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Abstract—Self-adaptive systems autonomously adapt their be-
havior at run-time to react to internal dynamics and to uncertain
and changing environment conditions. Specification and verifica-
tion of self-adaptive systems are generally very difficult to carry
out due to their high complexity, especially when involving time
constraints. In the last case, in fact, the correctness of systems
depends also on the time associated with events.

This paper introduces a formal approach to specify and verify
the self-adaptive behavior of real-time systems. Our specification
formalism is based on Time-Basic Petri nets, a particular timed
extension of Petri nets. We propose adaptation models to realize
self-adaptation with temporal constraints and we adopt a zone-
based modeling approach to support separation of concerns
during the modeling phase. Zones identified during the modeling
phase can be then used as modules (TB Petri subnets) either in
isolation, to verify intra-zone properties, or all together, to verify
inter-zone properties over the entire system model and check that
all the temporal deadlines are met. We illustrate our approach
by modeling and verifying a time-critical Gas Burner system that
exhibits a self-healing behavior.

I. INTRODUCTION

Modern advanced systems are required to perceive im-
portant structural and dynamic changes of their operational
environment as well as of their internal status, and to adapt
to such changes autonomously [10], [12], [18]. They aim
at achieving particular quality goals and ensuring the re-
quired functionality in a fail-soft manner even in hostile or
error conditions realizing the so called self-* properties (self-
optimization, self-healing, self-protection, etc.).

The development of such self-adaptive systems is extremely
challenging and demands new formal approaches that can
efficiently tackle the problems of expressing autonomy re-
quirements and ensuring the functional correctness of the
system’s adaptation logic both at design time and at runtime.
However, the survey in [26] shows that, although the attention
for self-adaptive software systems is gradually increasing, the
number of studies that employ formal methods remains low,
and mainly related to runtime verification. Specification and
verification of self-adaptive systems are very difficult to carry
out, especially when involving time constraints. In fact, in
the latter case, the functional correctness of the system and
of its adaptation logic depends also on the time associated
with events. Most of the existing techniques are not effective
when dealing with real-time constraints, because quantitative
temporal aspects are not taken into account.

This paper introduces a formal approach to specify and
verify the behavior of real-time self-adaptive systems. Our
specification formalism is based on the Time-Basic (TB) Petri
nets (or simply TB net) [15], a particular timed extension
of Petri nets. We provide some enhancements to the TB net
formalism to deal with self-adaptive systems and real-time
constraints. We adopt and extend the adaptation models – one-
point adaptation, overlapp adaptation, and guided adaptation
– originally presented in [27], [28] to realize self-adaptation
with temporal constraints in TB Petri nets. Moreover, the
proposed specification approach allows for separation of con-
cerns during the modeling phase by dividing the system’s
TB Petri net model into zones1 – zone-based TB Petri nets.
Our verification approach allows for checking timed events
through the symbolic execution of the system’s TB petri net,
thus it allows also the verification of timed adaptation. Zones
of the TB Petri net identified during the modeling phase can
be used as modules (TB Petri subnets) either in isolation, to
check intra-zone properties, or all together, to check inter-
zone properties over the entire system model. We illustrate
our approach by modeling and verifying a time-critical Gas
Burner system that exhibits a self-healing behavior.

The rest of this paper is organized as follows. Sect. II
provides some background on the TB Petri nets and introduces
the Gas Burner system here taken as running case study. It
also describes the adaptation models that we have adopted
and extended for realizing self-adaptation in TB Petri nets.
Sect. III presents the proposed zone-based TB Petri nets for
self-adaptive systems. Sect. V presents a verification technique
to verify structural and behavioral properties of real-time self-
adaptive systems, and the results of applying this verification
technique on the case study. Sect. VI presents related work.
Sect. VII concludes the paper and outlines future directions of
our work.

II. BACKGROUND CONCEPTS

This section briefly introduces our running example, the TB
net formalism, and existing adaptation models that inspired us
to realize self-adaptation in TB nets.

1The term zone is here to be intended differently from the forward zone-
based reachability analysis of Time Petri Nets [13], where a zone stands for
a finite convex union of regions (i.e., a representation of clock values using
equivalence classes).



A. The Gas Burner Example

As running case study, we adopt the gas burner system since
it represents a meaningful example of safety-critical system
[21]. In a gas burner an accident may occur if an excessive
amount of unburned gas leaks to the environment. In fact, a
burning flame may be blown out causing some gas to leak
before the failure is detected. The gas burner is controlled by
a thermostat and the gas is ignited by an ignition transformer.

The normal behavior of the system follows these phases:
• Idle: Awaits heat request. No gas and ignition are sup-

plied at this stage.
• Ignite: Ignition and gas supply start.
• Burn: Ignition is switched off, but gas is still supplied.

The Burn phase is stable until heat request goes off. The
Idle phase is then entered and the gas is turned off.

Moreover, a simple error recovery procedure is used. If a
flame is not sensed within 1 sec. (ignite failure), or if the
flame disappears during the Burn phase (flame failure), then
the recovery phase is entered. Thus, the gas is turned off and
an airing phase starts. If the system fails to recover within 5
sec., it raises an alarm and then stops its own execution.

B. Time Basic Petri Nets

TB nets belong to the category of Petri nets [22] in which
system time constraints are expressed as numerical intervals
associated to each transition, representing possible firing in-
stants computed since transition’s enabling. Tokens, atomically
produced by the firing of a transition, are thereby associated
to time-stamps with values ranging over a determined set.
With respect to the well-known representative of this category,
(i.e., Time Petri nets [6]), interval bounds in TB nets are
linear functions of timestamps in the enabling marking, rather
than simple numerical constants. We chose to adopt such
a modeling formalism because it supports both time and
functional extensions in a semantically clear and rigorous way.
Thus it represents an effective formal model to deal with
specification of time-critical systems. Moreover, Petri Nets are
known to be more scalable with respect to other formalisms
for specifying highly concurrent systems [19].

The structure of a TB net is a triplet 〈P, T, F 〉, where P and
T are finite disjoint sets of places and transitions, respectively,
and F is the flow relation, F ⊆ (P × T ) ∪ (T × P ). Given
v ∈ P ∪T , let us denote •v and v•, the backward and forward
adjacent sets of v according to F , respectively, also called
pre/post-sets of v.

We assume the domain of time-stamps to be R+. Moreover,
each transition t is associated with a time function ft which
maps a tuple of time-stamps en of t to a (possibly empty)
set of R+ values. ft(en) represents the possible firing times
of t. According to a weak semantics, t can fire at any instant
τ ∈ ft(en). A second interpretation states that t must fire at
an instant τ ∈ ft(en), unless it is disabled by the firing of
any conflicting enabling tuple at an instant no greater than the
latest firing time of t. Transitions with one such semantics are
referred to as strong. Notice that the only possible semantics
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HOffReq [Flame + 0.1, Flame + 0.5]
CloseValve [HOff + 0.01, max(HOff, Gas) + 0.2]

Fig. 1. Simple Gas burner TB model. Weak transitions are depicted in gray.

for Time Petri Nets [6] is strong. Hereafter, we denote a time
function ft with a pair of linear functions [lbt, ubt], denoting
parametric interval bounds.

As an example, consider the TB net in Figure 1. It represents
the normal behavior (without failures) of the gas burner
system. The initial marking represents the controller waiting
for activation (Idle phase). If a heat request (represented by
the firing of the weak transition HReq) occurs, the Ignite
phase starts. The ignition actuator is represented by transitions
IgnLightOff and IgnLightOn, and places Ignition and NoIgn.
The flame is turned on if there are ignition and gas (transition
FlameLightOn). When the flame goes on, the burn phase starts.
At this point the system can either keep the flame on, or close
the gas valve and return in idle phase, if a heat-off request is
issued (represented by the firing of the weak transition HOf-
fReq). The transition FlameLightOn, representing the system
passing to burn state, can be interpreted as follows. It cannot
fire before 0.02 time units elapse since the appearance of a
token in place Gas (the minimum permanence time in ignite
state). Moreover, the firing time cannot exceed the maximum
between the time-stamp of the token in place Gas and the
time-stamp of the token in place Ignition plus 0.1 (i.e., the
system recognizes the presence of a flame within 0.1 time
units).

GRAPHGEN [4], [2] is a powerful TB nets analysis software
tool. The implemented technique aims at building a finite
representation of the underling infinite state space. Where
each reachable symbolic state S = 〈M,C〉 is composed of
a symbolic marking M , representing symbolic time-stamps
associated with tokens, and a symbolic constraint C, represent-
ing the relationships among symbolic time-stamps, through a
set of linear inequalities. For instance, the initial symbolic
state of the simple gas burner (Figure 1) is represented by
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Fig. 2. Time reachability graph constructed from the model in Figure 1.

S0 = 〈M0, C0〉 such that:

M0 := Idle{T0},NoIgn{T0},NoGas{T0}
C0 := T0 ≥ 0 ∧ T0 ≤ 10

thus, a concrete reachable state s is represented by S, if and
only if s is obtained from S by a numerical replacement of
symbolic time-stamps being a solution of C.

Figure 2 shows the overall time reachability graph (TRG)
computed from the model in Figure 1, using GRAPHGEN.
Edges between symbolic states are labeled with the firing
transition and two temporal values representing the local min-
imum and the local maximum firing time, respectively. Edges
can be of different types representing the usual transition
relationships among symbolic states [3]. A white arrow, for
example the edge between S0 and S12, means that only a
subset of the concrete states represented by S12 is reachable
from S0. Hereafter, we refer to the TRG structure, com-
puted from the model PN = 〈P, T, F 〉, with the notation
TRG(PN) = 〈N,E, S0〉, where N is the set of reachable
symbolic states, E ⊆ N × T ×N is the set of edges, and S0

is the initial symbolic state.

C. Adaptation Models

The example shown in Figure 1 models the optimistic
condition where ignition failure and flame failure do not
happen. However, although both gas and ignition are supplied,
the lighting may fail. Moreover, once the burning phase is
stable, the flame may switch off due to external events (e.g.,
wind). Thus, the system should discover, diagnose, and react
to these exceptions within strict time constraints in order to

avoid great loss, such as damaging the surrounding physical
environment or even threatening human lives. Therefore, we
want to add a self-healing subsystem [11], [23] in order to
formally specify a self-adaptive behavior [24] in charge of
handling disruption to restore the system to normal conditions
within hard deadlines.

Figure 2, shows the behavior over time of the gas burner
example operating in its own normal domain (without faults).
Anyway, a self-adaptive system operates in different domains
and changes its behavior at runtime in response to changes of
the domain. Therefore, its reachable states can be separated
into disjoint regions each of which operates in a different
domain and exhibit a different steady-state behavior [1], [28].
Figure 3 depicts the simplified state space of a self-adaptive
system. S and T are two regions representing the system op-
erating in two different domains, while A (i.e., the adaptation
set) represents the set of states and edges connecting S to T .
Since we address real-time self-adaptive systems, we enrich
the adaptation set with a temporal constraint τ , in order to
ensure the adaptation within a proper temporal deadline. The
adaptation set between the source and the target domains can
describe different kind of adaptive behaviors. Three common
types of adaptive behavior are: one-point adaptation, guided
adaptation, and overlap adaptation [27], [28].

!
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Fig. 3. A simple self-adaptive system with time constraints upon transitions.

a) One-point adaptation: The one-point adaptation pro-
cess completes with a single edge e. Thus the steady-state
behavior S should end within e and the steady-state behavior
T should start immediately after e [27], [28]. The source states
suitable for adaptation, with outgoing adaptive transitions, are
called quiescent states.

b) Overlap adaptation: During the overlap adaptation
process, the target behavior starts immediately after reaching
A, and the source behavior stops when we leave A and we
enter the region T . At this point the system exhibits only
the target steady-state behavior [27], [28]. This means that
within the boundaries of A the source and the target behaviors
overlap. Anyway, the adaptive system should always satisfy
the adaptation integrity constraint: once the adaptation process
starts, it should eventually end and reach a state belonging to
the target region.

c) Guided adaptation: The guided adaptation process
starts with the fact that the system in its source steady-state
can receive an adaptation request in non quiescent states.
Therefore, it should enter a restricted mode, where some



functionality are blocked in order to reach a quiescent state
and perform the transformation as fast as possible [27], [28].
In this case, the region S reaches A which represents the
restricted mode. A eventually reaches a quiescent state that
leads to T through a one-point adaptation.

In the next sections we extend these adaptation models and
instantiate them with the TB nets formalism in order to deal
with temporal constraints and different temporal semantics.

III. ZONE-BASED MODELING

To recover from flame failures, a self-healing subsystem
must be added to the gas burner system modeled in Figure 1.
The self-healing subsystem should be able to detect undesired
behavior (both ignite and flame failures) and then adapt itself
in order to restore the normal behavior. Therefore, the state
space of the entire system should be characterized at least by
four disjoint regions [16], representing the system exhibiting
different steady-state behaviors. The four regions, sketched by
Figure 4, are the normal behavior, where the system performs
its main functionalities without faults; the undesired behavior,
which represents an exception where adaptation is required
in order to avoid invalid states to be reached; the recovery
behavior, where the system adapts itself to deal with the
undesired behavior; and the invalid behavior, that represents
all the states where the system should never be (e.g, deadlocks
or loss of functionality). Among these regions, adaptation sets
(represented by dashed lines) carry out the transformations
using different adaptation models.

normal
behavior

undesired
behavior

recovery
behavior

invalid
behavior

Fig. 4. State space regions denoting different behaviors of a self-adaptation.

A. Zone-Based TB Nets

In order to achieve these structural properties on the state
space, we propose a zone-based modeling approach. This
technique aims at identifying and isolating different modules
of the system that abstract the adaptive behavior in order to
reach a separation of concerns during both the modeling and
the verification phases.

The entire zone-based model of the gas burner system is
shown in Figure 5:
• normal behavior: This zone models the normal behav-

ior of the system as described in section II-B. Few places

and transitions has been added with respect to the model
shown in Figure 1, in order to make the module able to
interact with the rest of the system. The place NoFlame keeps
track of failures and the place Warning becomes marked if
gas leaks without flame are detected. The place Warning
remains marked while the self-healing subsystem is running
(the system exhibits undesired behavior and then adapt it-
self to recovery behavior). Whenever the recovery fails to
restore the normal behavior within the RecoveryFail deadline
([Warning+ 2.0,Warning+ 2.0] which corresponds to 2.0
time units after the enabling time of the transition startRe-
covery), the system enters the invalid behavior zone. It could
be of interest to check some local invariants or local liveness
properties to ensure correctness of this module in isolation. For
instance, we can verify that the module never recognizes the
presence of flame without gas (invariant); or that the burning
phase is reachable within 1.8 time units from a heat request
(timed bounded liveness property).
• undesired behavior: The undesired behavior starts after

a failure. The module recognizes a failure within 0.1 time
units after a flame or a ignition failure happen (Fail firing
transition). After a failure detection a recovery request is
issued between 0.05 and 0.1 time units (RecoveryReq firing
transition). After that, the system can enter the recovery
behavior zone. Considering the undesired behavior zone in
isolation, it could be of interest, for instance, to verify that the
recovery request cannot be issued without a gas leak (safety
property); or that the system recognizes the presence of gas
foreach reachable state (invariant).
• recovery behavior: The recovery behavior zone models

the actions that the system have to perform to restore the
normal conditions. The adaptation starts with the following
marked places: Gas3, CloseValvActReq, AirOnActReq that rep-
resent the presence of gas leaks, a valve-close request and an
air activation request, respectively. At this point the transitions
CloseValve and AirOn must fire, leading the system in a purge
phase which is in charge of decreasing the concentration of
accumulated gas. After the time required by the purge phase
the normal behavior is restored. Some interesting properties
could be verified upon this zone in isolation, for instance:
after issuing a valve-close request and an air-on request, the
module always reaches the purge phase within 4.2 time units
(time bounded liveness property).
• invalid behavior: The invalid zone models the behavior

of the system that should never be assumed. In particular,
whenever the self-healing subsystem fails to restore the normal
behavior within the proper deadline, an alarm raises (Alarm
place marked). After that, the system halts, avoiding new
incoming heat requests to be processed.

A Zone can be formally characterized as follows:
Definition 1: Subnet. Given a TB net 〈P, T, F 〉, the struc-

ture 〈PS , TS , FS〉 is a subnet iff. PS ⊆ P , TS ⊆ T , FS ⊆ F ,
PS 6= ∅, TS 6= ∅, and FS 6= ∅.

Definition 2: Subnet preset. Given a subnet z, the preset •z
is the set of transitions that connect places outside z to places
belonging to z.
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OpenValve [V alActOpen + 0.1, V alActOpen + 0.4] IgnLightOn [IgnActReq + 0.1, IgnActReq. + 0.2]
FlameLightOn [Gas + 0.02,max(Gas, Ignition) + 0.1] CloseValve [HOff + 0.01,max(HOff,Gas) + 0.15]
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Fig. 5. Zone-based model of the gas burner system. Weak transitions are depicted in gray.

Definition 3: Subnet postset. Given a subnet z, the postset
z• is the set of transitions that connect places of z to places
outside z.

Definition 4: Zone. Given a TB net PN and a subnet z =
〈PS , TS , FS〉, z is a zone iff. the TB net 〈PS , T

′, F ′〉 is weakly
connected2, where:

i T ′ = TS ∪ •z ∪ z•

ii F ′ = FS ∪
{(t, p) ∈ F : t ∈ •z ∧ p ∈ PS}∪
{(p, t) ∈ F : p ∈ PS ∧ t ∈ z•}

Intuitively, a zone is a subnet of the entire model such
that all its elements are connected only to elements of the
same zone, except for transitions belonging to its own preset
or postset, that allow the connection among different zones.
As an example, consider the undesired behavior subnet in
Figure 5 along with its own preset {FlameLightOff, IgnFail}

2A Petri net model is weakly connected iff. foreach two elements x and y,
there exists an undirected path leading from x to y.

(with outgoing egdes), and its own postset {StartRecovery}
(with incoming edges). We obtain a weakly connected Petri
net, therefore the undesired behavior is a valid zone.

Definition 5: Cross-zone transition. Given a TB net
〈P, T, F 〉 and a transition t ∈ T , t is a cross-zone transition
iff. there exists one and only one zone z, s.t. t ∈ z• and there
exists at least a zone z′ s.t. t ∈ •z′.

Considering the example in Figure 5, the set of cross-
zone transitions is {FlameLightOff, IgnFail, StartRecovery,
BackNormal, RecoveryFail}.

Definition 6: Zone-based TB net. A zone-based TB net
model PNZ is a TB net 〈P, T, F 〉, composed of non empty a
set of zones Z, s.t.

i ∀p ∈ P, ∃!z ∈ Z s.t. p ∈ z.
ii ∀t ∈ T, ∃!z ∈ Z s.t. (t ∈ z ∨ t is cross-zone).

iii ∀z ∈ Z, •z ∪ z• 6= ∅.
Back to our running case study, we can individuate four dis-

joint zones: the normal behavior zone, the undesired behavior



zone, the recovery behavior zone, and the invalid behavior
zone. There are no places outside these zones and transitions
are either inside zones or cross-zone. Moreover, all zones have
at least an non empty preset or postset, connecting them to the
rest of the system. Therefore the gas burner model is a zone-
based TB net.

Definition 7: Zone labeling function. Given a zone-based
TB net PNZ , the zone labeling function λ takes as input a
transition t and returns a zone z, such that:

λ(t) = z, iff. t ∈ z or t ∈ z•

Intuitively, the labeling function λ, will be used to associate
a firing transition representing an action or an event with a
specific steady-state behavior represented by a zone.

B. Zone-based Timed Adaptation Models

Adaptation models allow dynamic changes of the system’s
behavior to be handled. In our context, we construct adaptation
models by means of cross-zone transitions, along with their
own temporal functions used to compute temporal constraints
upon the dynamically adaptive behavior.

1) Timed One-point Adaptation: The timed one-point adap-
tation is modeled by the pair (t, ft) composed of a cross-zone
transition and its associated temporal function that connects
the source zone zS and the target zone zT , such that places
of •t belong to zS and there exists at least one place in t•

that belongs to T . When the adaptation transition t fires,
it performs the transformation between the source and the
target models by consuming the enabling tuple in zS and
producing new tokens in zT . The firing of t can produce
tokens into places belonging to multiple zones (zS itself
included), anyway the firing of the transition causes zS to
stop its execution and zT to start. No other zones are allowed
to start their execution, although some places belonging to
these zones are marked. The quiescent states of the zone
zS are those reachable symbolic states that enable a cross-
zone transition, while the adaptation set of a timed one-point
adaptation transition is composed of a single edge e connecting
quiescent states to another region of the state space. Temporal
information attached to e (i.e., local minimum-maximum firing
times) constitutes the temporal constraint τ . The temporal
semantics associated with this transition can be either weak or
strong, for instance the transition between the normal and the
undesired zone have weak semantics because the undesired
behavior could happen but it is not forced to. Instead, the
transition between the undesired zone and the adaptation zone,
have strong semantics because we want to force the system to
adapt itself, in order to tackle a undesired behavior.

As an example consider the transition StartRecovery in
Figure 5. It models a timed one-point adaptation between
the undesired zone and the adaptation zone. In fact, its firing
consumes tokens in places Gas2, FailureDetection, Recovery-
ActReq (belonging to the source zone) and it produces tokens
in places Gas3, CloseValvActReq, AirOnActReq (belonging to
the target zone). Once fired, the recovery behavior is the only
executable zone, although the place ReqReady is marked.

2) Timed Overlap Adaptation: The timed overlap adap-
tation is modeled by a cross-zone transition connecting the
source zone zS to the target zone zT . The timed overlap
adaptation involves the parallel execution of both the source
zone and the target zone. The firing of zT produces tokens
into some places belonging to zS and some places belonging
to zT (anyway, it is possible to mark also some places
belonging to other zones). Once fired, zS and zT execute in
parallel. No other zones are allowed to start their execution,
although some places belonging to these zones are marked.
This kind of adaptation is very common in multi-threaded
or multi-process programs, where the system spawns a new
thread able to deal with the changing execution domain, while
another thread finishes its own tasks to reach a consistent
state. Moreover, different threads can independently adapt to
the target behavior through a one-point adaptation resulting in
a overlap adaptation [27].

As an example consider the transition FlameLightOff in
Figure 5. It models a timed overlap adaptation between the
normal zone and the undesired zone. Its firing produces tokens
into some places belonging to the source zone (Gas and
NoFlame), and some places belonging to the target zone (Gas2
and NoFlame2). Once fired, the source and the target zone
execute in parallel, in fact, both the SwitchWarningOn and the
Fail transitions are enabled.

3) Timed Guided adaptation: In order to define the timed
guided adaptation we should create a zone to model the
restricted mode. The restricted zone behaves similarly to the
original zone except that it has some blocked functionality
that allow reaching a quiescent state faster with respect to
the original zone. For instance, the restricted zone can be
constructed from the original one by removing some transi-
tions that prevent the system to reach a quiescent state. Once
defined both the functionalities that should be blocked and
the restricted zone, we should define a set of (t, ft) pairs
G, such that each t is a cross-zone transition with weak
semantics. Each transition, along with the temporal function,
should connect places belonging to the original zone with
places belonging to the restricted zone. This way we can
model the possibility for the original behavior to turn into the
restricted mode depending on the presence of an adaptation
request. It is worth noting that, the more is the size of G, the
more is the responsiveness of the system because we increase
the number of states able to handle adaptation requests.

For the sake of readability, the example shown in Figure 5
does not have this kind of adaptation. Anyway, in order to
make the system more robust, we could easily add a restricted
mode of the normal behavior zone representing the system
running out of gas. The restricted zone should block the
ignition although the presence of an incoming heat request.
Once a quiescent state of the restricted zone is reached, the
system should restore the normal functionalities by exhibiting
undesired and then recovery behaviors.

Any restricted zone should not violate any global invari-
ant and should not reach deadlock states before reaching a
quiescent state (on due time).



IV. ZONE-BASED MAPPING

During the state space exploration we associate reachable
symbolic states with steady-state behaviors. Moreover, we
map timed adaptation models into adaptation sets following
specific rules depending on the adaptation type. Formally, we
can characterize the active zone mapping with the following
definition:

Definition 8: Active Zone Mapping. Given a zone-based
TB net PNZ , and the structure TRG(PNZ) = 〈N,E, S0〉,
the active zone mapping Λ is a function that accepts as input
a reachable state S and it returns a set of elements in Z, such
that:

Λ(S) = {z : ∃〈S, t, S′〉 ∈ E s.t. λ(t) = z}

The rationale of this function is to use firing transitions
to identify the current behavior of the system. In particular,
we identify the steady-state behavior associated to a reachable
state by looking at the zone responsible of an occurring
event. For instance, considering the initial state S0 of the gas
burner example (Figure 5), Λ(S0) returns a set containing only
the normal zone. In fact the enabled transitions in S0 are
KeepIdle and Hreq: both mapping into the normal behavior
zone. Indeed, they represent normal events.

The region concept, informally introduced in section II-C
(see Figure 4), can be now formally defined as follows:

Definition 9: Region. Given a zone-based TB net model
PNZ , its state space TRG(PNZ), and the active zone map-
ping function Λ, a region is a set of reachable states H , such
that:

i ∀S, S′ ∈ H s.t. S 6= S′,
Λ(S) = Λ(S′) ∧ Λ(S) not restricted.

ii H locates in TRG(PNZ) a weakly connected 3 compo-
nent.

Once the active zone mapping function is applied upon
reachable states, we should identify the adaptation sets.

Definition 10: Adaptation Set. Given a zone-based TB net
PNZ and its state space TRG(PNZ) along with regions
defined by the Λ function, an adaptation set is a set of
TRG(PNZ) elements (both states and edges), identified by
the following rules (one foreach timed adaptation model).

1) Timed one-point adaptation set: A one-point adaptation
set is composed of a single edge e labeled with a cross-zone
transition connecting two different regions.

2) Timed overlap adaptation set: An overlap adaptation set
is composed of a set of states X and a set of edges Y ,
connecting two different regions. A state S belongs to X iff.
|Λ(S)| > 1. Y contains all the outgoing edges departing from
states in X , and the incoming edges of states in X departing
from states outside X .

3) Timed guided adaptation set: An guided adaptation set
is composed of a set of states X and a set of edges Y . A state
S belongs to X iff. z ∈ Λ(S) such that z is a restricted zone.
Y is defined as described in the previous rule.

3A component is weakly connected if replacing all of its directed edges
with undirected edges produces a connected (undirected) graph.

M: FailureDetection{T1} Gas2{TA} NoAir{TA} NoIgn{TA}
RecovActReq{T1} Warning{T0}

C: TL ≥ T0+0.05 ⋀ TL ≤ T0+0.18 ⋀ TL = T1
#UNDESIRED

M: AirOnActReq{T1} CloseValvActReq{TA} Gas3{T1} 
NoAir{TA} NoIgn{TA} ReqReady{TA} Warning{T0}

C: TL ≥ T0+0.1 ⋀ TL ≤ T0+0.28 ⋀ TL = T1
#RECOVERY

StartRecovery
0.05-0.1

!

Fig. 6. Timed one-point adaptation set between the undesired region and the
recovery region.

Figure 6 shows a timed one-point adaptation set. Two dis-
joint regions reifying the undesired and the recovery behaviors,
respectively, are connected by a single edge labeled with
the firing transition and temporal information. The symbol #
precedes the name of the zones resulting from the evaluation
of the Λ function. The two special variables TL and TA
in symbolic states, represent respectively the last time-stamp
produced and an anonymous time-stamp [4] not influencing
the evolution of the model. Symbolic states are labeled with
the name of their own region.

The adaptation setA of a timed overlap adaptation transition
is composed of a set of states and edges connecting quiescent
states of S to states of T . Each state in A maps to both the
source and the target regions. The temporal constraint τ is
identified by the set of temporal information attached to the
edges in A. Figure 7 represents an example of timed overlap
adaptation set. The adaptation set is composed of a set of
states (S9, S10) and edges, labeled with the firing transitions
and temporal information. Symbolic states in the adaptation set
A belong to the two regions: normal behavior and undesired
behavior, therefore the system exhibits multiple steady-state
behaviors, i.e. the possibility to show multiple behavior at the
same time.

The adaptation set A of a timed guided adaptation is
composed of all the reachable states mapping into a restricted
zone and all the edges connecting these states. The outgoing
boundaries of A are made up by one-point adaptations leading
from A into the target region.

V. FORMAL VERIFICATION

Based on the formal specification described in section III,
we are able to verify the correctness of real-time self-adaptive
systems by inspecting the TRG . In particular, we extended
the GRAPHGEN software tool [4] (introduced in section II), in



M: Flame{T0} Gas{TA} NoAir{TA} NoIgn{TA} ReqReady{TA}
C: TL = T0
#NORMAL

M: Gas{T0} Gas2{TA} NoAir{TA} NoFlame{T0} NoFlame2{T0}
NoIgn{T0} ReqReady{TA}

C: TL = T0
#NORMAL #UNDESIRED

FlameLightOff
0.1-0.5

M: FailureDetection{T1} Gas{T0} Gas2{TA} NoAir{TA} 
NoFlame{T0}NoIgn{TA} ReqReady{TA}

C: TL ≥ T0+0.05 ⋀ TL ≤ T0+0.1 ⋀ TL ≤ T0+0.1 ⋀ TL= T1
#NORMAL #UNDESIRED

Fail
0.05-0.1

M: FailureDetection{T1} Gas2{TA} NoAir{TA} NoIgn{TA}
ReqReady{TA} Warning{T1}

C: TL ≥ T0 ⋀ TL ≤ T0+0.1 ⋀ TL ≤ T0+0.1 ⋀ TL= T1
#UNDESIRED

SwitchWarningOn
0.0-0.1

S8

S9

S10

S11

!

Fig. 7. Timed overlap adaptation set between the normal region and the
undesired region.

order to support the verification of two categories of properties:
adaptation meta-properties and system-properties.

A. Adaptation meta-properties

These general properties are related to adaptation and any
self-* system (self-healing in our case) should satisfy them.
They do not depend on the specific modeled system.
• Cross-zone transition properties. They aim at checking

conformance of the generated adaptation sets w.r.t. the in-
tended adaptation models. Foreach cross-zone transition t of
the model, t must connect two disjoint regions z and z′ with
the proper adaptation set, depending on the specific employed
timed adaptation model. The syntax accepted by our software
tool is:

$ onepoint(#z, t, #z’)
$ overlap(#z, t, #z’)
$ guided(#z, t, #z’)

These commands, one for each adaptation model, are used to
verify the structural properties described in section III-B. For
instance, the onepoint property checks if the regions z and z′

are connected through a single edge labeled with t. Moreover,

they prove the adaptation integrity constraint. Some properties
of interest, verified upon the gas burner model, are:

$ onepoint(#RECOVERY, BackNormal, #NORMAL)
$ overlap(#NORMAL, IgnFail, #UNDESIRED)
$ overlap(#NORMAL, FlameLightOff, #UNDESIRED)

• Safety properties. The system should never reach an
invalid state, i.e., either a deadlock state or a state that belongs
to the invalid behavior region. Therefore, foreach zone z, the
following property should hold:

$ !(#z ?> #INVALID)

where “a ?> b” is used to verify that “whenever a holds, there
exists a path leading to b”. Some of the properties verified upon
the gas burner model are:

$ !(#NORMAL ?> #INVALID)
$ !(#UNDESIRED ?> #INVALID)
$ !(#RECOVERY ?> #INVALID)

The name of a zone z preceded by # represents a condition
satisfied by each reachable state mapping into z. The software
tool verifies these properties through a TRG exploration,
following the paths starting from the selected region. if for
each state mapping into that region, does not exist a path
leading into a state of the invalid region, the property holds.
• Robustness properties. Robustness properties are specific

reachability properties used to verify that the system is always
able to recover from a failure. These properties must be veri-
fied to ensure self-healing capability. The following robustness
properties were verified upon the gas burner example:

$ #NORMAL ?> #UNDESIRED
$ #UNDESIRED −> #RECOVERY
$ #RECOVERY −> #NORMAL

where the “–>” operator is used to verify that “whenever
a holds, eventually b will happen”. This operator causes the
software tool to perform a TRG exploration starting from the
selected region a. If along the path either an invalid state or a
loop is found before reaching the region b, the property does
not hold. The example reported above prove the existence of
a path leading from a normal state to an undesired state; for
each undesired state, we always reach a recovery state; and
for each recovery state, we always reach a normal state.
• Timed properties. The previous properties can be extended

by adding temporal constraints. This is particularly useful
to check whether adaptations are carried out within specific
deadlines. For instance, we may ask if the gas burner can
adapt itself from the normal behavior to the undesired behavior
within 1.25 time units:

$ #NORMAL ?> #UNDESIRED, 1.25

TRUE
S6(#NORMAL) [0.1−0.5] S7(#NORMAL, #UNDESIRED)
[0.02−0.1] S10(#UNDESIRED)

The software tool starts by individuating each symbolic path
σ connecting the normal and the undesired regions, where the
sum of the maximum temporal distance values is less than
1.25. If this sufficient condition does not hold, the tool tries



to validate the property by looking for a concrete path in σ
not violating the deadline.

Whenever the property holds, the program supplies a fea-
sible path as a proof of correctness. The path contains in-
formation about regions associated with states and temporal
information attached to edges (local minimum-maximum fir-
ing times). The example shows that the undesired state S10 is
reachable from the normal state S6 (within 1.25 time units),
through S7 that represents, along with the edges S6-S7 and
S7-S10, an overlap adaptation set.

Other interesting timed properties, verified upon the gas
burner, are for example:

$ #UNDESIRED −> #RECOVERY, 0.6
$ #RECOVERY −> #NORMAL, 1.1
$ #UNDESIRED −> #NORMAL, 1.7

This allows us to set up the temporal function associated with
the RecoveryFail transition, in charge of bringing the system
into an invalid state, if the recovery procedure fails.

B. System-properties

These properties go into finer detail and require specific
knowledge on the system to be analyzed. They are divided in
turn into intra-zone properties and inter-zone properties.

a) Intra-zone properties: These properties aim at verify-
ing the correctness of zones in isolation.

In particular we can verify invariant, safety, or liveness
properties. The verification can be performed by computing
the TRG of a single zone of interest through the extended
GRAPHGEN software tool.
• Invariant properties. Invariants should be preserved fore-

ach reachable state of the zone. We can express invariants by
means of a boolean combination of conditions on the number
of tokens in places, for instance we verified the following
invariant upon the normal behavior zone:

$ A(!Gas=1 || NoGas=0)

Meaning that, foreach reachable state (A operator), the pres-
ence of a token in the place Gas implies the absence of
tokens in the place NoGas. The software tool verifies these
properties by inspecting the symbolic marking associated with
each reachable symbolic state.
• Safety properties. Safety properties are used to verify that

“something bad will never happen”. For instance we verified
the following property upon the normal behavior zone:

$ !E(Idle=1 && Gas=1)

Meaning that do not exist a reachable state (E operator
preceded by !) where both the place Idle and the place Gas
are marked at the same time.
• Liveness properties. We can verify two different type of

liveness properties, characterized by two different operators:
the “a –> b” and “a ?> b” (introduced in section V-A), also
adding temporal constraints.

For instance we verified the two following properties upon
the normal behavior zone, and the recovery behavior zone:

$ IgnActReq=1 && ValActOpen=1 −> Gas=1 && Ignition=1, 0.6
$ CloseValvActReq=1 && AirOnActReq=1 −>

Air=1 && NoGas2=1, 1.0

If the property does not hold, the program supplies a feasible
path that breaks the property:

$ CloseValvActReq=1 && AirOnActReq=1 −>
Air=1 && NoGas2=1, 0.9

FALSE
S22(#RECOVERY) [0.2−0.4] S25(#RECOVERY) [0.0−0.2]
S29(#RECOVERY)

The above example shows that both the gas flow interruption
and the purging phase cannot be always achieved within 0.9
time units elapsed since the proper request. The counterexam-
ple shows a feasible path invalidating the property.

Another liveness property verified upon the normal behavior
zone is reported below:

$ IgnActReq=1 && ValActOpen=1 ?> Flame=1, 0.7

TRUE
S13(#NORMAL) [0.0−0.05] S18(#NORMAL) [0.05−0.2]
S2(#NORMAL) [0.0−0.3] S4(#NORMAL) [0.02−0.1] S6(#NORMAL)

Since the property holds, the program returns a feasible path
as a proof of correctness.

b) Inter-zone properties: These properties aim at veri-
fying the correctness of the behavior of the entire system.
In particular we can verify interesting invariant, safety, and
liveness properties on the TRG built from the whole model,
through our extended GRAPHGEN software tool.
• Invariant properties. As an example, we show in the

following some properties of interest we verified upon the gas
burner:

$ A(!Gas=1 || (NoGas=0 && NoGas2=0))
$ A(!Flame=1 || (NoGas=0 && Gas2=0 && Gas3=0))
$ A(!Air=1 || (NoGas=0 && Gas2=0 && Gas3=0))

Foreach reachable state, we verified the proper mutual exclu-
sion between specific marked places. For, instance, the Gas
place should never be marked at the same time with NoGas
and NoGas2.
• Safety properties. Some of the inter-zone safety properties

verified upon the gas burner example are reported below:
$ !E(Idle=1 && (Gas=1 || Gas2=1 || Gas3=1))
$ !E(Gas=1 && Air=1)
$ !E(Flame=1 && FailureDetection=1)
$ !E(Flame=1 && FailureDetection=1)

For instance, the second property is used to prove that gas
supply and air purge never happen at the same time.
• Liveness properties. Inter-zone liveness properties can

be verified similarly to the intra-zone ones, but they involve
conditions defined upon multiple zones. For instance, we
verified that once the flame is up, it can fail reaching an
undesired behavior:

$ Flame=1 ?> NoFlame2=1 && Gas2=1

Moreover, we verified that once a failure is detected, the
system exhibits proper recovery behavior within 0.4 time units:

$ FailureDetection=1 −>
CloseValvActReq=1 && AirOnActReq=1, 0.4



VI. RELATED WORK

The technique presented in this paper has been mainly in-
fluenced by different related works on formal specification and
verification of self-adaptive systems. [28] proposes Petri Nets
modeling and LTL (Linear Temporal Logic) model checking,
in order to verify correctness of adaptations and robustness
properties. Here we extended the adaptation models – one-
point adaptation, overlap adaptation, and guided adaptation
– originally presented in [27] and instantiated using Petri Nets
in [28]. In particular we have taken into account concerns
associated with time, by including temporal constraints in
the modeling phase and different semantics associated with
events, in order to model both mandatory actions (strong
events, e.g., recovery after undesired behavior) and actions that
may occur but are not forced to (weak events, e.g., undesired
behavior). Therefore, departing from [28], we instantiated the
extended adaptation models with TB nets, that represent a
very expressive formal model for describing rea-time or even
time-critical systems. Moreover we introduced a particular
analysis technique able to construct the overall reachability
graph with temporal information upon events, partitioned into
disjoint regions representing different steady-state behaviors
of a self-adaptive real-time system. The identification of dif-
ferent behaviors upon the state space structure was originally
introduced in [16]. We introduced a technique able to map
zones defined upon the model into regions of the state space.

Other Petri Net based approaches to model and verify
dynamically adapting programs have been recently introduced.
[9] proposed a formal method to specify self-adaptive sys-
tems, that allows users to reason about the correctness of
the system in spite of its dynamic reconfigurations. The
proposed programming model is coupled with a programming
language realizing the Context-Oriented Programming (COP)
paradigm [25]. COP languages allow behavioral adaptations to
be dynamically added and removed at run time. [8] supplies
a reflective framework that lets users model a system able
to adapt itself, keeping separated functional aspects from
adaptation ones and applying changes to the model if nec-
essary. A timed stochastic semantics for this approach is
provided in [7]. Anyway, these two techniques are not effective
when dealing with real-time constraints, because quantitative
temporal aspects cannot be handled.

Our analysis technique has been implemented by extending
the GRAPHGEN software tool, introduced in [4]. Our extended
version can be used to verify correctness properties upon
either any zone in isolation, or upon the entire system to
verify the correctness of adaptation behaviors. Departing from
[28], we grant the possibility of verifying the conformance of
the behavior against intended adaptation models by means of
cross-zone transition properties; we support the verification of
timed properties in order to check real-time constraints; and
we support the verification of robustness properties to verify
time constrained self-healing behaviors.

Concerning fault-tolerance and self-healing capability anal-
ysis, [14] presents a case study in formal modeling and veri-

fication of a robotic system that deals with failures. Modeling
is performed using a transition automata and correctness is
checked using LTL and CTL (Computational Tree Logic).
[20] outlines an approach for modeling and analyzing fault
tolerance and self-adaptive mechanisms in distributed systems.
It proposes a modal action logic formalism to describe normal
and abnormal (undesired) behavior. Anyway all these works
deal with time only in a qualitative way, thus making those
approaches ineffective to verify correctness of real-time self-
adaptive systems.

Complementary approaches can be followed to ensure cor-
rectness at run-time. [17] models the MAPE-K feedback loop
(i.e., the model of the knowledge and the adaptation compo-
nents [11]) using networks of timed automata [5] and evaluates
the approach with a small scale system in which robots
perform transportation tasks in a warehouse environment. The
model of the feedback loop is executed by a virtual machine.
The virtual machine has an internal clock that increments with
time steps. Foreach time step, the virtual machine identifies
the enabled node for each automaton and checks whether the
time step would invalidate the time invariants of the enabled
nodes. The virtual machine will then execute tasks associated
with these invalidated nodes in non-deterministic order. This
approach ensures at run-time that adaptation behavior starts on
due time, but it does not supply a means to verify that correct
actions complete within specific deadlines.

VII. CONCLUSION

This paper introduces the zone-based technique to specify
and verify the behavior of dynamically adaptive real-time
systems. We extended the adaptation models introduced in
[28], with temporal constraints and different temporal seman-
tics, in order to model both mandatory and optional timed
events. Zones, describing different steady-state behaviors of
the system, can then be used either in isolation to verify non-
adaptive behavior by means of intra-zone properties, or all
together, to verify that the entire system satisfies inter-zone
properties. The verification of temporal aspects is supported
through timed properties, able to check that both functional as-
pects and adaptations comply with specific temporal deadlines.
Moreover, we added the possibility of verifying interesting
(timed) robustness properties, to ensure self-healing capability
that represents a very important issue when dealing with real-
time or even time-critical systems.

We have shown the effectiveness of our approach by
modeling and verifying a real-time self-adaptive Gas Burner
system proving correctness of both functional, adaptation, self-
healing, and temporal aspects.
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[12] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper
Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M
Villegas, Thomas Vogel, et al. Software engineering for self-adaptive
systems: A second research roadmap. In Software Engineering for Self-
Adaptive Systems II, pages 1–32. Springer, 2013.

[13] Guillaume Gardey, Olivier H. Roux, and Olivier F. Roux. State space
computation and analysis of time petri nets. Theory Pract. Log.
Program., 6(3):301–320, May 2006.

[14] Matthias Gdemann, Frank Ortmeier, and Wolfgang Reif. Formal mod-
eling and verification of systems with self-x properties. In LaurenceT.

Yang, Hai Jin, Jianhua Ma, and Theo Ungerer, editors, Autonomic and
Trusted Computing, volume 4158 of Lecture Notes in Computer Science,
pages 38–47. Springer Berlin Heidelberg, 2006.

[15] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè. A unified high-
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