
Generation of Behavior-Driven Development C++

Tests from Abstract State Machine Scenarios?

Silvia Bonfanti1, Angelo Gargantini1, and Atif Mashkoor2,3

1 Università degli Studi di Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it

2 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
atif.mashkoor@scch.at

3 Johannes Kepler University, Linz, Austria
atif.mashkoor@jku.at

Abstract. In this paper, we present the AsmetaVBDD tool that au-
tomatically translates the scenarios written in the AValLa language
(used by the asmeta validator (AsmetaV)) into Behavior-Driven De-
velopment scenarios for C++.

1 Introduction

The Behavior-Driven Development (BDD) is considered as the evolution and
extension of the Test-Driven Development (TDD) [12]. It is increasingly being
used to improve the code quality and reducing error rates in software. It aims
at writing automated acceptance tests that represent complex system stories
or scenarios. BDD builds upon TDD by requiring testers to write acceptance
tests describing the behavior of the system from customers' point of view. While
classical unit tests focus more on checking internal functionalities of classes, BDD
testers take care to write tests as examples that anyone from the development
team can read and understand [13]. BDD is currently supported at the level of
code by several tools like Cucumber [13] for Java, PHP and C#, or Catch2 for
C++4.

The use of scenarios is common not only at the code level but also at the
level of (abstract) models. The scenario-based techniques have been applied in
di�erent research areas and a variety of de�nitions, modes of use, and interaction
mechanisms with users are given. In particular, scenarios have been used in the
area of software engineering [1,10], business process reengineering [2], and user
interface design [9]. The author in [8] classi�es scenarios according to their use
in the systems development ranging from requirements analysis, user-designer
communication, examples to motivate design rationale, envisioning (imagined
use of a future design), software design (examples of behavior thereof), to im-
plementation, training, and documentation.

? The writing of this article is supported by the Austrian Ministry for Transport,
Innovation and Technology, the Federal Ministry of Science, Research and Economy,
and the Province of Upper Austria in the frame of the COMET center SCCH.

4 https://github.com/catchorg/Catch2

In the past, we have introduced the idea of using scenarios for validating
Abstract State Machines [6] and developed a language AValLa (and a corre-
sponding tool) [7] for writing scenarios, which is integrated into the asmeta
framework [3]. With AValLa, the designer can describe a scenario, which is
brie�y a sequence of external actor actions and expected reactions of the sys-
tem. Scenarios can be executed in order to check whether the actual behavior of
the system conforms to the requirements.

Although most asmeta tools work at the abstract speci�cation level, asmeta
also supports the automatic generation of C++ code [4] and of unit tests [5]. In a
classical model-driven engineering approach [11], the designer writes the abstract
speci�cation and then through a process of systematic transformation, s/he can
obtain the source code together with unit tests. In this way, the generated code
comes with a set of unit tests that can also be used later for regression testing.

In this paper, we extend the asmeta framework with a translator, called
AsmetaVBDD, which translates an abstract scenario written in the AValLa
language to the BDD code. The paper is organized as follows. Sect. 2 presents
some background about BDD, AValLa, and the translation process form ASM
speci�cations to C++. The translation from AValLa to BDD code is presented
in Sect. 3. The paper is concluded in Sect. 4 with the proposed future work.

2 Background

In this section, we present the framework we use for BDD at the level of code
along with the AValLa language and its use. However, we �rst introduce a
simple example to show the output obtained by translating the AValLa scenario
to BDD.

The Lift example As a case study, we take part of a simple example of lift
from [7]. The lift has for each �oor one button, which, if pressed, causes the
lift to visit (i.e., move to and stop at) that �oor. A lift without requests should
remain at its �nal destination and await further requests. The call of the lift is
modeled in the ASM speci�cation as a monitored function calledAtFloor: Integer

-> Boolean, while the state of the lift is modeled by three controlled functions:
�oor that contains the �oor number where the lift cabin is, state that represent
whether the cabin is moving, and direction that shows the direction of a moving
cabin.

2.1 BDD for C++

The are several frameworks for BDD in C++. One of the most powerful is Catch2.
Catch2 is a testing framework for C++ that supports unit testing by means of
macros. Moreover, it allows to write tests as a nested series of Given-When-
Then statements in the style of BDD. In addition to the classic style for writing
test cases, Catch2 supports an alternative syntax that allows to write tests as
executable speci�cations in a classical BDD style. This set of macros include:

SCENARIO(scenario name)

that signals the start of a scenario/test case. Other macros include:

2

#include "catch.hpp"

SCENARIO("lift is called") {

GIVEN("A lift at ground level") {

Lift lift;

REQUIRE(lift.floor == 0);

REQUIRE(lift.state == STOP);

WHEN("the lift is called at floor 4") {

lift.calledAtFloor(4);

THEN("the lift start moving") {

REQUIRE(v.state == MOVING);

REQUIRE(v.direction == UP);}}

....

}}

Fig. 1: A simple Catch2 BDD test

scenario liftstarts
// load ASMETA speci�cation
load Lift.asm
// check initial state
check �oor = 0;
check state = STOP;
// lift is called at �oor 4
set calledAtFloor(4) := true;
// perfrom a step
step

// lift is moving upward
check state = MOVING;
check direction = UP;
check �oor = 1;
// ...

Fig. 2: A simple AValLa scenario

GIVEN(something)

WHEN(something)

THEN(something)

Fig. 1 shows an example of a scenario written in Catch: when the lift is called
to the fourth �oor from the ground �oor, then it starts moving upwards.

2.2 AValLa

In [7], we have introduced a domain speci�c language, called AValLa, to be
used by the designer to manually describe scenarios (see Tab. 1). A Scenario

represents a scenario of a provided ASM speci�cation. Basically, a scenario has
a name, a spec denoting the ASM speci�cation to validate, and a list of target
commands of type Command. A Command and its concrete sub-classes provide
a classi�cation of scenario commands. The Set command updates monitored or
shared function values that are supplied by the user actor as input signals to the
system. Command Step represents the reaction of the system, which executes
one single ASM step. The Check class represents commands supplied by the
user actor to inspect external property values and/or by the observer actor to
further inspect internal property values in the current state of the underlying
ASM. Finally, an Exec command executes an ASM transition rule when required
by the observer actor. AValLa supports also invariants of scenarios and the
semantics of the language is given in terms of an ASM itself, so to execute a
scenario asmeta uses the ASM simulator. An example of an AValLa scenario
representing the same behavior of the C++ code is reported in Fig. 2.

3

Abstract syntax Concrete syntax

Scenario scenario name
load spec_name
[C1 . . . Cm]

where Cj are commands: Set, Exec, Step, or Check

Set set loc := value;
where loc is a location term for a monitored function, and value is a term denoting
a possible value for the underlying location

Step step

perform a machine step (compute update set and apply it to the current state)

Check check expr;
where expr is a boolean-valued term made of function and domain symbols of the ASM

Exec exec rule;
where rule is a rule of the underlying ASM

Table 1: The AValLa concepts and their textual notation

2.3 asmeta to C++

The translation from ASMs to C++, performed by the tool Asm2C++, has been
presented in [4]. We recollect here some notions that will be used in the next
section. Every ASM X is translated to a class CX in which the monitored and
controlled functions are translated to C++ �elds of CX . A step in the ASM is
translated to C++ as a call of two functions: one representing the main rule, and
the other one, called updateState(), applies the update set to the controlled
part of the state.

3 Generation of BDD tests from AValLa

The Catch2 testing framework and AValLa share several concepts that can
be found in every BDD approach, so the translation from AValLa to Catch2
is rather straightforward. Such translation complements the generation of C++

code [4] and the generation of C++ tests [5] already supported by asmeta. Our
translator is de�ned as a Model-To-Text transformation (we use Xtend5 to de�ne
it). It takes anAValLa scenario and produces the C++ code. Table 2 summarizes
the transformation rules we have de�ned, which are brie�y described here:

scenario is simply translated to a SCENARIO macro. The name is taken from
the AValLa scenario.

load is translated to a declaration of an instance of the class that is obtained
by translating the ASM to C++. Let's call that instance X.

set all the set commands before a step command are grouped together and
translated to a WHEN macro. Inside WHEN, every set is translated to a simple
assignment to the �eld representing the monitored function.

check is translated to a REQUIREmacro. The argument of the check is translated
to a C++ term, by reusing the translation already de�ned in Asm2C++.

5 https://www.eclipse.org/Xtext/

4

AValLa Catch2

scenario name
load spec.asm

SCENARIO(name){

spec X; // create an instance of spec

...

}

set block
set l1 = v1
...
set ln = vn

WHEN("set monitored variables"){

X.l1=v1;

...

X.ln=vn;

}

check expr REQUIRE(X.C++expr);

step

THEN("n-th step occurs"){

X.r_main();

X.updateState();

}

exec rule add method de�nition rule() and call it

Table 2: Translation of AValLa constructs to Catch2 macros

step represents an abstract step of ASM. In C++, it is translated to a call of the
function r_main() that computes the update set, and a call of the function
updateState() that applies the update set to the current state in order to
apply the new values of controlled location computed by the main rule.

exec allows the user to execute an arbitrary asmeta rule. The tool translates
the rule to a C++ function that is called whenever exec rule is invoked.

By following the rules above, the AsmetaVBDD tool generates a C++ �le
that can be compiled and executed. If the scenario is validated for the ASM,
and translations to C++ of the ASM and of the AValLa scenario are correct,
then the BDD scenario in C++ will be correct and, when executed, no REQUIRE

check will fail. However, there are two possible uses of the obtained BDD code.
First, the user can manually inspect the BDD test and check whether the C++

code actually has the intended behavior. In this way, we can produce the C++

code with its tests also given in the BDD style. The use of the BDD style
should increase the comprehension of the test by nontechnical stakeholders like
customers or business experts. Second, the scenarios can be used for regression
testing. Indeed, sometimes the C++ code is modi�ed in order to add further
details after its automatic generation. If one wants to check that the expected
behaviors are still preserved after the modi�cation, one can run the BDD tests
again for con�rmation.

4 Conclusions and future work

In this paper, we have presented an approach in which BDD tests are auto-
matically built from AValLa scenarios. The approach is also augmented by a
prototype tool AsmetaVBDD. However, not all of the AValLa constructs are
currently supported by the tool. For instance, we do not currently take into ac-

5

count blocks. In the future, we plan to extend our tool in order to be able to
translate any AValLa scenario. Moreover, most of the textual information in
the BDD scenario is generated automatically from the corresponding AValLa
scenario but it may not be very informative. To add speci�c information, we plan
to extend the translator such that it can also read the comments in the AValLa
scenario, understand the commands they refer to, and translate them into BDD
scenario. Currently, the comments are simply skipped since the AValLa parser
just ignores them. In this way, we loose some valuable information we already
have in the abstract scenario. Furthermore, we plan to develop a feature that
automatically translates a BDD scenario to an AValLa scenario. This is use-
ful for stakeholders involved in the validation process who do not know the
AValLa language. They can write scenarios using their preferred BDD tool and
AsmetaVBDD automatically translates them into AValLa scenarios.

Acknowledgments We would like to thank Andrea Spalluzzi who has developed
the �rst version of the translator during his master thesis.

References

1. Anderson, J.S., Durney, B.: Using scenarios in de�ciency-driven requirements en-
gineering. In: Proceedings of the International Symposium on Requirements Engi-
neering. pp. 134�141. IEEE (1993)

2. Antón, A.I., McCracken, W.M., Potts, C.: Goal decomposition and scenario analy-
sis in business process reengineering. In: Advanced Information Systems Engineer-
ing. pp. 94�104. Springer Berlin Heidelberg (1994)

3. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience
41, 155�166 (2011)

4. Bonfanti, S., Carissoni, M., Gargantini, A., Mashkoor, A.: Asm2C++: A Tool for
Code Generation from Abstract State Machines to Arduino. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NASA Formal Methods: 9th International Symposium, NFM
2017, Mo�ett Field, CA, USA, May 16-18, 2017, Proceedings. pp. 295�301. Springer
International Publishing (2017)

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ Unit Tests from
Abstract State Machines Speci�cations. In: 14th Workshop on Advances in Model
Based Testing (A-MOST) @ICST 2018, Västerås, Sweden (2018)

6. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag New York, Inc. (2003)

7. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ Conference, September 16-18, 2008, London, UK. Lecture Notes in Computer
Science, vol. 5238, pp. 71�84. Springer (2008)

8. Carroll, J.M.: Five reasons for scenario-based design. Interacting with Computers
13(1), 43�60 (2000)

9. Carroll, J.M., Rosson, M.B.: Getting around the task-artifact cycle: How to make
claims and design by scenario. ACM Transactions on Information Systems 10(2),
181�212 (Apr 1992)

10. Potts, C., Takahashi, K., Antón, A.I.: Inquiry-based requirements analysis. IEEE
Software 11(2), 21�32 (Mar 1994)

11. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25�31 (Feb 2006).
https://doi.org/10.1109/MC.2006.58

6

12. Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. pp. 383�387. IEEE (aug 2011)

13. Wynne, M., Hellesøy, A.: The Cucumber Book Behaviour-Driven Development for
Testers and Developers. The Pragmatic Programmers, LLC (2012)

7

