medici, and PICT) and benchmarked all of them on a defined
set of test models, assessing the best over generation time and
tests number.

The paper is structured as follows. In Sect. II we provide
some necessary background about the combinatorial testing,
the model complexity, and the concepts of completeness
and validity for a test suite. Sect. II-B describes the cost
model we consider for evaluating combinatorial generators. In
Sect. III the main features and the architecture of the proposed
benchmarking framework are presented, while in Sect. IV
we introduce the list of generators already available in our
environment and the ones we have added. Sect. V presents
the obtained results and Sect. VI reports some related works
on benchmarking combinatorial test generators and proposes
a CIT competition. Finally, Sect. VII concludes the paper.

II. BACKGROUND

Combinatorial test generators are tools used to generate test
suites suitable for testing a system that has been modeled using
a constrained combinatorial model defined as follows.

Definition 1 (Constrained Combinatorial Model). Let P =
{p1, ..., pn} be a set of n parameters, where every parameter
pi assumes values in the domain Di = {vi1, . . . , vioi}, let
D be the set of all the Di, i.e., D = {D1, . . . , Dn} and
C = {c1, ..., cm} be the set of constraints over the parameters
pi and their values vij . We say that M = (P,D,C) is a
Constrained combinatorial model.

Code 1 shows an example of constrained combinatorial
model written in CTWedge.

Model example1

Parameters:
P1 : {V1, V2}
P2 : {V1, V2}
P3 : {V1, V2, V3}

Constraints:
P1 != P2
P3=V1 => P2=V2

Code 1. Example of a constrained combinatorial model

Because of the constraints, a test is valid if and only if
it does not violate any constraint, otherwise is invalid. The
same concept of validity can be extended to a tuple: a tuple
t is valid, or feasible or coverable if there exists a valid test
that covers t. Otherwise, a tuple is invalid or unfeasible.

When generating tests using combinatorial test generators,
users must be sure about the validity of the test suite, defined
as follows.

Definition 2 (Valid Test Suite). Let M = (P,D,C) be a
constrained combinatorial model. Given a combinatorial test
suite TS, we say that TS is valid if all the tests tsi ∈ TS are
valid, i.e. they do not violate any constraint in C.

Example 1. Considering the model in Code 1, the test suite
in Tab. I is valid, because it satisfies all the model constraints.
On the other hand, the test suite in Tab. II is not valid because
the constraint P1! = P2 is violated.

TABLE I
EXAMPLE OF A VALID TEST SUITE

P1 P2 P3

V1 V2 V1
V1 V2 V2

TABLE II
EXAMPLE OF A NOT VALID TEST SUITE

P1 P2 P3

V1 V2 V1
V1 V1 V2

A test suite must not only be valid, since some of the tuples
may still be left uncovered, but it has to be complete as well,
meaning that all the feasible tuples of values for parameters
must be covered. Formally:

Definition 3 (Complete Test Suite). Let M = (P,D,C) be a
constrained combinatorial model. Given a combinatorial test
suite TS and be t the strength for test generation, we say that
TS is complete if any valid tuple tp of size t is covered by at
least a test in TS.

Example 2. Given the model in Code 1 and t = 2, the test
suite in Tab. III is complete, because it covers all the tuples
satisfying the model constraints. On the other hand, the test
suite in Tab. IV is still valid but not complete because the pair
(P2 = V 1, P3 = V 3) is not covered.

A. How to compare Constrained Combinatorial Models

Each combinatorial model can have multiple parameters
and constraints, leading to a different complexity that can
be measured in different ways. We propose the following
complexity measures:
• Number of parameters, since having more parameters

means having more combinations to be checked.

TABLE III
EXAMPLE OF A VALID AND COMPLETE TEST SUITE

P1 P2 P3

V1 V2 V1
V1 V2 V2
V1 V2 V3
V2 V1 V2
V2 V1 V3

TABLE IV
EXAMPLE OF A VALID BUT NOT COMPLETE TEST SUITE

P1 P2 P3

V1 V2 V1
V1 V2 V2
V1 V2 V3
V2 V1 V2

49

• Size, i.e. the total number of distinct tests (valid and
invalid) that can be generated, corresponding to the
product of the cardinalities of all the domains. Having
more possible combinations means a higher complexity
in terms of execution time.

• Number of constraints. More constrained models may
need more constraint checks, which make more complex
the test generation procedure.

• Number of logical operators in the constraints. CIT
models may have a lot of simple constraints or a few
constraints which are composed of a lot of logical op-
erators. Thus, this definition of model complexity is not
limited only to the number of constraints but considers
their complexity as well.

Besides the measures given above, we introduce two further
measures that refer only to the semantics of the models:
• Tuple Validity Ratio, given a strength t, the tuple validity

ratio is the fraction of valid t-tuples over the total number
of t-tuples. One way to compute the ratio is to enumerate
all the tuples and check if they are valid or not. To check
the validity of a tuple, any constraint or logical solver may
be used. In our framework, we use Multivalued Decision
Diagrams [8].

• Test Validity Ratio, intended as the fraction of valid
tests over the total number of possible tests. The total
number of feasible combinations may be computed by
enumerating them and checking if they are valid or not.
In the practice, this way requires and exponential time
with the size of the problem and it is not doable for
large models. However, there is a better way that does
not require the enumeration of the tests and it is by using
Multivalued Decision Diagrams [8] that can compute the
number of valid models in a very efficient way.

B. How to compare generators

Having defined in Sec. II how we can measure the complex-
ity of a constrained combinatorial model, we can now define
the method we use to compare generators. In practice, it is
not trivial to identify the best generator, since test generation
for CIT is a multi-objective problem and must take into
account both time and test suite size. Sometimes, generators
can generate a lot of tests within less time, or generate a small
and complete test suite in hours of computation.

In order to obtain a generation cost and a fair comparison
between generators, the cost model proposed by [11] is based
on three parameters

cost = timetotal = timegen + size · timetest

where the cost is equal to the total testing time, composed
by the timegen used by generators to generate test suites and
the product between the size of the test suite and the average
time required to perform the single test on the SUT. This cost
model can be used as a method to evaluate a tool with respect
to another one. For example, if a tool A requires a higher
timegen and produces a test suite with a greater size than a
tool B, we can say that the second one is the best. Examples

Fig. 1. Relation between generation time and test suite size for different
generators Gi

of plots describing this cost model are those in Fig. 1. Each
line represented in Fig. 1 describes the cost of generators,
when the test execution time, i.e. the slope of the lines, is
fixed. Thus, generators on the same line have the same cost,
meaning that, for the example shown in Fig. 1, the generator
G5 is the best one, while G1, G2 and G3 have the same cost,
and G4 has the highest cost.

However, sometimes it can happen that a tool is not able
to manage a specific constrained combinatorial model (for
example because it uses expression not supported by the
generator, e.g. relational expressions). In this case, only the
generators capable to handle the model must be considered
and, between them, the less expensive one should be chosen.
Moreover, this comparison must be performed only on tools
generating valid, and possibly complete, test suites. In fact,
completeness and validity are two of the desired characteristics
of a test suite, together with the minimality [3], which is not
analyzed in this paper. The analyses of these two aspects, for
the tools used in this paper, are presented in Sect. V-C.

III. BENCHMARKING FRAMEWORK

This paper presents a benchmarking framework for combi-
natorial test generators based on CTWedge [7]. It provides,
i) benchmark models with different features and complexities,
ii) interfaces for generator integration, and iii) methods for
benchmarking and validating new generators.

It has been designed to be extensible as more as possible,
to allow users to add their own generators and benchmarking
them, using the provided general models.

A. Benchmarks

In our benchmarking environment, we have collected
196 test models. Some of the benchmark models were al-
ready present in CTWedge as examples (previously taken
from [17], [12], [18], [11], and [16]), others have been
collected from the PICT GitHub page [2], and others have
been extracted from the collection used in [19]. For the models
which were not written using the CTWedge language, we have
translated them in order to have all the benchmarks in the

50

Fig. 2. Number of parameters in benchmarks

Fig. 3. Number of constraints in benchmarks

same format, both using automatic translations and manual
intervention.

The benchmark models vary greatly in terms of number of
variables (Fig. 2), number of constraints (Fig. 3), total size
(Fig. 4), and tuple and test validity ratios (Fig. 5 and Fig. 6).
Note that the total number of models shown in Fig. 5 and
Fig. 6 is lower than 196 because we use Medici to compute
these data and the tool is not able to process some models.

We have also tried to identify relevant features of the models
and Tab. V shows them. We can see that the benchmarks cover
all these features. Note that a model can exhibit more than one
feature, while others none of them.

Identifying different features can help designers of test gen-
erators to better specify the targets of their tool and benchmark
it only with models having those features. In the future, we
plan to extend our framework in order to support synthetic
benchmarks, i.e., for testing the behavior of a tool only

Fig. 4. Size distribution for benchmarks

Fig. 5. Tuple Validity Ratio for benchmarks

Fig. 6. Test Validity Ratio for benchmarks

51

TABLE V
SUMMARY OF THE BENCHMARKS FEATURES

Feature: # models
Parameters

all with the same cardinality 5
only booleans 4
with also enumeratives 18
with also integers 33

Constraints
without constraints 22
as forbidden tuples 33
in Clausal Normal Form 25
containing relational operators (>,<, etc.) 6

w.r.t. a large set of models, possibly automatically generated,
satisfying a defined characteristic, without considering all the
others. For instance, a research group could target models with
only booleans and ignore all the benchmarks containing other
types of parameters.

B. Generator integration

To make the integration of new generators in the bench-
marking environment easier we have deeply refactored the
internal architecture of CTWedge (Fig. 7). This new structure
exploits the Eclipse extension points, made available for
Eclipse plugins development.

Each generator must extend the class
ICTWedgeTestGenerator, implementing the
getTestSuite(...) method, and extend the
ctwedge.util.ctwedgeGenerators extension point2.
For benchmarking purposes, the getTestSuite(...)
method must return the generated test suite for a defined
model, together with the required generation time.

This extension allows a loosely coupled structure: the
benchmarking environment does not need modifications when
new generators are added since they are automatically discov-
ered by Eclipse as new plugins.

Each generator must be implemented as an Eclipse plugin,
managed with Maven. Since we have used CTWedge as the
hosting environment, we have chosen it also as pivot lan-
guage, so all the benchmark models are written in CTWedge
language. This means that each generator needs to include
also a translator from CTWedge grammar to its own one.
However, new generators can exploit the functionalities offered
by CTWedge, for example, the ones included in the util
package (e.g., to check the validity and the completeness, to
convert the resulting test suite in CSV or XLS, and to analyze
model features).

For example, Fig. 8 shows the internal structure of the
Eclipse plugin for the CAgen generator. It includes the class
performing the test suite generator and the two classes for
translation, both for parameters and constraints, from the
CTWedge grammar to the one used by CAgen.

2More detailed information about how to integrate new generators can be
found at https://github.com/fmselab/ctwedge/wiki

Fig. 7. Refactored architecture of CTWedge for benchmarking integration

Fig. 8. Structure of the Eclipse plugin for the CAgen generator

C. Validation, Completeness, and Benchmarking

Our benchmarking framework provides completeness and
validity checks, suitable to check if a tool generates a test
suite violating the properties described in Sect. II. This APIs
are contained in ctwedge.util.validation package
and, in particular in the SMTTestSuiteValidator class
exploiting a SMT solver3. Given a test suite TS, the main
functionalities offered by the validation APIs are:

• isValid(), returning whether the test suite satisfies all
the constraints contained in the CIT model;

• howManyTestsAreValid(), which counts how
many tests contained in the test suite are valid;

• isComplete(), checking the completeness of the test
suite. This method verify if some of the valid combina-
tions of parameters are not covered by the test suite;

• howManyTuplesCovers(), returning the number of
tuples covered by all the tests in the test suite.

After having verified that the tools generate valid
and complete test suites, one can perform benchmark-
ing, i.e. test the implemented generator versus the oth-
ers, using a defined set of test models (see Sect. III-A).
The benchmarking feature is contained in the pack-
age ctwedge.generator.benchmarks, in the class
BenchmarkTest. This class exploits the Eclipse extension
point ctwedge.util.ctwedgeGenerators to discover
all the generators that have been defined in the environment
and check the test suite sizes and generation times for each

3We use the following SMT solver: https://github.com/sosy-lab/java-smt

52

Generator
Thread

Process
Thread

Benchmark
Thread

dispatch

dispatch

return

return

(a) Regular benchmarking execution

process.destroy()

Generator
Thread

Process
Thread

Benchmark
Thread

dispatch

dispatch

timeout
executor.shutdown()

(b) Execution leading to a timeout

null

Generator
Thread

Process
Thread

Benchmark
Thread

dispatch

dispatch

Translation / Executable
Error

(c) Execution leading to an error

Fig. 9. Benchmark execution scenarios

generator on each benchmark model. The execution of a
benchmark can lead to three different outcomes (see Fig. 9):

1) success, when the tests are correctly generated (Fig 9(a));
2) timeout, when the test generation overpass the set timeout

(Fig 9(b));
3) error, when an error during the translation or the test

generation occurs (Fig 9(c)).

IV. AVAILABLE GENERATORS

As presented in Sect. III, we have integrated the benchmark-
ing environment into CTWedge [7]. It already implemented
two different generators:

• ACTS (Automated Combinatorial Testing for Software),
developed by the NIST [22].

• CASA (Covering Arrays by Simulated Annealing), which
generates combinatorial test suites using simulated an-
nealing [10];

However, we have integrated into our benchmarking envi-
ronment other generators selected from the ones presented
at http://pairwise.org, to evaluate our environment. To select
generators we have defined two criteria: 1) the generator
must be freely available, as source code or executable; 2) the
grammar to define the test models must be available.

Thus, using these criteria, we have selected the following
generators:

• CAGen (Covering Array Generation), developed by
SBAresearch [20];

• Medici (MultivaluEd Decision diagrams for Combina-
torial Interaction testing), developed by University of
Bergamo [8].

• PICT (Pairwise Independent Combinatorial Testing), de-
veloped by Microsoft [2];

Nevertheless, the environment we have developed has been
designed to be extensible, so users can add their own gen-
erators, as previously explained in Sec. III-B, and perform
benchmarking and validation checks.

V. RESULTS

Using the framework presented in Sect. III and the genera-
tors listed in Sect. IV we have performed benchmarking tests
over all the 196 models, using a strength t = 2. This approach
has allowed us to compare the performance of the generators
in terms of the number of test cases and test suite generation
time.

In our tests, we have set a threshold of 150s: each test
generation exceeding this threshold has been marked as lead-
ing to a timeout. We have repeated each experiment 10 times
and computed the average (for those with no errors nor
timeouts). The experiments can be easily re-executed with a
larger timeout and a large number of tries. A general summary
of the results is shown in Tab. VI. The values regarding
errors are not all depending on the lacks of the generators
but can derive from a wrong translation of the CitModel for
the specific generator as well. In the following, the detailed
results on the comparison between generators performed with
our benchmarking environment are shown.

A. Number of test cases and generation time

For each model, the number of tests generated by each tool
has been divided by the average of tests generated by all the
generators. Thus, comparing the number of test cases we have
obtained the box-plot in Fig. 10. From this analysis, we can see
that all the generators have similar performances in terms of
the number of test cases since the average values are all in the
interval [−5%,+5%]. However, CASA is the best performing
one, even if it has great variability, and PICT the worst one.

In the same way, Fig. 11, representing the percentage
difference in terms of generation time w.r.t. the average time
required by all the generators, has been obtained. It shows that,
even if CASA generates fewer tests than the other generators,
always requires more time with respect to the others. On the
other hand, PICT, which is the worst in terms of the number
of tests, performs really well in terms of generation time. The
fastest generator is CAgen, which performs better with respect
to the average also in the number of tests.

53

TABLE VI
SUMMARY OF THE BENCHMARKING RESULTS

Generator ACTS CAgen CASA Medici PICT

best over test number 57.0 76.0 82.0 101.0 41.0
best over generation time 66.0 116.0 0.0 7.0 8.0

Difference from avg. test cases [%] -0.3 -1.1 -4.9 -3.1 7.3
Difference from avg. generation time [%] -48.1 -80.0 234.0 66.5 -64.7

timeouts 1.0 4.0 37.0 7.0 11.0
Timeouts [%] 0.5 2.0 18.9 3.6 5.6

errors 9.0 0.0 57.0 19.0 3.0
Errors [%] 4.6 0.0 29.1 9.7 1.5

Fig. 10. Percentage difference in terms of number of test cases w.r.t. the
average number

B. Errors

Another evaluation method for combinatorial test generators
is the number of errors during test generation. Table VI reports
the number of errors each generator makes. These errors can
be due to several reasons. First, not all the generators support
all the constraints. For example, while ACTS can deal with
arithmetic and relational expressions in constraints, they are

Fig. 11. Percentage difference in terms of generation time w.r.t. the average
time

not supported in CASA nor in Medici. Furthermore, CASA
and Medici do not allow a comparison between two different
parameters (see example in Code 2), while the other generators
do. Other errors can depend on the translation of the model
from the CTWedge grammar to the one of the generator.

In our analyses, we have demonstrated that CAgen is the
only generator able to deal with all the constraints and making
no errors. On the other hand, CASA and Medici are subject

54

Model CASACounterexample

Parameters:
P1 : {V1, V2}
P2 : {V1, V2}
P3 : [20 .. 30]

Constraints:
P1 != P2
P3 > 25

Code 2. Example of a model with constraints not supported by CASA and
Medici

TABLE VII
COMPLETENESS AND VALIDITY RESULTS FOR THE BENCHMARKED

GENERATORS

Generator ACTS CAgen CASA Medici PICT

Benchmarks 196 196 196 196 196
Complete 185 189 100 155 178
Valid 185 189 100 155 178
Timeouts 2 7 39 22 15
Errors 9 0 57 19 3

to various errors, mainly due to unsupported expressions.

C. Completeness and validity

Using the APIs for validation included in the benchmarking
environment we have presented in Sect. III, we have investi-
gated the completeness and validity of the test suites generated
by each generator for all the benchmarks. Tab. VII reports the
obtained results, using 150s as timeout for the entire operation,
including validity and completeness checks, so the number
of timeouts can be higher than the one presented in Tab.
VI. These results confirm the considerations made for the
comparison in terms of generation time and test suite size.
CAgen has the highest number of complete and valid test
suites, together with ACTS, while CASA and Medici have
the lowest number of complete and valid test suites.

In terms of validity, the results are due to the number of
timeouts and errors, since every tool generates only valid test
suites for the benchmarks for which it does not fail and does
not time-out. Moreover, Tab. VII shows that all the tools, when
able to deal with the model and the constraints (i.e. do not have
errors or timeouts), produce complete test suites.

D. Which is the best generator?

Choosing the best generator is not a trivial task, since
different scenarios may require different generators. However,
considering the cost model presented in Sec. II-B it is possible
to note that, for a defined application scenario, the best
generator is the one minimizing both the number of tests and
the generation time. Thus, considering a set of generators
G = {g1, g2, ..., gn}, having respectively generation times
T = {t1, t2, ..., tn} and test suite sizes S = {s1, s2, ..., sn}
over a benchmark model, we can say that gi is better than gj
for the considered benchmark if ti ≤ tj and si ≤ sj , regardless
the test execution time timetest (see Sect. II-B). Consequently,
gi is the best if it is better than gj , ∀j ∈ [1, ..., n].

TABLE VIII
GENERATORS COMPARISON

Generator ACTS CAgen CASA Medici PICT Any

ACTS - 11 102 49 49 1

CAgen 51 - 100 55 116 16

CASA 9 4 - 6 16 0

Medici 17 7 81 - 19 4

PICT 19 3 85 29 - 0

To analyze deeply the performances of generators, we
have compared each generator with the others, in a 1 vs 1
competition. In Tab. VIII, each cell reports the number of
times in which the generator on the row has overperformed the
second one reported in the column, i.e. has better performances
in terms of the number of tests and generation time. The higher
is this number, the darker is the cell background. Having a
darker row means that the generator overperforms the others
while having a darker column means that the generator is
outperformed more times by the others. The last column, Any,
reports the statistics regarding the number of times in which
the generator gi has outperformed all the other generators both
in terms of generation time and test suite size.

By analyzing the table, we can see that CAgen has a
higher number of wins over the other generators, so it can be
considered the best one (on average) w.r.t. the ones analyzed.
An exhaustive analysis must comprehend the number of errors
made by each generator as well. Tab. VI shows that the best
generator, under this aspect is CAgen which has the lowest
number of errors, since it can deal with all kinds of constraints.

VI. RELATED WORK

Many tools have been proposed for combinatorial test
generation [1], so choosing the best one can be of paramount
importance. In fact, methods to select the most efficient
generation algorithm or tool are useful, especially when the
size and complexity of models increase, or when the time to
be dedicated to testing activities is limited.

However, benchmarking CIT generators is not an easy task,
so only a few researchers have found a solution. In [9],
decision trees are exploited for an approach taking as input a
distribution of combinatorial models and their test suites, gen-
erated using several tools to predict the algorithm performing
better given the cost estimated to execute a single test and the
model characteristics. The cost model we have used in this
paper has been proposed by [11], which takes into account
not only the generation time and the number of tests but the
execution time too.

55

As well as the benchmarking environment, benchmark
models are important, since having an exhaustive set of tests
allows to conduct a complete comparison between tools. Thus,
methods suitable to automatically generate benchmarks have
been developed every year. For example, in [21], the authors
propose a method for generating benchmarks, with known
solutions, that does not suffer the usual limitations on the
problem size or the sequence length, since it does not require
the re-optimization phase.

In many fields competitions have been proposed, starting
from SAT Solvers [13] to software testing [4]. The former
has significantly contributed to the fast progress in SAT
solver technology, allowing the community to provide robust,
reliable, and generic purposes SAT solvers to other research
communities. For instance, the CDCL-based Minisat [6] and
Picosat [5] solvers, proposed in former editions of the competi-
tion, are widely reused within and outside the SAT community.
The latter has stimulated researchers to create testing frame-
works adaptable to general applications. It aims is to establish
a set of test tasks for comparing automatic software testers.

In general, competitions have forced programmers and
testers to develop tools with enhanced performances, together
with higher usability and adaptability to different scenarios.
Thus, we believe that our benchmarking framework can be
used in this direction, proposing a CIT competition, and
aiming to improve combinatorial test generators or to introduce
new ones.

VII. CONCLUSIONS

In this paper, we have presented a benchmarking envi-
ronment, integrated with CTWedge, for CIT test generators.
Unlike the already available benchmarks, which are only based
on the number of test cases produced, our framework allows
testers to compare their own generators to the others already
available, in terms of different features, namely number of
test cases in the test suite, generation time, validity, and
completeness. We have applied our framework to five different
CIT generators (ACTS, CAgen, CASA, Medici, and PICT)
using the benchmark models distributed together with the
proposed framework, and we have shown how to integrate now
generators. These benchmarks aim to aid the developers to test
their own generators with different models, which vary greatly
in terms of complexity, number and values of parameters, and
number and types of constraints. CAgen has shown to be the
best generator, among those analyzed, both in terms of the
number of tests, generation time, completeness, and validity.
As future work, we are planning to include in our framework
a check of the minimality [3] for generated test suites as well.
We believe that this framework can be used as a platform
for tool competition, and this may bring several advantages,
as shown in other fields, leading to the increase in generator
performances, usability, and to the introduction of new ones.

REFERENCES

[1] Pairwise Testing. http://pairwise.org/.
[2] PICT GitHub page. https://github.com/microsoft/pict.

[3] P. Arcaini, A. Gargantini, and P. Vavassori. Validation of models and
tests for constrained combinatorial interaction testing. In 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation Workshops. IEEE, mar 2014.

[4] D. Beyer. International competition on software testing (test-comp). In
D. Beyer, M. Huisman, F. Kordon, and B. Steffen, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 167–
175, Cham, 2019. Springer International Publishing.

[5] A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling
and Computation, 4(2–4):75–97, May 2008.

[6] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and
Applications of Satisfiability Testing, pages 502–518. Springer Berlin
Heidelberg, 2004.

[7] A. Gargantini and M. Radavelli. Migrating combinatorial interaction
test modeling and generation to the web. In 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 308–317, April 2018.

[8] A. Gargantini and P. Vavassori. Efficient combinatorial test generation
based on multivalued decision diagrams. In E. Yahav, editor, Hardware
and Software: Verification and Testing, pages 220–235, Cham, 2014.
Springer International Publishing.

[9] A. Gargantini and P. Vavassori. Using decision trees to aid algorithm
selection in combinatorial interaction tests generation. In 2015 IEEE
Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, apr 2015.

[10] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-
heuristic search for constrained interaction testing. In 2009 1st Interna-
tional Symposium on Search Based Software Engineering, pages 13–22,
2009.

[11] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements
to a meta-heuristic search for constrained interaction testing. Empirical
Software Engineering, 16(1):61–102, jul 2010.

[12] H. Jin and T. Tsuchiya. Constrained locating arrays for combinatorial
interaction testing. Journal of Systems and Software, 170:110771, dec
2020.

[13] M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon. The international
sat solver competitions. AI Magazine, 33(1):89–92, Mar. 2012.

[14] S. K. Khalsa and Y. Labiche. An orchestrated survey of available
algorithms and tools for combinatorial testing. In 2014 IEEE 25th
International Symposium on Software Reliability Engineering. IEEE,
nov 2014.

[15] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):1–29, jan 2011.

[16] J. Petke. Constraints: The future of combinatorial interaction testing. In
2015 IEEE/ACM 8th International Workshop on Search-Based Software
Testing. IEEE, may 2015.

[17] J. Petke, M. B. Cohen, M. Harman, and S. Yoo. Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection. IEEE Transactions on Software Engineering, 41(9):901–924,
2015.

[18] I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary decision diagrams
for combinatorial test design. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis - ISSTA '11. ACM Press,
2011.

[19] R. Tzoref-Brill and S. Maoz. Modify, enhance, select: Co-evolution of
combinatorial models and test plans. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, page 235–245, New York, NY, USA, 2018. Association for
Computing Machinery.

[20] M. Wagner, K. Kleine, D. Simos, R. Kuhn, and R. Kacker. Cagen:
A fast combinatorial test generation tool with support for constraints
and higher-index. In International Workshop on Combinatorial Testing
(IWCT 2020), 3 2020.

[21] A. Younes, P. Calamai, and O. Basir. Generalized benchmark generation
for dynamic combinatorial problems. In Proceedings of the 7th Annual
Workshop on Genetic and Evolutionary Computation, GECCO ’05,
page 25–31, New York, NY, USA, 2005. Association for Computing
Machinery.

[22] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial
test generation tool. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, pages 370–375, 2013.

56

