
Combinatorial Interaction Testing
for Automated Constraint Repair

Angelo Gargantini
University of Bergamo

Bergamo, Italy
angelo.gargantini@unibg.it

Justyna Petke
University College London

London, UK
j.petke@ucl.ac.uk

Marco Radavelli
University of Bergamo

Bergamo, Italy
marco.radavelli@unibg.it

Abstract—Highly-configurable software systems can be easily
adapted to address user’s needs. Modelling parameter configura-
tions and their relationships can facilitate software reuse. Com-
binatorial Interaction Testing (CIT) methods are already often
used to drive systematic testing of software system configurations.
However, a model of the system’s configurations not conforming
with respect to its software implementation, must be repaired in
order to restore conformance. In this paper we extend CIT by
devising a new search-based technique able to repair a model
composed of a set of constraints among the various software
system’s parameters. Our technique can be used to detect and
fix faults both in the model and in the real software system.
Experiments for five real-world systems show that our approach
can repair on average 37% of conformance faults. Moreover, we
also show it can infer parameter constraints in a large real-world
software system, hence it can be used for automated creation of
CIT models.

I. INTRODUCTION

Most software systems can be configured in order to im-
prove their capability to address users’ needs. Configuration
of such systems is generally performed by setting system
parameters. These options, or features, can be created during
design time. For instance, in the case of a software product
line, the designer identifies the features unique to individual
products and features common to all products in its category.

Such options can also be decided during compilation time,
in order to improve some characteristics of the compiled
code (scalability, efficiency, etc.). For example, in case of
preprocessor directives, the programmer can decide which
libraries to use, what code to execute and what to ignore etc.
Software configurations can also be modified during operation
time, when the system is already running and the user wants to
switch on/off a particular feature or functionality. In this case,
for example, the parameters can be saved in a configuration file
and modified if necessary. Such a configuration file can also be
used to decide which features to load at startup. The problem
space described by the model of its configurations shows its
supported features and their dependencies, while the solution
space is the technical realisation of the system [23], i.e., its
implementation.

Large configurable systems and software product lines can
have hundreds of features. It is infeasible in practice to test all
the possible configurations. Consider, for example, a system
with only 20 Boolean parameters. One would have to check
over one million configurations in order to test them all.

Furthermore, the time cost of running one test could range
from fraction of a second to hours if not days. In order to
address this combinatorial explosion problem, combinatorial
interaction testing (CIT) has been proposed for testing con-
figurable systems [7]. It is a very popular black-box testing
technique that tests all interactions between any set of t
parameters. There have been several studies showing the
successful efficacy and efficiency of the approach [18], [19],
[26], [27].

Moreover, certain tests could prove to be infeasible to
run, because the system being modelled can prohibit certain
interactions between parameters. Designers, developers, and
testers can greatly benefit from modelling parameters and
constraints among them by significantly reducing modelling
and testing effort [26] as well as identifying corner cases
of the system under test. Constraints play a very important
role, since they identify parameter interactions that need not
be tested, hence they can significantly reduce the testing
effort. Certain constraints are defined to prohibit generation
of test configurations under which the system simply should
not be able to run. Other constraints can prohibit system
configurations that are valid, but need not be tested for other
reasons. For example, there’s no point in testing the find
program on an empty file by supplying all possible strings.

Constructing a CIT model of a large software system is a
hard, usually manual task. Therefore, discovering constraints
among parameters is highly error prone. One might run into
the problem of not only producing an incomplete CIT model,
but also one that is over-constrained. Even if the CIT model
only allows for valid configurations to be generated, it might
miss important system faults if one of the constraints is over-
restrictive. Moreover, even if the system is not supposed to
run under certain configurations, if there’s a fault, a test suite
generated from a CIT model that correctly mimics only desired
system behaviour will not find that error. In such situations
tests that exercise those corner cases are desirable.

Software evolution is a typical scenario in which automated
repair of the model of system’s configurations may be useful.
The initial model can conform with the system, but when the
system or its configuration space undergo changes, the model
becomes non-conforming and needs to be repaired.

The problem of finding and fixing conformance faults
between a given software system and its combinatorial model

is a challenging task. Due to the size and complexity of
current software systems, the interactions between different
software parameters are hard to find. Combinatorial models
are frequently derived manually, by expert software engineers.
The Software-artefact Infrastructure Repository1, for instance,
contains models of dozens of software systems, which were
derived by hand.

Several methods have been introduced to automate the pro-
cess of inferring constraints. However, they do not guarantee
that the derived model will be correct [30]. Therefore,
we introduce a novel automated approach for finding and
fixing conformance faults between the given software system
and its combinatorial model.

We use combinatorial interaction testing policies introduced
in our previous work [11] to find such faults and fix them by
repairing constraints in the original CIT model.

We conduct several experiments aiming to answer the
following research questions:

[RQ1:] How effective is our automated constraint repair
approach at fixing faults in an existing CIT model?
In particular, we apply our approach to mutated CIT models
and show that our approach can automatically fix on average
37% of conformance faults.

[RQ2:] How effective is our approach in inferring parame-
ter constraints in real-world software?
We present a case study that shows that our approach can be
used to derive constraints for an unconstrained CIT model of
a large real-world software system.

[RQ3:] How efficient is our constraint repair approach?
In order to evaluate the efficiency of our approach, we measure
the time taken to repair constraints in CIT models as well as
the number of tests needed for the repair. On the five systems
evaluated, the mutated models were repaired within seconds.

The paper is structured as follows: Section II gives a
brief overview of the field of combinatorial interaction tes-
ting; Section II-B briefly describes CIT policies used in our
approach; Section III presents definitions and notation used
throughout our paper; Section IV presents our approach to
fixing conformance faults between a software system and its
combinatorial model; Section V contains experimental results
and answers to research questions posed; Section VI presents
related work and Section VII concludes the paper.

II. COMBINATORIAL MODELS AND TESTING OF
CONFIGURABLE SYSTEMS

Combinatorial Interaction Testing (CIT), often called com-
binatorial testing or combinatorial testing design, aims to test
configurable software systems under the various combinations
of its parameter values. There exist several tools and techni-
ques for CIT. Good surveys of ongoing research in CIT can
be found in [15], [24], while an introduction to CIT and its
efficacy in practice can be found in [20], [26].

1http://sir.unl.edu/portal/index.php

A. Combinatorial models and CITLAB

A model for a combinatorial problem consists of several
parameters (at least 2) which can take various domain values.
In most configurable systems, constraints (or dependencies)
exist between parameters.

Constraints might be introduced for several reasons, for
example, to model inconsistencies between certain hardware
components, limitations of the possible system configurations,
or simply because of design choices [7]. Constraints were first
described as being important to combinatorial testing in [5]
and were introduced in the AETG system. In our approach
tests that do not satisfy the constraints in the CIT model are
considered invalid.

In this paper we assume that the models are specified using
CITLAB [4], [12]. This is a framework for combinatorial
testing which provides a rich abstract language with precise
formal semantics for specifying combinatorial problems, an
eclipse-based editor with a rich set of features (syntax high-
lighting, autocompletion, outline view, and others), and a Java
API library which includes utility methods for generating
all the test requirements for combinatorial coverage of given
strength. CITLAB does not have its own test generators, but it
relies on other off-the-shelf tools, namely ACTS2 and CASA3.

In CITLAB parameters and constraints are given in a unique
file that contains the whole model. To formally describe a
combinatorial problem, the user has to identify at least 2
parameters and their possible values.

Definition 1 (Constrained Model): Let P = {p1, . . . , pm}
be the set of parameters. Every parameter pi can take a value
from the domain Di = {vi1, . . . , vioi}. Every parameter has
a name (it can have also a type with its own name) and
every enumerative value has an explicit name. We denote with
Constr = {c1, . . . , cn} the set of constraints. P and Constr
constitute the CIT model.

Definition 2 (Strength of a test suite): The objective of a CIT
test suite is to cover all parameter interactions between any set
of t parameters. t is called the strength of the CIT test suite.
For example, a pairwise test suite covers all combinations of
values between any 2 parameters.

CITLAB adopts the language of propositional logic with
equality and arithmetic to express constraints. To be more pre-
cise, it uses propositional calculus, enriched with the arithme-
tic over integers and enumerative symbols. As operators, it
admits the use of equality and inequality for any variable, the
usual Boolean operators for Boolean terms, and the relational
and arithmetic operators for numeric terms.

Figure 1 shows the CITLAB model of a simple washing
machine consisting of 3 parameters. Users can select if the
machine has HalfLoad, the desired Rinse, and the speed of Spin
cycle. In the Constraints section there are two constraints: if
HalfLoad is set then the speed of spin cycle cannot be High; if
rinse is set to delicate, then HalfLoad must be true.

2http://csrc.nist.gov/groups/SNS/acts/
3http://cse.unl.edu/~citportal/

http://sir.unl.edu/portal/index.php
http://csrc.nist.gov/groups/SNS/acts/
http://cse.unl.edu/~citportal/

Model WashingMachine
Parameters:
Boolean HalfLoad;
Enumerative Rinse { Delicate Drain Wool };
Enumerative Spin { Low Mid High };

end
Constraints:
HalfLoad => Spin != Spin.High
Rinse==Rinse.Delicate => HalfLoad

end

Fig. 1: An example CIT model of a washing machine.

B. Combinatorial Testing Policies

In our previous work [11] we proposed to use combinatorial
interaction testing techniques to verify the validity of CIT
models, which is the approach we use in this work.

In particular, given a CIT model, we modify it according to
one of the policies briefly described below. Next, we use one
of the standard CIT tools to generate a test suite satisfying the
modified CIT model.

We use the term “valid test" to denote the generated con-
figuration that satisfies all the constraints of the original CIT
model. Conversely, the term “invalid test" is used for a confi-
guration that does not satisfy at least one of the constraints of
the original CIT model. Words “test" and “configuration" are
used interchangeably.

In classical combinatorial interaction testing, only valid tests
are generated, since the focus is on assessing if the system
under test produces valid outputs. However, we believe that
invalid tests are also useful. In particular, a combinatorial mo-
del can be overconstrained, that is, it might restrict generation
of test cases that are valid in the system, yet not be generated
due to the constraints in the given model. Furthermore, critical
safety systems should be tested if they failed safely in case
an invalid configuration is entered. Moreover, creation of a
CIT model for a large real-world software system is usually
a tedious, error-prone task. Therefore, invalid configurations
generated by the model at hand can help reveal constraints
within the system under test and help refine the combinatorial
model.

Two basic policies can be employed in combinatorial tes-
ting: UC (Unconstrained CIT) consists in generating the tests
ignoring the constraints, and CC (Constrained CIT) is the
classical testing policy that generates only tests satisfying the
constraints. Aside from UC and CC, we consider three other
policies, introduced in our previous work [11]:

1) Constraints Violating CIT - CV: This approach produces
only the tests violating the constraints, i.e. the produced test
suite contains every tuple of parameter values that makes at
least one constraint false. This approach is complementary
with respect to the CC in which only valid configurations are
produced.

2) Combinatorial Union - CuCV: CuCV is the union of
CC and CV, i.e. it covers all the desired parameter interactions
producing valid configurations and all those producing invalid
ones according to the given CIT model.

3) CIT of Constraint Validity - ValC: ValC requires the
interaction of each parameter with the validity of the whole
CIT model. That is, both tests that satisfy all the constraints
will be generated as well as those that don’t satisfy any of the
constraints in the given CIT model. ValC is an approach that
tries to balance the validity of the tests without requiring the
union of valid and invalid tests.

III. DEFINITIONS

We assume that the combinatorial model specifies the pa-
rameters and constraints between them for a given software
system. We are interested in checking whether this system
specification correctly represents the software implementation.
We assume that the parameters and their domains are correctly
captured in the specification, while the constraints may contain
some faults. Software model M belongs to the problem space
while implementation of the software system S belongs to the
solution space [23]. In our repair process, we assume that the
model M may contain faults (in the constraints), as opposed
to classical software testing, in which the implementation S
is to be checked against a model that is considered correct.

Formally, given an assignment t that assigns a value to every
parameter in P of the model M , we introduce two functions:

Definition 3: Given a model M for a software system S,
valM is the function that checks if assignment t satisfies the
constraints in M , while oracleS(t) checks if t is a valid
configuration according to the system S.

We assume that the oracle function oracleS exists. For
instance, in case of a compile-time configurable system, we
can assume that the compiler plays the role of an oracle: if the
parameter assignment t allows compilation of the product then
we say that oracleS(t) holds. We might enhance the definition
of oracle by considering also other factors, for example, if the
execution of the test suite completes successfully. However,
executing oracleS might be very time consuming and it might
require, in some cases, human intervention.

On the model side, the evaluation of valM (t) is straightfor-
ward, that is, valM (t) = c1[P←t] ∧ . . . ∧ cn[P←t].

Definition 4 (Conformance fault): We say that the con-
strained CIT model is correct if, for every t, valM (t) =
oracleS(t). We say that the model contains a conformance
fault if there exists a t such that valM (t) 6= oracleS(t).

Figure 2 shows two different types of failing tests with
respect to all possible parameter assignments (ignoring con-
straints). A conformance fault might occur if valM (t) is True
and oracleS(t) is False (i.e., M/S in Figure 2). Another type
of conformance fault occurs, when the model does not pass a
test case that is allowed by the system, that is, if oracleS(t)
is True , but valM (t) is False (i.e., S/M in Figure 2).

Example 5: As an example, consider a system S of the
washing machine modelled in Figure 1, and as model M

valM(t)
is True

==
oracleS(t)

is True

valM(t)
is False

!=
oracleS(t)

is True

valM(t)
is True

!=
oracleS(t)
is False

valM(t)
is False

==
oracleS(t)
is False

M S

Fig. 2: The space of test cases for system S and its model M .
Failing test cases appear in the regions M/S and S/M , i.e.,
where valM (t) 6= oracleS(t).

the same model in Figure 1 without the first constraint: that
conformance fault could be revealed by the following test t:

Parameter Assignments Function Evaluation
Rinse HalfLoad Spin oracleS valM

Delicate True High False True

TABLE I: An example test case triggering a conformance fault
in the washing machine model.

Definition 6 (Combination): Let P be the set of all parame-
ters in a given model. A combination comb is an assignment
of values to every parameter in a (non-empty) subset of P .

Definition 7 (Failure-inducing): A combination comb is
failure-inducing if for every test t containing comb (i.e.,
comb ⊆ t), valM (t) 6= oracleS(t).

Example 8: Given the System S of the washing machine
modelled in Figure 1, and its Model M presented in Figure 1
without the first constraint: a failure-inducing combination in
this case would be HalfLoad and Spin=Spin.High, because
for every possible configuration t, valM (t) 6= oracleS(t), as
shown in the table below:

Rinse HalfLoad Spin oracleS valM
Delicate True High False True

Drain True High False True
Wool True High False True

TABLE II: All tests containing the failure-inducing combina-
tion HalfLoad and Spin=Spin.High.

Definition 9 (Under-constraining and Over-constraining
combinations): We say that a combination comb (i.e., a
partial assignment) is over-constraining the CIT model if for
every assignment t containing comb, valM (t) = False and
oracleS(t) = True . We say that a combination comb (i.e.,
a partial assignment) is under-constraining the CIT model if
for every assignment t containing comb, valM (t) = True and
oracleS(t) = False .

When a failure-inducing combination is found, one needs
to modify the model M , i.e. repair the model, so that it
faithfully represents the system S that it models. The technique
we present in this paper tries to repair the constraints of a
combinatorial model whenever a failure-inducing combination
is found. There are two types of repairs, depending on the type
of the failure-inducing combination:

• If a combination comb is over-constraining, the model
must be modified in order to include also the configura-
tions identified by comb. This can be done by relaxing
the constraints by adding comb to each constraint that
currently prohibits comb by means of a Boolean OR (i.e.,
Constr ← Constr ∨ comb).

• If a combination comb is under-constraining, the model
must be modified in order to exclude comb and this can be
done by strengthening the constraints Constr by adding
a further constraint ¬comb.

In order to fix the CIT model, we modify its constraints
using the failure-inducing combinations found. If comb is
over-constraining the CIT model, we build a new constraint
by allowing comb to be added: Constr ← Constr ∨ comb.
If comb is under-constraining, we build a new constraint by
adding the negation of comb to the old constraint: Constr ←
Constr ∧ ¬comb.

Definition 10 (Relaxing and Constraining Sets): We call a
relaxing set the set of all combinations comb that need to be
added to repair the model M . We call a constraining set the
set of all combinations comb that need to be removed to repair
the model M .

The aim of our approach is to remove all failure-inducing
combinations and thus fix the constraints in the given CIT
model. Visually, we want the two circles in Figure 2 to
completely overlap, so that there are no more conformance
faults between the model and the system.

Example 11 (Repair with a constraining set): Consider
the washing machine system S, modelled in Figure 1. Let
M be the model presented in Figure 1 without the first
constraint: a possible failure-inducing combination is Half-
Load=True, Spin=Spin.High, which is True for valM and False
for oracleS , as shown in Example 8. The constraint “! (Half-
Load & Spin==Spin.High)" would then be added to the constrai-
ning set and subsequently to the model M , thus repairing the
faulty model.

Example 12 (Repair with a relaxing set): Consider the
washing machine system S, modelled in Figure 1. Let M
be the model presented in Figure 1 with the first constraint
changed to: “HalfLoad => Spin == Spin.Low": a possible failure-
inducing combination is “HalfLoad=True, Spin=Mid". The model
M would then be corrected by appending to all the constraints,
the following combination: " | (HalfLoad & Spin==Spin.Mid)". In
this case, the constraint causing the conformance failure is
the first one of the model, which after the repair becomes
"HalfLoad => Spin==Spin.Low | (HalfLoad & Spin==Spin.Mid)",
which is equivalent to "HalfLoad => Spin!=Spin.High". We note
here that since we do not use an exhaustive test suite in our
approach (details of which are presented in Section IV), the
failure-inducing combination derivation might be incorrect.
Since we append the same constraint comb to all the con-
straints, we might potentially need to further repair the model.

In order to measure the faithfulness of the given model
M with respect to the system it models S, we introduce the
following measure that we call the failure index:

apply a CIT policy
to generate tests

if for all tests t
valM(t) == oracles(t)Test Suite exit

True

use BEN to generate
failure-inducing
combinations

False

elaborate new tests
produced by BEN

if for all new tests t
valM(t) == oracles(t)

False

not found

found
increase CIT test

suite strength
True

derive new
constraints to be

added to the model

add new tests

2 3

4a

4c.ii

5

4c

4b

increase
strength

add
constraints

BEN
cycle

SystemCIT Model
1

Fig. 3: The constraint repair process.

Definition 13 (Failure Index): Given a model M of a system
S, we define the failure index of M to be the number of (valid
and invalid) configurations of M that fail. Formally:

fi =
|{t ∈ T |valM (t) 6= oracleS(t)}

|T |
where T is the given test suite.

Taking the exhaustive test suite as T , we can compute an
absolute failure index (afi) as measure of the quality of a
model. However, computing the absolute failure index afi is
infeasible in general. In the experiments, we will be able to
compute the models afi by assuming that we know the exact
model of the system. We use multi-valued decision diagrams
(MDDs) [13] in order to calculate the number of tests that are
permitted by the constraints in the model.

IV. THE CONSTRAINT REPAIR PROCESS

In this section we present the proposed process for con-
straint repair in CIT models. In our previous work [11] we
devised a way of finding conformance faults. We use these
techniques to find faults and extend them by proposing an
automated way of fixing the faults found. Figure 3 presents
an overview of the constraint repair process.

We first generate a set of test cases of given strength
k based on one of the CIT policies described in Section
II-B. We evaluate each of the tests t using the function
valM (t) = oracleS(t). We mark each test for which
valM (t) 6= oracleS(t) as a failing one (since it reveals a
conformance fault). We say that the test t passes, otherwise.

We input the generated test suite and the result of
valM (t) = oracleS(t) for each test t into a combinatorial
testing-based fault localisation tool called BEN [14]. BEN
uses a heuristic approach to identify a set of failure-inducing
combinations of given size (i.e., combinatorial strength) or

larger. Given an initial test suite and the result for each test,
it identifies a set of suspicious parameter-value combinations.
Next, it proceeds in an iterative manner: it generates a set of
new tests and queries the user for the result of these tests;
after the user supplies the data, BEN identifies a new set of
suspicious combinations and a new set of tests; the process is
repeated until a set of failure-inducing combinations is found
or all tests pass (in which case we can increase the strength
of CIT testing)4. Further details about the heuristic approach
implemented in BEN can be found in the following paper:
[14]. We note that the problem of finding minimum failure-
inducing combinations is a challenging task, since generation
of an exhaustive test suite is often infeasible.

Once failure-inducing combinations are found, we modify
the constraints of the original CIT model, as explained in
Examples 11 and 12. We repeat the whole process until all
test cases (generated by the CIT policy of choice and BEN)
pass.

Our proposed constraint repair process proceeds as follows:
1) Start with a constrained CIT model containing a set of

constraints C.
2) Derive a t-way CIT test suite according to one of the CIT

policies described in Section II-B.
3) If for all test cases, the test result is the same according

to the model and according to the system, then exit.
4) For all tests t such that valM (t) 6= oracleS(t), mark t as

a failing test. t is passing otherwise. Use BEN to derive
failure-inducing combinations:
a) Produce an initial set of suspicious combinations with

new test cases using BEN.
b) Add tests produced by BEN to the test suite.
c) Mark the new test cases as failing or passing according

to valM = oracleS .
i) If all new tests pass and BEN has not detected

any failure-inducing combinations, increase the test
suite strength.

ii) Otherwise, input the new set of tests to BEN.
d) If BEN terminates and produces a set of failure-

inducing combinations, exit BEN.
5) Modify the constraint set C based on the result produced

by BEN:
Given the set of failure-inducing combinations combs, for
each comb:
a) If a failure-inducing configuration comb occurs in test

cases for which valM (t) = True and oracleS(t) =
False (i.e., belongs to the constraining set), then
Constr ← Constr ∪ ¬comb.

b) If a failure-inducing configuration comb occurs in test
cases for which valM (t) = False and oracleS(t) =
True (i.e., belongs to the relaxing set), then for each
ci ∈ Constr , add comb to ci, that is, ci ← ci ∨ comb.

4In our experiments we also found there are other cases when BEN
terminates. These are, however, usually error states. We treat these cases the
same way in which we deal with the ‘all test pass’ case, that is, we report
that BEN did not find any failure-inducing combinations of given strength.

6) Go back to point 1.
Note that this approach can be used to infer constraints by

supplying an unconstrained CIT model to our tool.
The final constraints produced by our process can be further

simplified. Since constraints in our model can be represented
in Boolean form, we can use propositional logic rules. We
leave this step as future work.

Another enhancement would be identification of constraints
to which combs from the relaxing set need to be added.
However, identification of the set of constraints that violate
a comb is a non-trivial task. It can be reduced to the problem
of finding minimum unsatisfiable sets in Boolean satisfiability
solving (SAT). We leave this step as future work.

V. EXPERIMENTS

In order to test our approach we conducted the following
two experiments5. In the first experiment, we applied mutation
to a set of models taken from the literature. In the second
experiment, we used a configurable software system, namely
Django, in order to test our framework on a real case study.

A. Mutation Analysis

We gathered a set of combinatorial models taken from
several papers and applied our process to mutated versions
of these models. In particular, for every model m in the
benchmarks we derived a set M of mutants.

We have applied simple mutation operators to the con-
straints in the model under test in order to find mutants to
be repaired. Our mutation operators are of 4 types: add a
constraint that excludes a value of a parameter, remove an
entire constraint, negate a constraint, and change a logical
operator to another one (AND to OR etc.). Then, for each
mutant m′ in M , representing a possible faulty model, we
applied our repair process by using the original model m as
the oracle (to compute the oracleS function).

We considered all CIT policies presented Section II-B. We
applied our repair starting with combinatorial strength set to
1 and increase it up to 3 (i.e., we are only concerned with
finding failure-inducing combinations of size 1,2 and 3). We
included combinatorial tests of strength 1 since some faults
can be already detected by a single parameter assignment.

B. Benchmarks

We used 5 case studies to evaluate our proposed approach:
1) The WashingMachine system, model of which is pre-

sented in Figure 1. It represents an abstract view of the human
interaction with an embedded system.

2) Concurrency is a testing problem for real-life concur-
rent system presented in [28].

3) Telecom is a real-life telecommunication system presen-
ted in [28].

4) Aircraft is a small Software Product Line (SPL) found
in SPLOT repository and presented in [31].

5) Libssh is the combinatorial model for cmake of SSH
library taken from [2].

TABLE III: The benchmark data (for CNF size ab means b clauses
with a literals each.)

constraints State space validity mut-
name #var # CNF size exp #conf ratio ants

WashingM. 3 2 23 2132 18 66% 18
Concurrency 5 7 243152 25 32 25% 38
Aircraft 8 2 3141 2731 384 82% 25
Libssh 16 2 22 216 65536 50% 42
Telecom 10 21 2113149 2531425161 46080 39% 116

Table III presents various benchmark data: number of vari-
ables, number of constraints (including the number of clauses
when converted to conjunctive normal form (CNF)), the size of
the state space (the total number of possible configurations),
and the percentage of configurations that are valid (i.e. the
ratio of valid configurations). Note that a low ratio indicates
that there are only few valid configurations. We tried to collect
models from different domains, with a good level of diversity
(in terms of size, constraints, and so on) in order to increase
the validity of our findings.

We ran each constraint repair process 10 times and report
averages. We used the ACTS tool for CIT test suite generation.

Table III reports the number of mutants we generated for
each model.

Evaluation of Effort and Repair Capability by mutation

In order to evaluate our technique, we wanted first to
measure the required effort and how it varies by changing the
CIT policy. To measure the effort we used, for each mutant:
Tests The number of test cases are generated according to

the given testing policy. Note that for a mutant, test case
generation can be invoked several times. This can happen
if, e.g., not all the tests pass and BEN is not able to find
the failure-inducing combination and we have to increase
the combinatorial testing strength.

BEN The number of additional tests BEN requires in order
to isolate the failure-inducing combinations.

Oracle The number of times the oracle was called.
Time The total time required to fix a mutated model, inclu-

ding test generation, BEN invocation, and oracle evalua-
tion.

In this experiment, the time required by the oracle to
evaluate a test is negligible, since we use the original model
as an oracle. However, for real software systems a single
invocation of the oracle may take several minutes. Thus the
number of oracle calls is the critical factor as the evaluation
of the function oracleS can be expensive, especially if human
input is required.
We are also interested in assessing the repair capability of our
approach. We use the following two measures:
TRM – Totally Repaired Models. The ratio of completely

repaired models. In this experiment, we can check if
a repaired model is completely fault free by querying
whether it is equivalent to the original model. To check

5All the experiments have been executed on a Linux PC with two Intel(R)
i7-3930K CPU (3.2 GHz) and 16 GB of RAM.

(a) Tests (b) BEN (additional tests)

(c) Oracle (number of oracle calls) (d) Time (seconds)

Fig. 4: Effort of the repair process

equivalence among combinatorial models we use an SMT
solver [1].

FID – Failure Index Delta. Even if a model is not comple-
tely repaired, we are interested in measuring how many
conformance faults were repaired. We define FID =
(afiinit− afifinal)/afiinit in terms of the absolute failure
index presented in Def. 13. FID represents the percentage
of conformance faults that are repaired.

Figures 4 and 5 show respectively the effort and the repair
capability of each policy for every model in the benchmark
set. The experimental results are also summarized in Table IV.

We can observe that the number of tests generated at the
beginning of each repair process (Fig. 4a) and the number of
tests BEN requires in order to find failure-inducing combi-
nations (Fig. 4b) are correlated. If one starts with small test
suites, BEN will require fewer tests (and it likely identifies
fewer failure-inducing combos). In terms of time (Fig. 4d), our
process is rather fast for small models, but also for the biggest
models, like Telecom, it terminates on average in less than 10
seconds for weak policies (like UC and CC), and in any case in
less than 10 minutes when using strong policies like CuCV and
ValC. Regarding the repair capability, the TRM is rather small
for big specifications, and using more powerful testing policy
(like CuCV) does not help much (Fig. 5a). Using our process
to obtain a completely bug-free model seems unrealistic for
big models: CIT likely provides an insufficient coverage for
this. However, if we consider the FID in Fig. 5b, we can say
that almost always our technique and CIT improve the model
except when using CC. The overall minimum average for FID
when using strong policies like CuCV and ValC is 29%. For
big models, there are cases in which we are unable to improve

the constraints, but on average we can still remove around
35% of the faults with CuCV and ValC. As already observed
in [11], the CC policy (that generates only valid tests) detects
fewer conformance faults, and for this reason has the lowest
FID. The average FID over all the mutants is around 37%.
The average FID when using CuCV is 49%: half of faults can
be repaired on average if the user chooses this policy.

C. Repairing the model of Django parameters

Django is a free and open source web application fra-
mework, written in Python, that supports the creation of
complex, database-driven websites, emphasizing reusability of
components6. Each Django project has a configuration file.
It is loaded at launch time, i.e. every time the web server that
executes the project (e.g. Apache) is started. Among all the
possible configuration parameters, we selected and modelled
one Enumerative and 23 Boolean parameters. We implemented
an automated oracle which returns true if and only if the HTTP
response code of the Django project homepage is 200 (HTTP
OK). This oracle invocation is costly in terms of time, since
editing the settings of the Django project, starting the Apache
server, and waiting for its response, requires around 6 seconds.

We applied the constraint repair process described in
Section IV on a default Django start project running on Apache
server (without SSL configuration) called at address localhost.
We started from a model (Django0) with an empty set of
constraints because we thought that Django was accepting
(and amending if necessary) every possible configuration, and
secondly, to test the effectiveness of this technique to infer

6https://www.djangoproject.com/

https://www.djangoproject.com/

(a) TRM: Totally repaired models (over all the mutations) (b) FID: Failure Index Delta

Fig. 5: Repair capability

TABLE IV: Means of the quantities over all the mutations

Time (seconds) Tests (Initial) BEN (additional tests) FID (%)
name UC CC CV CuCV ValC UC CC CV CuCV ValC UC CC CV CuCV ValC UC CC CV CuCV ValC

WashingM. 0.3 0.2 0.5 0.4 0.5 31.5 9.6 29.7 45.0 36.3 6.6 0.6 6.5 2.5 4.6 95 21 81 82 86
Concurrency 0.4 0.3 0.6 0.8 1.1 27.8 11.3 29.1 47.0 41.9 33.0 8.0 29.9 20.7 30.8 36 13 33 29 36
Aircraft 0.4 0.3 2.0 2.9 1.3 41.1 18.1 74.0 144.5 51.6 33.3 8.6 59.5 50.4 31.5 62 14 79 85 60
Libssh 0.7 0.2 1.8 77.9 2.6 44.0 10.8 66.5 187.5 54.6 23.4 1.0 35.3 46.3 26.0 57 10 63 67 50
Telecom 4.5 4.0 83.0 180.3 107.7 352.1 111.8 532.1 1287.0 435.9 56.1 11.5 70.0 77.6 60.1 25 16 12 35 31

(and not only repair) configuration constraints: we call this
first experiment "Inference from Django0". At the end of the
process, we obtained different set of constraints depending on
the policy. For all the policies, we executed the repair process
with test suite strength from 1 to 3.

We noticed that the application of the testing policy CV
produces an empty test suite at the beginning, and an empty
set of constraints at the end of the process, because the initial
Django model contains no constraints, and in particular there
are no test cases violating constraints. So we ignored this
policy in the experiments.

We manually derived the constraints, based on the Django
documentation about configuration files, and by looking at the
results of a few test cases. As a second experiment, we applied
the constraint repair process to this manual model (Manual), in
order to improve its conformance with the real Django system:
we call this second experiment "Repairing Manual".

TABLE V: Django inference and repair results

Policy Tests BEN Oracle Time Ca Pb fi

Django0 (empty model) 0 0 0.789

in
fe

re
nc

e
fr

om
D

ja
ng

o0

UC 36 20 32 201s 5 6 0.325
CC 173 60 154 1671s 8 9 0.254
CuCV 320 54 335 3570s 9 12 0.081
ValC 288 80 124 1453s 17 19 0.204

Manual 3 4 0.033

re
pa

ir
in

g
M

an
ua

l UC 63 30 51 435s 3 4 0.033
CC 63 30 70 436s 3 4 0.033
CuCV 202 30 167 1354s 4 4 0
ValC 118 30 92 564s 4 4 0

aC: Total number of constraints in the model
bP: Total number of parameters involved in the constraints (without consi-

dering duplicates)

Results of this experiment are summarized in Table V,
which reports the number of tests generated by the testing
policy, the number of additional tests required by BEN, the
number of oracle calls, the time taken for the whole process,
the number of constraints of the final model, the number of
parameters involved in the constraints, and the failure index.
To compare the different policies in terms of fault detection
capability, in this case, we cannot rely on the absolute failure
index, since the actual model of the Django system remains
unknown. We can, however, compute the failure index (see
Definition 13) where the test suite T is the union of all the
test suites we generated for all the policies.

With regards to inferring constraints, the CuCV policy
generates the biggest test suite and requires also the largest
amount of time: around 1h for constraint inference from
Django0 (including oracle invocation). It has also the lowest
fi (8%), which however is not zero: no inferred model is
completely fault-free. The UC policy is the worst in terms
of failure index data, but it is the fastest in our experiment.
ValC produces a model with the largest number of constraints
and the failure index (20%) is the second lowest. However,
if we compare the failure index of Diango0 (79%), we can
say that all the testing policies can substantially improve the
initial empty model. In conclusion, all the models contain a
reasonable number of constraints and although our best policy
(CuCV) does not beat the manual model we have developed
(by using our best efforts), it can produce a rather correct
model.

Regarding the problem of repairing the initial manual
model, two out of four testing policies (CuCV and ValC) are
able to completely repair the manual model (at least when
considering the failure index based on the set of generated
tests), while the UC and CC policies did not improve the initial

model. For constraint repair, the number of tests and the time
required is generally lower (except for UC) than for the process
of inferring constraints. We conclude that the availability of
an initial model, even if it is not completely correct, makes
possible to obtain a fault-free model for a real system when
strong testing policies are applied.

Figure 6 reports the constraints for Django0 (the initial
model with empty set of constraints), Manual (the model
inferred manually), and for the repaired models produced
using CuCV and ValC (starting from Manual). The constraints
obtained in the final models are still readable, making a human
inspection possible for further modifications.

Django0
true

Manual (constraints " inferred " manually)
! PREPEND_WWW
! SECURE_SSL_REDIRECT
// if not DEBUG, "localhost" must be allowed
! DEBUG =>

(ALLOWED_HOSTS==LOCALHOSTIP or ALLOWED_HOSTS==LOCALHOST) #

CuCV (repairing Manual)
! PREPEND_WWW
! SECURE_SSL_REDIRECT
! DEBUG =>

ALLOWED_HOSTS==LOCALHOSTIP or ALLOWED_HOSTS==LOCALHOST #
ALLOWED_HOSTS==IP =>

! DEBUG or PREPEND_WWW or SECURE_SSL_REDIRECT #

ValC (repairing Manual)
! PREPEND_WWW
! SECURE_SSL_REDIRECT
! DEBUG =>

ALLOWED_HOSTS==LOCALHOSTIP or ALLOWED_HOSTS==LOCALHOST #
ALLOWED_HOSTS==IP => !DEBUG or SECURE_SSL_REDIRECT

Fig. 6: Django models obtained by repairing the manual model
using different testing policies

VI. RELATED WORK

The problem of finding and fixing constraints in combi-
natorial models has been addressed in the field of software
product lines. Henard et al. [17] assumes existence of valid
configurations of the given software system and use a SAT
solver to randomly generate configurations for an existing
feature model of the system. Once a conformance fault is
found, a constraint is added, removed or altered with certain
probability. The mutated feature model is compared against
the original using a pre-defined fitness function and the best
of the two is kept for future evaluation.

In contrast to Henard et al.’s work, we derive test cases in
a systematic fashion using combinatorial interaction testing.
Moreover, by applying policies presented in [11], we are able
to generate invalid configurations. Therefore, in contrast to
the work by Henard et al., we are able to find conformance
faults caused by an over-constrained model. Finally, we use a
systematic approach to fix the model by utilising BEN to find
the minimum fault-inducing configurations.

Some of our policies could be improved by integrating
the testing with negative values technique described in [8],
which disallows two invalid values to coexist in one test

case (negative test cases), assuming that every configuration
containing at least one invalid parameter is invalid. We did
not consider that technique because it does not apply to
the more general case (which is quite common) of invalid
configurations originating from t-way parameter interactions.
A possible future work is to modify our CV and ValC policies
to include only configurations that make exactly one constraint
false.

Arcaini et al. [2] used mutation testing to detect and fix
conformance faults by distinguishing a given feature model
from its mutants.

The problem of modelling and testing the configurations
of complex software systems is non-trivial. There has been
much research done in extracting constraints among parameter
configurations from real systems. For instance, the importance
of having a model of variability and having the constraints
in the model aligned with the implementation is discussed
in [23]. However, in that paper, authors try to identify the
source of configuration constraints and to automatically extract
the variability model. Our approach is oriented towards the
validation of a variability model that already exists. Moreover,
they target C-based systems that realise configurability with
their build system and the C preprocessor. A similar approach
is presented in [29], where the authors extract the compile-
time configurability from its various implementation sources
and examine for inconsistencies (for example, dead features
and infeasible options). We believe that our approach is
more general (not only compile-time and C-code) and can
be complementary in validating and improving automatically
extracted models.

Testing configurable systems in the presence of constraints
is tackled in [6] and [26]. In these papers, authors argue that
CIT is a very efficient technique and that constraints among
parameters should be taken into account in order to generate
only valid configurations. This allows to reduce the cost of
testing. Also in [3], authors showed how to successfully deal
with constraints by solving them using a constraint solver
such as a Boolean satisfiability solver (SAT). However, the
emphasis of that research is more on testing of the final system
not its combinatorial model. CIT is also widely used to test
SPLs [25].

In SPL the validation and extraction of constraints between
features is generally given in terms of feature models (FMs).
Synthesis of FMs can be performed by identifying patterns
among features in products and in invalid configurations and
build hierarchies and constraints (in limited form) among
them. For instance, Davril et al. applied feature mining and fe-
ature associations mining to informal product descriptions [9].
There exist several papers that apply search based techniques,
which generally give better results [10], [16], [21], [22].
However, checking and maintaining the consistency between
a SPL and its feature model is still an open problem.

VII. CONCLUSIONS

We propose a novel approach for automatically finding and
fixing faults in models of parameter configurations of software

systems. In particular, we described how combinatorial testing
techniques can be utilised for this purpose.

We used novel CIT policies introduced in our previous
work [11] that can help software testers discover faults in
the model of system configurations as well as faults in the
software implementation that the model describes. We call
these conformance faults.

In this paper we present a process for finding and fixing
conformance faults. We conduct several experiments on five
software systems to validate our approach. We show that
we can successfully repair existing combinatorial models.
Furthermore, we also show how our approach can be utilised
to derive constraints between parameters of large complex
software systems. The technique presented should help soft-
ware developers derive and fix combinatorial testing models by
automating this often purely manual and thus time-consuming
and highly error-prone task.

ACKNOWLEDGEMENTS

We would like to thank Laleh Sh. Ghandehari for her
assistance in the use of BEN and Paolo Vavassori for help
with the experiments.

REFERENCES

[1] P. Arcaini, A. Gargantini, and P. Vavassori. Validation of models
and tests for constrained combinatorial interaction testing. In The
3rd International Workshop on Combinatorial Testing (IWCT 2014) In
conjunction with International Conference on Software Testing ICSTW,
pages 98–107. IEEE, 2014.

[2] P. Arcaini, A. Gargantini, and P. Vavassori. Automatic detection
and removal of conformance faults in feature models. In Software
Testing, Verification and Validation (ICST), 2016 IEEE 9th International
Conference on, April 2016.

[3] A. Calvagna and A. Gargantini. A formal logic approach to constrained
combinatorial testing. Journal of Automated Reasoning, 45(4):331–358,
2010. Springer.

[4] A. Calvagna, A. Gargantini, and P. Vavassori. Combinatorial interaction
testing with CitLab. In Sixth IEEE International Conference on Software
Testing, Verification and Validation - Testing Tool track, 2013.

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: An approach to testing based on combinatorial design. IEEE
Transactions On Software Engineering, 23(7):437–444, 1997.

[6] M. Cohen, M. Dwyer, and J. Shi. Constructing interaction test suites
for highly-configurable systems in the presence of constraints: A greedy
approach. Software Engineering, IEEE Trans. on, 34(5):633–650, 2008.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of
highly-configurable systems in the presence of constraints. In ISSTA
International symposium on Software testing and analysis, pages 129–
139, New York, NY, USA, 2007. ACM Press.

[8] J. Czerwonka. Pairwise testing in the real world: Practical extensions to
test-case scenarios. In Proceedings of 24th Pacific Northwest Software
Quality Conference, Citeseer, pages 419–430, 2006.

[9] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang, and
P. Heymans. Feature model extraction from large collections of informal
product descriptions, Aug. 22 2013.

[10] J. M. Ferreira, S. R. Vergilio, and M. A. Quináiaferreia. A muta-
tion approach to feature testing of software product lines. In The
25th International Conference on Software Engineering and Knowledge
(SEKE) Engineering, Boston, MA, USA, June 27-29, 2013, pages 232–
237. Knowledge Systems Institute Graduate School, 2013.

[11] A. Gargantini, J. Petke, M. Radavelli, and P. Vavassori. Validation of
constraints among configuration parameters using search-based combi-
natorial interaction testing. In Search Based Software Engineering -
8th International Symposium, SSBSE 2016, Raleigh, NC, USA, October
8-10, 2016, Proceedings, pages 49–63, 2016.

[12] A. Gargantini and P. Vavassori. CitLab: a laboratory for combinatorial
interaction testing. In Workshop on Combinatorial Testing (CT) In
conjunction with International Conference on Software Testing (ICST
2012, April 17-21), pages 559–568, Montreal, Canada, 2012.

[13] A. Gargantini and P. Vavassori. Efficient combinatorial test generation
based on multivalued decision diagrams. In E. Yahav, editor, Hardware
and Software: Verification and Testing, Haifa Verification Conference
HVC 2014, volume 8855 of Lecture Notes in Computer Science, pages
220–235. Springer International Publishing, 2014.

[14] L. S. Ghandehari, J. Chandrasekaran, Y. Lei, R. Kacker, and D. R.
Kuhn. BEN: A combinatorial testing-based fault localization tool. In
Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, pages 1–4. IEEE, 2015.

[15] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:
a survey. Softw. Test, Verif. Reliab, 15(3):167–199, 2005.

[16] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang.
Search based software engineering for software product line engineering:
A survey and directions for future work. In Proceedings of the 18th
International Software Product Line Conference - Volume 1, SPLC ’14,
pages 5–18, New York, NY, USA, 2014. ACM.

[17] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon.
Towards automated testing and fixing of re-engineered feature models.
In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 1245–1248, 2013.

[18] D. R. Kuhn and V. Okum. Pseudo-exhaustive testing for software. In
SEW ’06: IEEE/NASA Software Engineering Workshop, volume 0, pages
153–158, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[19] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions
and implications for software testing. IEEE Trans. Software Eng,
30(6):418–421, 2004.

[20] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combinatorial software
testing. Computer, 42(8):94 –96, aug. 2009.

[21] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed. Reverse engineering feature models with evolutionary al-
gorithms: An exploratory study. In Search Based Software Engineering,
pages 168–182. Springer, 2012.

[22] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A systematic map-
ping study of search-based software engineering for software product
lines. Information and Software Technology, 61:33 – 51, 2015.

[23] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Mining configuration
constraints: static analyses and empirical results. In P. Jalote, L. C.
Briand, and A. van der Hoek, editors, ICSE, pages 140–151. ACM,
2014.

[24] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput.
Surv, 43(2):11, 2011.

[25] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon. Automated
and scalable t-wise test case generation strategies for software product
lines. In Proc. of the International Conference on Software Testing
(ICST), pages 459–468, Paris, France, April 2010. IEEE.

[26] J. Petke, M. B. Cohen, M. Harman, and S. Yoo. Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection. IEEE Trans. Software Eng., 41(9):901–924, 2015.

[27] J. Petke, S. Yoo, M. B. Cohen, and M. Harman. Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing. In Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Fede-
ration, August 18-26, 2013, pages 26–36, 2013.

[28] I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary decision diagrams
for combinatorial test design. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 254–
264, New York, NY, USA, 2011. ACM.

[29] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Feature
consistency in compile-time-configurable system software: Facing the
linux 10,000 feature problem. In Proceedings of the Sixth Conference
on Computer Systems, EuroSys ’11, pages 47–60, New York, NY, USA,
2011. ACM.

[30] P. Temple, J. A. G. Duarte, M. Acher, and J.-M. Jézéquel. Using machine
learning to infer constraints for product lines. In Software Product Line
Conference (SPLC), 2016.

[31] M. Voelter. Using domain specific languages for product line engi-
neering. In Proceedings of the 13th International Software Product
Line Conference, SPLC ’09, pages 329–329, Pittsburgh, PA, USA, 2009.
Carnegie Mellon University.

