
Lessons Learned from the Development of a
Mechanical Ventilator for COVID-19

Andrea Bombarda∗, Silvia Bonfanti∗, Cristiano Galbiati¶, Angelo Gargantini∗, Patrizio Pelliccione†,
Elvinia Riccobene‡, Masayuki Wada‡‡

∗University of Bergamo, Bergamo, Italy, {andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it
†Gran Sasso Science Institute (GSSI), L’Aquila, Italy |

Chalmers | University of Gothenburg, Gothenburg, Sweden, patrizio.pelliccione@gssi.it
‡Università degli Studi di Milano, Milano, Italy, elvinia.riccobene@unimi.it

¶Princeton University, Princeton, USA | Gran Sasso Science Institute, L’Aquila |
INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy, galbiati@princeton.edu

‡‡ AstroCeNT, N. Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland, masayuki@camk.edu.pl

Abstract—During the COVID-19 pandemic, many researchers
all over the world have offered their time and competencies to
face the heavy consequences of the disease. This is the case of
a group of physicists, engineers, and physicians that around the
middle of March 2020 started to develop a simplified mechanical
lung ventilator, called MVM (Mechanical Ventilator Milano), to
answer the high request of ventilators for Acute Respiratory
Distress Syndrome (ARDS) in intensive care units. A prototype
was ready in around one month.

Since medical software malfunctions can lead to injuries or
death of patients, before marketing MVM ventilators and dis-
tributing them in hospitals, software certification in accordance
with the IEC 62304 standard was mandatory to guarantee
system reliability. The team was then complemented by computer
scientists specifically devoted to this task. The software re-
engineering process, which lasted around two months from the
end of the prototype, brought to a strong re-implementation of the
device software components, which involved all the stakeholders
in a continuous integration setting.

In this paper, we report the experience of the MVM control SW
re-engineering necessary to show evidence that the SW adheres
to the standards and to consequently obtain the certification. We
share results and lessons learned from this social project, where
more than 100 volunteer researchers worked towards software
certification at the extreme of their strength to get a real device
finished in a rush since strongly required to support physicians
in treating COVID-19 patients.

I. INTRODUCTION

The development of safety-critical devices considers certi-

fication as a mandatory step [1]–[3] since a software failure

or malfunctioning can compromise the health of human be-

ings that interact with it. Examples of safety-critical systems

certification can be found in avionics [4]–[6], robotic applica-

tions [7], cyber-physical systems [8], and healthcare [9].

In healthcare, software certification is required when the

software is itself a medical device [10]–[14] and it is regulated

by the FDA Guidelines [15] and the IEC 62304 [16].

Medical system certification is a complex process, which has

been addressed using different solutions. Even if using formal

methods for software certification is a viable solution [17]–

[19], some issues about their use are still open and they

are not widely used in practice, except for model-based

techniques [20].

The importance of a well-documented and correct software

life cycle in the development of medical systems has been

discussed in [21] and [22]. It is not limited to just the safety

and the certification of medical devices [23], since adopting

frameworks and the good principles of software engineering

can help developers to compare different medical devices for

identifying gaps between them and improve the capabilities of

products [24]. The focus on well-documented and regulated

frameworks poses some constraints on the adoption of agile

software development or requires adaptation of selected agile

methods and practices [25]. In the literature, we can find

attempts to apply agile practices also in medical software

development planning, for instance by integrating the more

classical V-model with the agile one [26], [27].

In this paper, we aim at investigating whether the bunch

of knowledge and experience we, as a community, acquired

in the last years is sufficient for producing software devices

that are compliant with safety standards when we are under

emergency. By emergency we mean producing software under

these two constraints: 1) the first hard constraint is time, mean-

ing that the software device should be produced as soon as

possible1; 2) the second hard constraint concerns establishing

a development team in a hurry, in an emergent and voluntary

fashion, based on the personal network, heterogeneous under

various dimensions, and composed by people that dedicate

their private time to the project, while still continuing their

normal job. In other emergency situations, like hurricanes or

earthquakes, there can be additional constraints like lack of

energy power or Internet connection. However, in the context

of this paper, we limit ourselves to the two constraints above,

which are those that we observed in the experience we report.

Specifically, the research questions we want to answer are:

1Indeed, we might argue that time is a constraint for every company and
for the production of almost every product. However, sometimes there are
(emergency) situations that push even more this constraint.

24

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00016

• RQ1: Which development process is more appropriate

for the development of safety-critical devices under emer-

gency?

• RQ2: How the activities of the development process can

be performed in order to be simplified and sped up under

emergency?

• RQ3: How to deal with a heterogeneous development

team built in emergent and voluntary fashion?

We provide an answer to these research questions by re-

porting our experience in developing an electro-mechanical

ventilator for COVID-19, intended to provide ventilation

support for patients that are in intensive therapy and that

require mechanical ventilation. The produced mechanical lung

ventilator, called MVM (Mechanical Ventilator Milano)2, aims

to be reliable, easily reproducible on a large scale, available

in a short amount of time, and at a limited cost [28], around

1/5 with respect to other ventilators. The project started from

an idea of the physicist Cristiano Galbiati, who was also the

leader of the project, and saw, among others, the participation

of Nobel prize Arthur McDonald, Canadian leader of the

MVM Consortium. More precisely, experience results reported

here concern re-engineering of the MVM software, necessary

to adhere the software to the medical standards and obtain

the certification. This required a serious rework on the overall

software development, including requirements, architecture,

design, testing, and so on. The effort and time required to

certify and, consequently, re-engineer the application largely

overcome the effort and time to build the initial version of the

mechanical ventilator. We share results and lessons learned

from this social project where more than 100 researchers

having different knowledge and expertise, worked hard and

fast in a strong collaborative manner to manage the software

certification and to get a real device finished in a rush since

strongly required to support physicians in treating COVID-19

patients. Note that almost all the team members have worked

on a voluntary basis and monetary compensation has never

been expected.

The paper is structured as follows. Sect. II presents the

methodology we have used in order to provide an answer to

our research questions and a brief case description. Sect. III

presents the IEC 62304 which has guided the development

of the MVM ventilator, while in Sect. IV we present the

software life-cycle that has been followed during this project

and how it has been applied. Sect. V describes in detail all

the development phases and the lessons learned during each of

them, and Sect. VI presents related works in which software

development and emergency situations are combined. Finally,

Sect. VII discusses our lessons learned, by mapping each of

them to the research questions, and concludes the paper.

II. RESEARCH METHODOLOGY

In order to provide an answer to our research questions,

we conducted a case study [29], since it is a suitable method

for studying a phenomenon in its natural context, especially

2https://mvm.care/

when the phenomenon is difficult to study in isolation. Indeed,

in our case, it is difficult to clearly and precisely identify and

delimit in a real context the process and the activities to be

followed when producing software devices that are supposed

to be compliant to safety standards under emergency.

A. Case Description

MVM [30] is an electro-mechanical ventilator equivalent

to the old and reliable Manley Ventilator [31]. It requires a

source of compressed oxygen and medical air, that are readily

available in intensive care units.

MVM is intended to provide ventilation support for patients

that are in intensive therapy and that require mechanical

ventilation. There are different modes of ventilation; the most

common are volume-controlled and pressure-controlled. In the

first mode, the respiratory time cycle is based on the required

volume, while in the second mode the respiratory time cycle

is controlled by the pressure. MVM works in pressure mode

and, in particular, it implements two operative modes: Pressure

Controlled Ventilation (PCV) and Pressure Support Ventilation

(PSV). In the PCV mode, the respiratory cycle is kept constant

and the pressure level changes between the target inspiratory

pressure and the positive end-expiratory pressure. New inspi-

ration is initiated either after a breathing cycle is over, or

when the patient spontaneously initiates a breath. In the former

case, the breathing cycle is controlled by two parameters:

the respiratory rate and the ratio between the inspiratory and

expiratory times. In the latter case, a spontaneous breath is

triggered when the MVM detects a sudden pressure drop

within the trigger window during expiration. The PSV mode

is not suitable for patients that are not able to start breathing

on their own because the respiratory cycle is controlled by the

patient, while MVM partially takes over the work of breathing.

A new respiratory cycle is initiated with the inspiratory phase,

detected by the ventilator when a sudden drop in pressure

occurs. When the patient’s inspiratory flow drops below a set

fraction of the peak flow, MVM stops the pressure support,

thus allowing exhalation. If a new inspiratory phase is not

detected within a certain amount of time (apnea lag), MVM

will automatically switch to the PCV mode because it is

assumed that the patient is not able to breathe alone.

A prototype of the MVM device was built in around one

month and was available in the middle of April 2020. Till that

moment, the team working on MVM only included physicists,

physicians, and engineers as technicians and no well-defined

SW development process was applied, no documentation was

produced, and the certification was not even pursued. However,

as usually required by the governments of countries where a

medical device has to be marketed, the software certification

is mandatory before selling and using the device. It became

evident that the software has the actual responsibility for the

movements of the mechanical parts and, therefore, there should

be evidence for its correct functioning. Hence, a software task

force, a group of computer scientists (including the authors),

has been created to manage the certification of the software.

We had a confirmation of what Marc Andreessen said in

25

Activity # People Deliverables

System development plan 3 5
Supporting activities 22 12
System requirements 5 1
Software Architecture Design &

10 3
Risk Management
Software Requirement Specification &

21 15
Software Detailed Design
Implementation 18 N/A
Unit Testing 22 20
Integration Testing 11 2
Validation Testing 9 2

TABLE I: Summary of the effort required for each phase

2011 [32]: “Software Is Eating The World”. This has been

already observed in other fields, like in automotive [33], and

it is becoming evident the importance and the critical role of

the software.3

The need for certification brought to a strong re-engineering

of the MVM software components, while the hardware compo-

nents required only minimal changes. The whole process lasted

around two months and it involved, in a continuous integration

manner, all the stakeholders. The first step of the process

has concerned the analysis of all the standards that must be

followed during the development of a medical device, and the

identification of those related to MVM. Then, a plan and a

process for all the activities to be performed have been devised.

Starting from the software requirement specification, we have

redefined the software architecture and we have rewritten some

of the MVM components. Moreover, before the deployment of

the software, we have performed all the testing activities (unit,

integration, and validation testing) required by the standards.

The MVM software is released under MIT Licence4, and

it is stored in a private repository to control access to it and

avoid incorrect use. Initially, all the documents and the code

were publicly released, but, under the advice of a legal office,

the team decided to limit access to them in order to avoid the

risk of possible litigations.

B. Data Collection and Analysis

The role of the authors of this paper has been to con-

tribute to the definition of the certification process; they

also actively worked in many phases including requirements

engineering, architectural design, testing (unit, integration, and

validation), implementation, documentation, and traceability

checking among the various artifacts and documents.

To provide an overview of the project activities that created

the data for this case study, Table I reports (i) the activities,

(ii) the documentation, in terms of the number of deliverables

– each of these is in most cases a Microsoft Word document

–, and (iii) the number of people involved in each activity.

Data themselves are diverse. They consist of the various

deliverables created for the certification purpose, but also

of work items created during the project completion, such

3https://a16z.com/2019/08/16/software-eaten-world-healthcare/
4https://opensource.org/licenses/MIT

as whiteboards sketches, notes (personal or shared within

subgroups), and emails. Deliverables are all stored in a Google

Drive shared folder to which the authors have full access. The

authors of this paper collected independently those documents

that are not stored into a folder shared among the project,

merged, and cleaned, so to be used for the purpose of this

paper. Moreover, the authors have also full access to the entire

source code of the project, comments in the code, changes

requests, test reports, and so on.

In addition to that, for two months within the project, we

had a large number of virtual plenary and subgroups meetings,

which have allowed us to get a look at the overall picture of

the whole project and the single activities.

The practical experience we report in this paper is based

on the data summarized above, which can be considered

the starting point for identifying the development process,

the various phases composing it, as well as relevant lessons

learned that we will discuss in the paper. We aim to offer our

experience for reducing risks in future developments in similar

contexts. While collecting the lessons learned we made an

effort to report and identify both positive and negative results.

C. Validity Analysis

The data described in the previous subsection were created

not exactly for the purpose of proposing a general process and

guidelines, i.e. for this paper. Instead, data were created for

developing and producing a specific product, MVM, compliant

with safety standards and under hard time constraints. This

limitation cannot be removed by the fact that we had a

diverse and rich amount of data to be analyzed. To handle

this limitation, we use our direct experience and notes we

kept throughout the project.

All the authors extensively discussed the interpretation of

the data to achieve observer triangulation. In line with our de-

cision for conducting a case study, i.e. to study a phenomenon

in its natural context, our findings are indeed tied to the studied

case. The side effect of this realism of context comes at the

expense of the possibility for generalization [34].

III. IEC 62304 MEDICAL DEVICE SOFTWARE

CERTIFICATION

Once the prototype of MVM proved the feasibility of the

project, the developers had to assure safety and usability in

real environments. This started the effort to obtain the certifi-

cation of the ventilator, including the software that should be

compliant with the IEC 62304 standard [16].

IEC 62304 defines safety classes of the software, based

on the potential to create an injury to the patient: Class A - no

injury or damage to health is possible - Class B - non-serious

injury is possible - and Class C - death or serious injury is

possible. The standard itself prescribes a set of activities shown

in Fig. 1, which must be performed (and documented) during

the software development process. Based on the membership

class, some of these activities are mandatory.

Regardless of the class the software belongs to, the standard

requires the software development plan, as well as the software

26

Fig. 1: Main activities required by the IEC 62304 standard

requirements specification documents. The former establishes

the process followed during the development, the expected

deliverables, and the software development life cycle model.

The latter contains a description of the software functionalities,

system inputs and outputs, interfaces between software and

other systems, security requirements, user interface, etc. Once

the software requirements are defined, the software architec-

ture design is derived for software belonging to class B or class

C. Furthermore, a software detailed design for each software

unit is required for class C. For all classes, the standard

requires performing software system testing of the entire

system, e.g., verifying that for the input provided the expected

output is obtained. This system testing activity corresponds to

so-called integration testing in software engineering, and it is

the only required testing for software in class A, while for

software belonging to class B or class C, it comes after the

(required) software unit verification at the component level,

and software integration at the architectural level. The standard

is flexible about organization of testing by types and test stage,

but coverage of requirements, risk control, usability, and test

types (e.g., fault, installation, stress) should be demonstrated

and documented.

Finally, software release, software maintenance process, and

software risk management process documents (the last only in

case of class B and class C) are required for the certification.

Once the standard for software certification was identified,

the MVM team started the effort to make the MVM develop-

ment process and software compliant with the standard. This

brought to the identification of a number of activities to be

undertaken to assure the quality of the software embedded in

MVM, and of a process of their organization able to combine

the rigidity of the ISO standard development process with

the flexibility of an agile attitude: the overall goal was to

get the final certification in the fastest and most collaborative

way but still having the rigor required by the standard. This

clear and dynamic software development process brought to

re-engineer most software components to provide evidence of

a comprehensive and defensible argument that the system was

acceptably safe to operate in the identified context.

IV. DEVELOPMENT PROCESS

As already stated, we have undertaken several actions and

activities in order to assure the quality of the MVM software

according to the IEC 62304 standard. The following sec-

tions present the process with all the performed activities.

A. Software development planning

First of all, we have classified the device based on the

potential to cause injuries, as required by the IEC 62304
standard. Starting from the safety classification and taking into

account the activities required by the IEC 62304 standard

(which are summarized in Fig. 1), the whole MVM has been

classified in class C since death or serious injury is possible.

Considering the safety class and the mandatory activities, we

have defined the development process we intended to adopt,

depicted in Fig. 2. The list of activities is:

1) Software development planning, which regards the entire

MVM and maps to activity 5.1 in the standard including

all the supporting activities.

2) System requirements and Software architectural design,

which refer to the MVM and define the desired compo-

nents, after a risk analysis has been performed.

3) Software requirements analysis and Software detailed
design, which refer to a single component previously

identified during the architectural design phase.

4) Software implementation and Unit testing which are per-

formed for every component of the MVM ventilator.

5) Integration and Validation testing, which is performed by

integrating all the software components with the hardware

and by testing the system as a whole.

For each phase of the process, we have defined the tasks to

be performed and the deliverables.

As shown in Fig. 2, the adopted process model resembles

a V-model, and we mapped all the activities required by the

standard to process phases. For each software component, we

decided to work iteratively (inner dark circle in Fig. 2) to

guarantee the conformance among requirements, architecture,

design, and implementation and we have integrated the V-

model with agile practices to favor flexible responses to

changes due to the need to develop the ventilator as fast as

possible. In this way, we could parallelize the process in an

agile like mode and foster a collaborative approach. Moreover,

agile practices are considered by the outer circle in Fig. 2, after

validation/system testing all the processes can be re-executed

to integrate solutions of detected problems. In the end, we can

say that we combined various models of software development

processes, namely, V-model with agile practices and model-

driven development (mostly for the state machine component

described in Sec. V-E).

27

Software Integration and
integration testing

5.6

Validation/System testing
5.7

Software detailed Design Software Implementation

SW requirements
analysis Unit Testing

5.5

5.4 5.5

5.2

Component 1

Component nSw architectural design

System requirements

Risk management

5.3

5.2

7

So
ftw

ar
e

D
ev

el
op

m
en

t P
la

nn
in

g

5.
1

Su
pp

or
tin

g
ac

tiv
tit

es

Fig. 2: MVM software development process

Lessons learned 1: 1) IEC 62304 and V-Model: The

development process was strongly influenced by the IEC
62304 standard, so the V-model, although not mandated,

is the “best fit” with regulatory requirements as it produces

the necessary deliverables required when seeking regulatory

approval. 2) Use of agile practices: However, it was neces-

sary to integrate the V-model with agile practices, to combine

efficiency, quality, maintainability, and flexibility.

B. Teams definition and meetings planning
The activities and the teams were organized as follows.
1) Teams definition: Seven subgroups were created ad hoc

during the project taking into account competencies, workload,

and availability of individuals. We identified a group leader,

which was responsible for meeting deadlines and for reporting

the progress to the project coordinator. Each activity was

assigned to each team. The first group was in charge of defin-

ing the software development plan, supporting activities, and

performing the risk analysis; the second group had the goal to

define software requirements; the software architecture specifi-

cation was designed by group three; group four developed the

MVM software. Group five and six run software unit testing,

and integration and system testing, respectively. Another group

prepared the operational and maintenance manual.
2) Meetings planning: The whole MVM team met daily

(including holidays) for 1 hour from 5 PM to 6 PM CET

to check the status of the project and fix the goals for the

next day. The project leaders went through the task list to

check the status of each task and to check if some obstacles

emerged. Moreover, each sub-team had to organize task-

specific meetings to synchronize their work. Because of the

lockdown due to the COVID-19 emergency in Italy, only

a few in-person meetings were organized (and authorized

by the special national commissioner). Moreover, since the

teams include people from Europe and America, only the late

afternoons and nights were usable for online meetings.
The MVM project was challenging also for what concerns

the development team characteristics. The team was in fact

(i) multidisciplinary and heterogeneous, involving people with

different backgrounds including physicians, physicists, elec-

tronic engineers, and computer scientists, and (ii) composed of

volunteer people motivated by the social nature of the project

and by their passion.

Lessons learned 2: 1) Coordination effort: The project

was successful but there was a quite huge overhead of

coordination, with various calls every day from the morning

till evening. The coordination of the team should not be

underestimated. Open-source software development could be

a good development experience from which projects of this

nature can learn. 2) Enlarging team: We observed what is

reported in the Mythical Man-Month [35]: adding people is

not necessarily a good solution to improve the efficiency and

effectiveness of a team. 3) Commitment and participation:

Having responsibility for each sub-activity and setting strict

intermediate goals have favoured commitment and participa-

tion.

C. Supporting activities

In parallel to the definition of the development process, we

defined a set of supporting activities: project management,

the definition of a change control process, the definition

of the development environment, and the definition of code

guidelines.

1) Tools and instruments for project management: Initially,

we have selected the tools supporting us in project manage-

ment. We had evaluated the use of a project management tool

like Jira, but in the end, we decided to use only a combination

of more accessible tools, considering the heterogeneity of the

group, like Google Drive, GitHub, Zoom, and Slack. We have

decided to adopt UML (Unified Modeling Language) to model

system requirements and software architecture, and it turned

out to be understandable also for people not experts in software

engineering. We have put all the documents on Google Drive

and the code on GitHub, which provides hosting for software

development and version control using Git. This allowed peo-

28

ple from all over the world to contribute to developing different

parts of the software. This approach has allowed keeping track

of all the changes in the code, which is really useful to manage

and control the software development process. Furthermore,

we have configured a continuous integration system using

Travis CI5 (Continuous Integration).

2) Reviewing process: For all the activities that foresee

a document as output, we have applied two review steps.

The first review was performed internally by one designated

member of the team. Once the document was approved, the

Design Authority (Elemaster - the company involved in MVM

production) was in charge of reviewing such documents and

producing the Review Acceptance document containing all

the comments. Later, the comments were included in a new

version which was resubmitted again to the Design Authority.

This process has continued until the Design Authority has

approved the final version of the document.

3) Document templates: The initial templates for the docu-

ments were kindly provided by the Canadian Nuclear Labora-

tories (CNL) sub-team, which has great experience in critical

software certification (not in the medical field, though). This

helped greatly to speed up the process from the start. To keep

track of the links among requirements in the documents we

have used an in-house tool developed by a CNL collaborator.

This tool reads each document subject to traceability and

generates a matrix of requirements. The tool has been daily

executed to illustrate the links that exist and to report missing

or faulty links.

Lessons learned 3: 1) Multiplicity of tools: The use of a

great variety of tools (one tool for each particular purpose)

even if not integrated and not specific for software project

management, has provided indispensable support to the team.

2) Templates and review process: Having a partner that pro-

vided all the necessary templates and a clear review process

has helped to define which activities should be performed.

3) Use of UML: Standard graphical notations like UML

shown to improve communication and to be easily usable by

non-software experts (very skilled in other fields, though).

V. DEVELOPMENT PHASES

A. System requirements (5.2)

One of the obstacles met during the first implementation

of MVM, was the lack of well-defined and traceable system

requirements. This has caused a lot of misunderstanding

between the developers of different components and some

operations did not fit with the requirements of the standards

that regulate the ventilator development. According to point

5.2 of the standard, the system requirements activity has been

performed to define device requirements at a higher level of

abstraction.

In this phase, we have defined functional, performance,

safety, and cybersecurity requirements, the overall system

structure, environmental conditions, materials, and human

5https://travis-ci.org/

Controller GUI

Supervisor

UserHW

Safety class A

Safety class A

Safety class C

Fig. 3: Overall MVM software architecture

factors. Furthermore, each requirement has been uniquely

identified by a number.

The major change discovered during writing software re-

quirements was that the prototype was vulnerable to faults

because, in case of failure of one of the components, the

system was not able to put itself in a safe mode, such that

the valves are positioned to allow the patient autonomous

breathing. For this reason, the necessity to have a supervisor

came out. This required a change of the initial electronic board

with the introduction of a small micro-controller.

Reverse engineering some parts of the prototype was also

useful in order to get a complete and consistent requirements

specification of the device operation. It was applied when

no enough information was available, and this was the case,

for example, for the specification of the alarms. The reverse

process also helped to reveal details useful to specify the

duration of a trigger window, namely the time interval within

which spontaneous breathing can be detected (in PCV mode).

Lessons learned 4: 1) Written requirements: Not having

written requirements since the beginning led to having vari-

ous attempts to address the requirements in different software

components. For this reason, precise system requirements

are very important also in an emergency situation. Having

developers referring to the same written documents without

inconsistencies reduces the development time. 2) Reverse
engineering: For systems for which a prototype is present,

especially if it is developed by domain experts, reverse

engineering has shown to be a viable solution for discovering

functionalities and configuration parameters to be included

in system requirements. 3) Need of a traceability system: A

traceability system helps developers to trace all the require-

ments and their changes through all the development process.

B. Software Architecture Design (5.3)

As shown in Fig. 3, the architecture was designed to be

composed of three main components (or units according to the

terminology of the standard), namely Graphical User Interface

(GUI), Control Software (Controller), and Supervisor Software

(Supervisor).

The GUI is the software running on the touch screen

panel. It displays information to the user like airway pressure,

minute volume, positive-end expiratory pressure for the most

recent breath, respiratory rate, and peak inspiratory pressure.

Furthermore, it acquires data from the user: ventilation settings

and alarm settings. The controller receives user inputs from the

GUI, e.g. the start/stop ventilation command. It implements

the state machine of the ventilator behavior, which has mainly

29

ATmega328P

Supervisor Software (Supervisor)

InterfaceBreath
Monitor

Alarm

get
measurement

raise
alarm

set
alarm

Hardware
Drivers

Hardware
Monitor

get
measurement

set alarm

set
parameter

ESP32

Control Software (Controller)

Raspberry Pi 4

Graphical User Interface (GUI)

User

Serial
Communication «interface»

USB
serial port

«interface»
USB

serial port

«interface»
UART

«interface»
I2C Bus

«interface»
UART

GUI-Controller

InterfaceUser Interface

Monitor

Interface

Monitor
«interface»

I2C Bus

Control

Hardware
Drivers

Serial
Communication

I2C
Communication

get Alarm

get/set

get/set

patient
breath

get/set

get/set/status

run/pause

Fig. 4: Detailed MVM software architecture

three phases: ventilation off, running in PCV mode, and run-

ning in PSV mode. Based on the current state, it opens/closes

the input and output valves. Moreover, the controller manages

ventilator alarms in case of errors. The supervisor monitors the

overall behavior of the system. It checks if the controller, the

GUI, and the hardware are working as expected, and, in case

of errors, it raises alarms. Furthermore, the supervisor forces

the machine into a safe mode to prevent patient injuries in

case of errors during ventilation.

Lessons learned 5: 1) Upfront aspects balancing: As we

can learn from software architecting, it is important to go

towards “just-in-time architecture” [33] and to find a balance

between upfront aspects (what is planned before the start

of development) and emerging aspects (what appears as

decisions are taken in the course of the development, e.g.

by fixing wrong assumptions or making decision deliberately

postponed) [36]. 2) Importance of the architecture: Software

architecture is still important even during emergency devel-

opment. In fact, we have experimented that without a well-

defined architecture (as for the prototype), it was not clear

how software components were supposed to synchronize and

exchange information among them.

C. Risk management (7)

In the risk management activity, each component of the

MVM software has been classified based on the potential

to create injuries (see safety classes in Fig. 3) as required

by the IEC 62304 standard. Both GUI and controller are

classified as class A software because their behavior, despite

affecting the operation of the machine, does not cause patient

injuries. On the other hand, the supervisor is the most critical

component, since it both forces the machine into a safe mode

to prevent patient injuries in case of errors during ventilation

and intervenes in case of GUI and controller failures.

Lessons learned 6: 1) Safety assurance effort: Isolating

safety-critical features, by organizing the system in different

components, has allowed us to focus the safety assurance

effort on a limited portion of the system.

D. Software Requirement Analysis (5.2) & Software detailed
design (5.4)

The third activity consists of specifying for each software

component the requirements in a separate document, detailing

those introduced in the system requirements. The documents

contain functional and capability requirements, software inputs

and outputs, interfaces between software and other compo-

nents, alarms and warnings, user interface requirements, and

requirements related to system installation and maintenance.

We have widely used state machines to define the behavior

of GUI, Controller, and Supervisor. Often, we have used

diagrams and drawings, and in few cases a more powerful tool,

such as Yakindu (more in Sect. V-E), which has been used in

order to identify both states and events that trigger the change

of state. For each state, we have defined the detailed behavior,

the user inputs, the expected outputs, performance, and failure

conditions. Furthermore, for each software component, we

have defined the software unit interfaces, to ensure that the

software subsystem will communicate properly with external

components. Fig. 4 refines Fig. 3 and shows the detailed

architecture of MVM.

Users interact with the User Interface subcomponent, and

the interaction is mediated by the GUI controller and the

Interface component, which manages the connection with

the control software - via a USB serial port - or with the

Supervisor - via a UART interface. The monitor component is

used to monitor the interaction with the GUI.

The logic of the Control Software (Controller) is in the

Control subcomponent. This component is in turn composed of

two subcomponents, the valve controller controlling the valves

and the state machine component. The state machine compo-

nent controls the operation modes (i.e. ventilation off, running

in PCV mode, and running in PSV mode). The controller

receives user input from the GUI, e.g. the start/stop ventilation

command. The vital signs of the patient are monitored by the

monitor subcomponent, and it manages ventilator alarms in

case of errors. The controller also interacts with the hardware

through the Hardware Drivers component to open or close the

input and output valves.

The Supervisor Software (Supervisor) component gets mea-

30

Software Lines of code
unit Prototype Released version

GUI 14,347 26,027
Controller 4,653 14,331
Supervisor NA 2,689

TABLE II: Lines of code of the MVM software units

surements from the Hardware Drivers component, monitors

both the hardware devices and the patient breath, and, when

needed, e.g. when switching to the safety mode, raises alarms

and changes parameters of the controller and the GUI.

Lessons learned 7: 1) Modularity and parallelization:
Designing a product in a modular way has been a successful

decision, since, in a distributed project (such as the one of

the MVM) it has allowed different teams to work in parallel

on different parts of the system. 2) State machines for wide
interpretability: We have found that using state machines,

for the specification and the design, has contributed to favor

the discussion on the adopted solutions even with people not

used to software development since graphical representations

are easily understandable.

E. Implementation (5.5)

Some software components of the existing MVM prototype

needed to be re-engineered and re-implemented. Table II

reports the lines of code of the three main software units

(before the re-engineering effort and at the end).

The GUI component is written using the PyQT5 frame-

work in Python6. We have added several new functionalities

expected by the software requirement specifications. For ex-

ample, many alarms have been changed, in terms of thresholds

and behavior. Moreover, to avoid problems in the communica-

tion between GUI and controller, we have devised a new com-

munication protocol used by the GUI to send/receive messages

to/from the controller. In particular, we had to implement in

the communication protocol the guidelines defined in the IEC
61784 standard [37].

The MVM controller is written in C++ and it has been

changed a lot with respect to the prototype. One of the parts

that have been completely rewritten is the state machine. We

have introduced the use of the Yakindu Statechart tool7 for

its implementation. Fig. 5 reports a high-level version of the

state machine for the controller, showing the states in which

the ventilator can be and the events that cause state changes.

In detail, after the startup and the self-test phases, the machine

is in the ventilation-off mode. From that, it can go either to

the PSV or PCV modes. Inside these modes, there are other

sub-states (including inspiration and expiration) not reported

in the figure to keep it simple and readable. The C++ code of

the controller state machine has been automatically generated

from the Yakindu model.

6Qt is set of libraries for accessing many aspects of modern desktop and
mobile systems. PyQt5 is a set of Python bindings for Qt v5. More info at:
https://pypi.org/project/PyQt5/

7https://www.itemis.com/en/yakindu/state-machine/

Fig. 5: Yakindu state machine of the MVM

Since the re-engineering process has involved not only the

software but also the hardware part of the MVM, e.g. the

valve controller has been changed too, to fit with the HW

modifications. The change led to the definition of a new tuning

method. The controller has been also adapted in terms of

alarms since they have to comply with the ones that have

been added or modified in the GUI code. In particular, all

the alarms have been implemented to comply with the IEC
60601-1-8 [38] and ISO 80601-2-12 [39] standards.

In the re-engineered MVM version, the supervisor has been

developed in C++ from scratch, and it required the addition of

two different software serial lines: one used to communicate

with the GUI and one with the controller.

Lessons learned 8: 1) Mix of programming languages:
Using several programming languages in a single project

is usually discouraged [40]. However, in an emergency

(such as during COVID-19) in which the products have

to be delivered as soon as possible, we have experienced

that having more languages allows the inclusion of more

developers and speeds up the implementation process, with

only a minimal effort in integration of the code. 2) Coding
standards and guidelines: Sharing the coding standards and

guidelines (e.g., the importance of comments [41]) with all

the people involved in the implementation phase is of key

importance, in particular with heterogeneous development

groups, even during emergency development. 3) Advantages
of state machines in implementation: State machines added

flexibility and maintainability since it was very simple to

modify it and then regenerate code, which was directly

integrated, through a wrapper, to the hand-written code.

31

F. Unit Testing (5.5)

The testing activities have been executed in parallel to the

implementation, since every test failure has required correc-

tions in the code, and it has been performed against the unit

software requirement specifications.

As MVM has different components, each one implemented

using a different programming language, we have used several

testing frameworks. We have unit-tested the GUI using PyTest-

Qt8, which has allowed us to simulate users by faking clicks

on the buttons. To test the controller and the supervisor, we

needed to mock the hardware to emulate the interaction with

it, and test the software units by using the Catch2 framework9

and the Trompeloeil mocking library10.

Besides, we have configured a continuous integration system

on Travis CI to guarantee that new software implementations

did not compromise the functioning of the already existing

code. By using the CI tool, we have re-executed all the unit

tests for every commit made on each component.

We have tracked all the testing failures using the GitHub

issues tracking system and this has allowed us to monitor the

progress of the fixes in the software.

Lessons learned 9: 1) Testing not only safety-critical compo-
nents: Defining in advance the safety classes of all the com-

ponents in the developed system can increase significantly

the rapidness of testing activities. In fact, medical software

safety standards do not mandate extensive unit testing for

class A components. Thus, a good practice is to design the

system in a modular way, isolating all the non-dangerous

functions (i.e., in class A) that testers can limitedly check.

2) Importance of testing: Besides what is required by the

standards, testing activities are important when performed

for safety-critical components. This is a consolidated aspect

when working with software engineers but not for all the

people composing heterogeneous teams such as the MVM

ones. 3) Advantages of CI tools in community projects: As

MVM has been a community project, where a lot of people

have worked at the same time on the same system, CI tools

have proved to be crucial for maintaining under control the

modifications made by all the developers.

G. Integration (5.6) & Validation Testing (5.7)

This activity has required incremental integration between

software units and hardware components. The main challenge

has been the need of having the hardware available since

some of the software components included in the controller

or supervisor require direct interaction with it. Even if during

the first integration phases the HW can be ignored, it must be

considered for the final integration steps. Thus, final integra-

tion testing phases have been performed on-site, only by the

people working in the company that produces the MVM, or

by the ones that had a physical version of the ventilator. As

8https://pypi.org/project/pytest-qt/
9https://github.com/catchorg/Catch2
10https://github.com/rollbear/trompeloeil

we worked with a ventilator, we had to simulate the patients.

For this purpose, we have used an active lung simulator, such

as the ASL 5000 [42], or a passive mechanical one. After

the execution of the integration testing activities, for each one

of the test cases, we have reported the outcomes in Integration

Test Procedure and Integration Test Report documents.

During validation testing the whole system has been tested

as a unit, to confirm the correct behavior of MVM according

to the system requirements. This activity has been performed

over an actual physical version of MVM and simulating the

patient breath by using the ASL 5000 active lung simulator.

It has been guided by the ISO 80601-2-12 standard [39],

to prove the basic performance and usability of the ventilator.

Lessons learned 10: 1) Integration testing for SIMDs: It

is particularly challenging to develop and validate software-

in-medical-devices (SIMDs) and in general, systems that

integrate hardware, software, and mechanics by distributed

teams. Often, real hardware is needed for testing the software

that is affected or affecting a piece of hardware. Software-in-

the-loop simulation is often a good solution to this challenge;

however, it is not a solution in general. In fact, simulation

requires a special setting with professional simulation tools

and an accurate hardware model. They are not always easily

available, especially in a context in which the hardware

is under development as the software is. Moreover, as we

can learn from robotics, “Current simulation solutions are
not able to emulate real-world phenomena in a sufficiently
realistic manner. ” [43].

VI. RELATED WORKS

There are lately several research projects that study the

impact of the COVID-19 pandemic on the way software

developers work [44]–[47]. These papers try to relate practices

adopted because of the pandemic, especially Working From

Home (WFH), with the productivity and the well-being of

software developers working on the usual software projects.

In all these papers, the authors signal a decrease in productivity

due to the difficulty of coordination between colleagues and to

the stress because of the pandemics. In our MVM experience,

we cannot say the same: people worked harder because of the

need and willingness to finish as soon as possible a crucial

product for COVID-19 patients. Not having direct access to the

physical devices of course has had a negative impact on some

activities but the team found several solutions to overcome

also these problems (e.g., see Sect. V-G).

On the other hand, there are studies and experience reports

about using already existing software, and IT approaches,

for an emergency, also applied to COVID-19 patients [48],

[49]. However, no particular attention is given to software

development. Other studies are focused on developing new

medical software but in a classical software development

environment [50], [51]. However, our study is different from

that, since it is addressing the problem of developing and

certifying a piece of software for an emergency amid the

emergency itself. Some suggestions like the integration of agile

32

practices and the need for rigorous requirement specification

have been applied to our project as well, but we expect that

medical SW development without any emergency is more

planned and structured, and some of the lessons we learned

may not hold.

Other studies describe the development of new software and

AI solutions for COVID-19 during the emergency. The area

of medical imaging is, as expected, the most relevant [52].

Machine Learning algorithms have been promptly adapted to

the diagnosis of COVID-19 cases. In [53], the authors present

a rapid AI development cycle for an automated detection

solution using deep learning CT Image Analysis. Those papers

focus more on data collection and management than software

development. Regarding, instead, the SW development of

medical devices for COVID-19, we can compare MVM with

the numerous open-source community-driven projects working

on mechanical ventilators [54]. We could not found reports

on their experience in SW development and certification. Not

surprisingly, only a few of them11 reached the certification

while many others, even if very promising, are still behind.

We believe that this paper could provide a guideline for them

as it would help, God forbid, future similar projects.

VII. CONCLUSION AND FINAL REMARKS

In this paper, we have presented our experience regarding

the development and certification of the MVM, a mechanical

ventilator for COVID-19, with respect to the IEC 62304
standard. The certification required a re-engineering of the

entire software since in the prototype the software component

was underestimated. What we learned from this experience

is that obtaining certification is not just producing the docu-

mentation that is needed to get a stamp from a certification

authority, but instead, we had evidence of the value of being

obliged to follow a certification process even in emergency.

Besides having an apparently functioning prototype, the effort

of adhering to a certification process led to discovery various

malfunctions and errors in the implementation. For instance,

before the re-engineering, there was no clear maximal limit

on the duration of alarm audio pause, while its duration shall

not exceed 120 sec without healthcare professional operator

intervention. Moreover, in the implementation, there was no

clear distinction between snooze (to allow the operator to

pause the active auditory alarm signals) and acknowledge (to

allow the operator to cease the alarm signal for which no

associated alarm condition currently exists - alarm reset). The

standard requires snooze and acknowledge to be two separate

functionalities.

In only 42 days from the initial prototype production to

the demonstration of performances (the fastest approval by

the FDA starting from a concept), the FDA (Food and Drug

Administration) declared that the MVM falls within the scope

of the Emergency Use Authorization (EUA) for ventilators12.

The EUA is released when certain safety criteria are met even

11https://bit.ly/2POPm3g
12https://bit.ly/3dcZ6vs

RQs Lessons Learned (LL)

RQ1 (Process) LL1.1 - IEC 62304 and V-Model
LL1.2 - Use of agile practices
LL3.1 - Multiplicity of tools
LL3.2 - Templates and review process

RQ2 (Activities) LL4.1 - Written requirements
LL4.2 - Reverse engineering
LL4.3 - Need of a traceability system
LL5.1 - Upfront aspects balancing
LL5.2 - Importance of the architecture
LL6.1 - Safety assurance effort
LL7.1 - Modularity and parallelization
LL8.1 - Mix of programming languages
LL8.2 - Coding standards and guidelines
LL8.3 - Advantages of state machines in implementation
LL9.1 - Testing not only safety-critical components
LL9.3 - Advantages of CI tools in community projects
LL10.1 - Integration testing for SIMDs

RQ3 (People) LL1.2 - Use of agile practices
LL2.1 - Coordination effort
LL2.2 - Enlarging team
LL2.3 - Commitment and participation
LL3.3 - Use of UML
LL7.1 - Modularity and parallelization
LL7.2 - State machines for wide interpretability
LL8.1 - Mix of programming languages
LL8.2 - Coding standards and guidelines
LL9.2 - Importance of testing

TABLE III: Mapping between RQs and lessons learned

without the formal SW certification. Moreover, after we have

completed the re-engineering activity described in this paper,

the certification request has been forwarded to the Health

Canada agency and to European Certification Authority to get

the CE marking (following the standard certification process).

At the end of September 2020, MVM obtained the Health

Canada Authorization13 and at the beginning of May 2021 the

CE marking. Thank to these achievements, the MVM can be

now sold and used not only in the USA but also in Canada and

Europe. Many countries all around the world have manifested

interest in MVM ventilators. There is an ongoing project which

aims to deliver MVM devices where they are most needed, and

it is currently being sold by an African Union charity14. At the

moment the ventilator is produced by Vexos, which has started

the first production batch of 10,000 pieces to be delivered to

the Government of Canada, and Elemaster, which has actively

contributed in the project.

In this paper, we shared the lessons learned about the

development of the MVM under hard constraints. Tab. III

summarizes the lessons learned and maps them to the research

questions. We believe that the experience and the lessons

learned we report in this paper would help other groups work-

ing on similar projects, requiring certification by organizations

such as FDA, Health Canada, and CE.

ACKNOWLEDGMENT

The authors would like to thank the entire team who

contributed to the realization of the MVM project.

13https://bit.ly/30K3CfX
14https://breathoflifeafrica.org/#MentorProject

33

REFERENCES

[1] A. Kornecki and J. Zalewski, “Software certification for safety-critical
systems: A status report,” in 2008 International Multiconference on
Computer Science and Information Technology, 2008, pp. 665–672.

[2] G. Ferreira, C. Kästner, J. Sunshine, S. Apel, and W. L. Scherlis, “Design
dimensions for software certification: A grounded analysis,” CoRR, vol.
abs/1905.09760, 2019.

[3] A. Gannous and A. Andrews, “Integrating safety certification into
model-based testing of safety-critical systems,” in 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE),
2019, pp. 250–260.

[4] A. Wölfl, N. Siegmund, S. Apel, H. Kosch, J. Krautlager, and G. Weber-
Urbina, “Generating qualifiable avionics software: An experience report
(e),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 726–736.

[5] A. Wölfl, “Data management in certified avionics systems,” Ph.D.
dissertation, Universität Passau, 2018.

[6] A. Hovsepyan, D. Van Landuyt, S. Op de beeck, S. Michiels, W. Joosen,
G. Rangel, J. Fernandez Briones, and J. Depauw, “Model-driven soft-
ware development of safety-critical avionics systems: an experience
report,” vol. 1249. Hebig, Regina, 2014, pp. 28–37.

[7] R. Pietrantuono and S. Russo, “Robotics software engineering and certi-
fication: Issues and challenges,” in 2018 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2018, pp.
308–312.

[8] J. L. de la Vara, E. Parra, L. Alonso, R. Mendieta, B. López, and
J. M. Álvarez-Rodrı́guez, “Integration of tool support for assurance and
certification and for knowledge-centric systems engineering,” in 2019
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019, pp. 326–329.

[9] N. Hrgarek, “Certification and regulatory challenges in medical device
software development,” in 2012 4th International Workshop on Software
Engineering in Health Care (SEHC), 2012, pp. 40–43.

[10] S. Pelayo, S. Bras Da Costa, N. Leroy, S. Loiseau, and M.-C. Beuscart-
Zéphir, “Software as a medical device: Regulatory critical issues,”
Studies in health technology and informatics, vol. 183, pp. 337–42, 02
2013.

[11] I. Lee, G. J. Pappas, R. Cleaveland, J. Hatcliff, B. H. Krogh, P. Lee,
H. Rubin, and L. Sha, “High-confidence medical device software and
systems,” Computer, vol. 39, no. 4, pp. 33–38, 2006.

[12] M. N. K. Boulos, A. C. Brewer, C. Karimkhani, D. B. Buller, and R. P.
Dellavalle, “Mobile medical and health apps: state of the art, concerns,
regulatory control and certification,” Online Journal of Public Health
Informatics, vol. 5, no. 3, feb 2014.

[13] J. Neto, J. Damásio, P. Monthaler, and M. Morais, “Product-based safety
certification for medical devices embedded software,” Studies in health
technology and informatics, vol. 216, pp. 227–31, 08 2015.

[14] W. J. Gordon and A. D. Stern, “Challenges and opportunities in
software-driven medical devices,” Nature Biomedical Engineering,
vol. 3, no. 7, pp. 493–497, jul 2019.

[15] A. Ohne Autor Fd, “General Principles of Soft-
ware Validation; Final Guidance for Industry and
FDA Staff, Version 2.0,” FDA document formal, Jan.
2002. [Online]. Available: http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm085281.htm

[16] IEC 62304 Medical device software — Software life cycle processes,
International Electrotechnical Commission Std.

[17] “On the role of formal methods in software certification: An experience
report,” Electronic Notes in Theoretical Computer Science, vol. 238,
no. 4, pp. 3 – 9, 2009, proceedings of the First Workshop on Certification
of Safety-Critical Software Controlled Systems (SafeCert 2008).

[18] A. Bombarda, S. Bonfanti, and A. Gargantini, “Developing medical
devices from abstract state machines to embedded systems: A smart pill
box case study,” in Software Technology: Methods and Tools. Springer
International Publishing, 2019, pp. 89–103.

[19] P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene,
“Integrating formal methods into medical software development: The
ASM approach,” Science of Computer Programming, vol. 158, pp. 148–
167, jun 2018.

[20] S. Russo and F. Scippacercola, “Model-based software engineering and
certification: Some open issues,” in 2016 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2016, pp.
237–240.

[21] R. A. Schrenker, “Software engineering for future healthcare and clinical
systems,” Computer, vol. 39, no. 4, pp. 26–32, 2006.

[22] N. Lalband and K. Dwaram, “Software engineering for smart health-
care,” vol. 8, pp. 325–331, 04 2019.

[23] J. H. Weber-Jahnke, M. Price, and J. Williams, “Software engineering
in health care: Is it really different? and how to gain impact,” in 2013
5th International Workshop on Software Engineering in Health Care
(SEHC), 2013, pp. 1–4.

[24] E. Nazari, M. Shahriari, M. Edalati, and H. Tabesh, “Create frameworks
from software engineering to health care: A survey article info abstract,”
Journal of Biostatistics and Epidemiology, 01 2019.

[25] M. McHugh, F. McCaffery, and V. Casey, “Barriers to adopting agile
practices when developing medical device software,” in International
Conference on Software Process Improvement and Capability Determi-
nation. Springer, 2012, pp. 141–147.

[26] M. McHugh, F. McCaffery, and G. Coady, “An agile implementation
within a medical device software organisation,” in Software Process
Improvement and Capability Determination, A. Mitasiunas, T. Rout,
R. V. O’Connor, and A. Dorling, Eds. Cham: Springer International
Publishing, 2014, pp. 190–201.

[27] M. Mc Hugh, O. Cawley, F. McCaffcry, I. Richardson, and X. Wang, “An
agile v-model for medical device software development to overcome the
challenges with plan-driven software development lifecycles,” in 2013
5th International Workshop on Software Engineering in Health Care
(SEHC). IEEE, 2013, pp. 12–19.

[28] M. C. Di Guardo, E. Marku, W. M. Bonivento, M. Castriotta,
F. Ferroni, C. Galbiati, G. Gorini, and M. Loi, “When nothing
is certain, anything is possible: open innovation and lean approach
at mvm,” R&D Management, vol. n/a, no. n/a. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/radm.12453

[29] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[30] A. Abba et al., “The novel mechanical ventilator milano for the COVID-
19 pandemic,” Physics of Fluids, vol. 33, no. 3, p. 037122, mar 2021.

[31] R. N. Westhorpe and C. Ball, “The manley ventilator,” Anaesthesia and
intensive care, vol. 40, no. 5, pp. 749–750, 2012.

[32] M. Andreessen, “Why software is eating the world,” Wall Street Journal,
vol. 20, no. 2011, p. C2, 2011.

[33] P. Pelliccione, E. Knauss, R. Heldal, S. Magnus Ågren, P. Mallozzi,
A. Alminger, and D. Borgentun, “Automotive architecture framework:
The experience of volvo cars,” Journal of Systems Architecture, vol. 77,
pp. 83 – 100, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1383762117300954

[34] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering re-
search,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 27, no. 3, p. 11, 2018.

[35] F. P. Brooks, The Mythical Man Month. Prentice Hall,
1995. [Online]. Available: https://www.ebook.de/de/product/3236893/
frederick p brooks the mythical man month.html

[36] R. Wohlrab, U. Eliasson, P. Pelliccione, and R. Heldal, “Improving
the consistency and usefulness of architecture descriptions: Guidelines
for architects,” in 2019 IEEE International Conference on Software
Architecture (ICSA), 2019, pp. 151–160.

[37] IEC 61784 - Industrial communication networks, International Elec-
trotechnical Commission Std.

[38] J. Edworthy and C. Baldwin, “Medical audible alarms and IEC 60601-1-
8,” Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, vol. 60, no. 1, pp. 634–635, sep 2016.

[39] International Organization for Standardization. (2020) ISO 80601-2-
12:2020. [Online]. Available: https://www.iso.org/standard/72069.html

[40] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: a survey
of professional software developers,” Journal of Software Engineering
Research and Development, vol. 5, no. 1, apr 2017.

[41] J. Raskin, “Comments are more important than code: The thorough
use of internal documentation is one of the most-overlooked ways
of improving software quality and speeding implementation.” Queue,
vol. 3, no. 2, pp. 64–65, 2005.

[42] A. Dexter, N. McNinch, D. Kaznoch, and T. A. Volsko, “Validating
lung models using the ASL 5000 breathing simulator,” Simulation in
Healthcare: The Journal of the Society for Simulation in Healthcare,
vol. 13, no. 2, pp. 117–123, apr 2018.

34

[43] S. Garcia, D. Struber, D. Brugali, T. Berger, and P. Pelliccione, “An
empirical assessment of robotics software engineering,” in ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020), 2020.

[44] D. Ford, M.-A. Storey, T. Zimmermann, C. Bird, S. Jaffe, C. Maddila,
J. L. Butler, B. Houck, and N. Nagappan, “A tale of two cities: Software
developers working from home during the COVID-19 pandemic,” 2020.

[45] P. Ralph, S. Baltes, G. Adisaputri, R. Torkar, V. Kovalenko, M. Kali-
nowski, N. Novielli, S. Yoo, X. Devroey, X. Tan, M. Zhou, B. Turhan,
R. Hoda, H. Hata, G. Robles, A. M. Fard, and R. Alkadhi, “Pandemic
programming,” Empirical Software Engineering, vol. 25, no. 6, pp.
4927–4961, sep 2020.

[46] D. Russo, P. P. Hanel, S. Altnickel, and N. van Berkel, “The daily life
of software engineers during the covid-19 pandemic,” 2021.

[47] C. NicCanna, M. A. Razzak, J. Noll, and S. Beecham, “Globally
distributed development during covid-19,” 2021.

[48] B. A. Jr, “Use of telemedicine and virtual care for remote treatment in
response to covid-19 pandemic,” J. Medical Syst, vol. 44, no. 7, p. 132,
2020.

[49] A. Asadzadeh, S. Pakkhoo, M. M. Saeidabad, H. Khezri, and
R. Ferdousi, “Information technology in emergency management
of covid-19 outbreak,” Informatics in Medicine Unlocked, vol. 21,

p. 100475, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352914820306262

[50] C. Denger, R. L. Feldmann, M. Host, C. Lindholm, and F. Shull, “A
snapshot of the state of practice in software development for medical
devices,” in First International Symposium on Empirical Software En-
gineering and Measurement (ESEM 2007), 2007, pp. 485–487.

[51] M. McHugh, O. Cawley, F. McCaffcry, I. Richardson, and X. Wang, “An
agile V-model for medical device software development to overcome the
challenges with plan-driven software development lifecycles,” in 2013
5th International Workshop on Software Engineering in Health Care
(SEHC), 2013, pp. 12–19.

[52] F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, K. He, Y. Shi, and
D. Shen, “review of artificial intelligence techniques in imaging data
acquisition, segmentation, and diagnosis for covid-19,” IEEE Reviews
in Biomedical Engineering.

[53] O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang,
W. Ji, A. Bernheim, and E. Siegel, “Rapid ai development cycle for the
coronavirus (covid-19) pandemic: Initial results for automated detection
& patient monitoring using deep learning ct image analysis,” 2020.

[54] J. M. Pearce, “A review of open source ventilators for COVID-19 and
future pandemics,” F1000Research, vol. 9, p. 218, apr 2020.

35

