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Abstract—Neural networks have been widely applied for per-
forming tasks in critical domains, such as, for example, the
medical domain; their robustness is, therefore, important to be
guaranteed. In this paper, we propose a robustness definition
for neural networks used for regression, by tackling some of
the problems of existing robustness definitions. First of all,
by following recent works done for classification problems, we
propose to define the robustness of networks used for regression
w.r.t. alterations of their input data that can happen in reality.
Since different alteration levels are not always equally probable,
the robustness definition is parameterized with the probability
distribution of the alterations. The error done by this type of
networks is quantifiable as the difference between the estimated
value and the expected value; since not all the errors are equally
critical, the robustness definition is also parameterized with a
“tolerance” function that specifies how the error is tolerated.
The current work has been motivated by the collaboration with
the industrial partner that has implemented a medical sensor
employing a Multilayer Perceptron for the estimation of the
blood oxygen pressure. After having computed the robustness
for the case study, we have successfully applied three techniques
to improve the network robustness: data augmentation with
recombined data, data augmentation with altered data, and in-
cremental learning. All the techniques have proved to contribute
to increasing the robustness, though in different ways.

I. INTRODUCTION

Neural Networks (NNs) are increasingly adopted to perform
different complex activities [1], such as recognition, control,
decision making, etc. Often, they are employed in safety-
critical domains [10], such as in the medical practice [13].
A desired property of an NN is its robustness, i.e., the ability
of the network to correctly process unknown (i.e, not seen
during training) inputs. NN robustness is usually defined and
computed by using adversarial examples, i.e., inputs that are
particularly challenging for the network under test, and that
are created by exploiting the network internal structure [20].
However, different works [16], [17], [25] have remarked that,
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due to their origin, they may not reflect real inputs that
could occur during the network usage. Our position is that
a meaningful robustness measure should take into account the
plausible alterations that are specific to the application domain.
Therefore, in [2], we have proposed to define the robustness of
an NN used for classification, by considering real alterations
that may occur to input data. The definition is independent of
the input type, and so it applies to different input types, such
as digital images, audio, and text [4].

Since the previous definition of robustness is ed to clas-
sifiers, it is not suitable for networks used for regression
analysis and estimation, like the network whose robustness
we were asked to assess by our industrial partner. The error
done by a classifier is not subject to a measure, and only
false negatives and false positives are considered errors when
computing robustness. For regression, instead, the error can
be actually measured, and different levels of errors influence
the network robustness level. For instance, a network that
always guarantees a small percentage error (like 5%) may
be considered more robust than a network with a greater
percentage error (like 10%); indeed, a user may tolerate more a
smaller error than a larger error. For this reason, one objective
of this work is to introduce a suitable measure to assess and
weigh the error done by regression networks.

Another limit of previous works is that different alteration
levels (see Sect. III-A) are all equally considered in the robust-
ness computation. However, after some initial meetings with
the industrial partner, it was apparent that some alterations
are more likely to occur for some levels than for others. For
example, considering the signal acquisition, lower values of
clock offset are more likely to occur than the higher ones.

Thus, to tackle the limits of the previous works, in this
paper we propose a novel definition of robustness of NNs
used for regression, that takes into account both the tolerance
to different levels of errors and the occurrence probability of
a given alteration level.

The analysis reported in this paper is applied to a Multilayer
Perceptron (MLP), but it is applicable to all kinds of NNs



used for regression and estimation. MLPs are feed-forward
artificial neural networks generating a set of outputs from a set
of inputs. They are the simplest example of Artificial Neural
Network (ANN), where each neuron is fully connected to those
in the layer below and has a non-linear activation function.
They are networks composed of at least three layers: an input
layer, one or more hidden layers, and an output layer. MLPs
are widely used since they can be seen as universal function
approximators [8] and can be used to create mathematical
models for regression.

The current work has originated from the collaboration
with our industrial partner AISent1, which researches and
implements AI solutions. The partner required us to analyze an
MLP that is used for the estimation of the partial pressure of
oxygen of the blood flowing in a sensor. The company wanted
to gain confidence in the reliability of the model, in particular
when it is subject to the alterations that can occur during its
typical working condition [12]. We have investigated different
formulas for robustness computation, in order to choose the
most suited one for the considered application. Moreover,
since the system is used in safety-critical procedures and it is
expected to be as much robust as possible, we have examined
three methods for improving the robustness of the MLP under
analysis: two methods are based on retraining using datasets
enriched with additional data (obtained in different ways), and
another method uses a new network, which is trained on new
data and applied in parallel with the original one.

The paper is structured as follows. Sect. II presents the
case study on which we have conducted our analysis, while
Sect. III introduces the novel definition of robustness based
on the notions of tolerance and alteration level probability.
Sect. IV presents the alterations we have considered, how the
robustness definition has been implemented in practice and
discusses the obtained results. Sect. V presents methods suit-
able for enhancing the robustness of a multilayer perceptron.
Sect. VI presents a more critical discussion of the work done
and reports the feedback provided by the industrial partner.
Finally, Sect. VII reviews works related to our approach, and
Sect. VIII concludes the paper.

II. CASE STUDY

In medical practice, constantly assessing the right value of
the partial pressure of oxygen (pO2) of the blood is very
critical, especially during surgery. One can derive the pO2
level by observing the blood fluorescence. When exposed to a
bright pulse, the blood responses with a fluorescence that can
be described (or better “approximated”) by a biexponential
function defined as follows:

fluorescence(𝑡) = 𝐴 · (𝑒−𝐵1𝑡 − 𝑒−𝐵2𝑡 ) (1)

being 𝐴, 𝐵1, and 𝐵2 parameters that characterize the response,
and 𝑡 the time passed from the instant of the light pulse.
The parameters 𝐴, 𝐵1, and 𝐵2 depend on the current level of
pO2 and on the blood temperature. An example of this curve
(experimentally taken) is shown in Fig. 1. Using a spotlight

1https://aisent.io/en/

Fig. 1. Blood fluorescence in response to a spotlight pulse
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Fig. 2. Overview of the MLP-based sensor for pO2 estimation

to illuminate the blood and a probe to measure the response
to the bright pulse, one could try to estimate the parameters
𝐴, 𝐵1, and 𝐵2 and then produce an estimation of the pO2.
However, finding the best biexponential curve (i.e., finding the
fittest parameter values), is very challenging and it proved to
be unfeasible by the microcontroller that the industrial partner
had chosen to use in the sensor.

For this reason, the company decided to deploy on the
microcontroller an MLP trained for the estimation of pO2.
An overview of the MLP-based sensor is shown in Fig. 2.

The MLP model takes as input a limited number of samples
of blood fluorescence obtained in response to the bright pulse
and the blood temperature, to estimate the values of the
pO2 at two temperatures: at the current temperature and at
37 ◦C. In particular, the MLP uses the means values of the
curve extracted in the intervals [50, 60], [90, 110], [190, 210],
[340, 360] and [620, 640]. It is composed of 6 neurons in the
input layer, 12 neurons in the first hidden layer, 10 neurons
in the second hidden layer, and 2 neurons in the output layer,
giving as output the estimation of the pO2 value at the current
temperature and the prediction of pO2 value at 37 ◦C (see
Fig. 2). All the neurons in the layers use sigmoid activation
functions. To train, validate, and test the MLP, the company
used a dataset composed of 21, 650 curves similar to the one in
Fig. 1. These samples come from 16 different types of probes
and 178 different spotlights. For each input sample, the true
values of the pO2 at the two temperatures (i.e., current and
37 ◦C) were given by an analysis of the blood using a precision
measurement instrument. As usual, 60% of the dataset has
been used for the training phase, 20% for the validation phase,
and 20% for the testing phase.

A. Research Objective

At the beginning of the project, several meetings were held
with the industrial partner to define how to measure robustness,
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i.e., the ability of the network to correctly evaluate slightly
altered inputs.

As a first step, we have identified domain-specific alterations
that can affect the network during its operation.

Regarding the robustness, since the industrial partner works
on different domains (in addition to the medical domain), we
realized that there is no single robustness definition that is
suitable for all application domains. Indeed, the effect of the
network error (i.e., the difference between the real value and
the estimated value) is different in different applications. For
example, in some application domains, any level of error is
detrimental to the system, and so the robustness definition
should reflect that the error must be kept as small as possible;
considering the clock offset alteration of the case study, an
estimation error of 4% is less acceptable compared to an error
of 2%. In some other application domains, instead, the system
operation may not be affected by errors up to a given level
(e.g., the precision of the system embedding the network) and
so the robustness definition should reflect this. In order to
account for these different application domains, we decided to
define the robustness in a “parameterized” way, by allowing
to specify the type of tolerance to the error.

In a similar way, given an alteration type, it could be
that some alteration levels are more probable than others.
For example, if we consider data acquisition using electronic
probes, certain levels of clock offset (e.g., 20 ms) are more
probable than others (e.g., 40 ms). In some application do-
mains, a designer may accept some errors when they are due
to very rare alterations, while, in other domains, errors should
be considered equally, independently of the probability of the
alteration causing them. So, we chose to parameterize the
robustness definition by including how the probability of an
alteration level should be considered.

Sect. III introduces the robustness measure that considers
the error tolerance and the alteration probability. After that,
we have proposed three methods (see Sect. V) to improve
the robustness to make the network more robust against the
possible alterations.

III. PROPOSED ROBUSTNESS MEASURE

Differently from NN classifiers in which the output of the
network is either correct or not, in NN used for regression
tasks, the correctness of the network can be quantified with
a continuous measure. The main approaches to evaluate the
performance of neural networks for regression problems are
the Mean Squared Error (MSE) and the Mean Absolute Error
(MAE). The former represents the average of the squared
difference between the target value and the value estimated
by the model; since it squares the residuals, it penalizes even
small errors, leading to over-estimation of how bad the model
is. The latter is the absolute difference between the target value
and the value estimated by the model. Given this definition,
MAE is more robust to outliers and does not penalize the errors
as extremely as MSE [24]. However, since MAE scale is the
same as the data being measured, its value is absolute and it is
difficult to easily understand the relative error. For this reason,
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Fig. 3. MAPE for different alteration levels

in this paper, we will use the Mean Absolute Percentage Error
(MAPE), the percentage equivalent of MAE. Considering an
input set of size 𝑛, where 𝑦𝑖 is the real value for the input 𝑖
and �̂�𝑖 is the estimated value for the same input, the MAPE
is defined as follows:

MAPE =
100%
𝑛

𝑛∑︁
𝑖=1

∥𝑦𝑖 − 𝑦𝑖 ∥
𝑦𝑖

NNs can be compared using the MAPE in nominal conditions
(MAPE0), which is computed using the test set. The MAPE
metric, as warned in [14], is not applicable in problems where
the real value for 𝑦𝑖 is close or equal to zero, because it results
in very large numbers. In our case study, pO2 values are never
close to zero, so MAPE is suitable.

A. Alterations

In a real scenario, data to be processed by an MLP can
be altered w.r.t. their nominal shape. For instance, an MLP
that has been trained on data describing how a physics
measure changes in time, may be affected in its estimations
by acquisition time variations, due to clock offsets or to a cut
of the communication between the sensor and the processing
unit. These are examples of alterations. A formal definition of
alteration for all kinds of inputs is given in [3] and reported
in the following.

Definition 1 (Alteration). An alteration of type 𝐴 of an input
𝑡 is a transformation of 𝑡 that mimics the possible effect on
𝑡 when a problem during its acquisition or elaboration occurs
in reality. We identify with [𝐿𝐴,𝑈𝐴] the range of plausible
alterations of type 𝐴.

Higher levels of alterations may lead to greater MAPE
values in the estimation made by the MLP (see Fig. 3).

In some application domains, alterations can randomly
occur at any level, while, for other types of applications,
some alteration levels are more likely to occur than others. To
reflect this characteristic of alterations, we define the concept
of alteration probability.

Definition 2 (Alteration Probability). Given an alteration of
type 𝐴, we identify with 𝑝𝐴 the probability of the alteration 𝐴,
i.e., the probability distribution of the alteration level having
as support the interval [𝐿𝐴,𝑈𝐴].

The most common examples of probability distributions for
alterations are:



• Uniform probability: all the alteration levels are equally
probable, as shown in Fig. 4(a) and formally defined as:

𝑝𝐴(𝑥) =


1

𝑈𝐴 − 𝐿𝐴

𝐿𝐴 ≤ 𝑥 ≤ 𝑈𝐴

0 otherwise

• Linear probability: lower alteration levels are more prob-
able than the higher ones, as shown in Fig. 4(b) and
formally defined as:

𝑝𝐴(𝑥) =


2

(𝑈𝐴 − 𝐿𝐴)2
· (𝑈𝐴 − 𝑥) 𝐿𝐴 ≤ 𝑥 ≤ 𝑈𝐴

0 otherwise

However, other types of probability functions can be used as
well, such as the truncated normal or half-normal distributions.

Note that the alteration probability can also be used to
specify the “importance” the user wants to give to a level of
alteration. For instance, a uniform probability is more likely
to be used for systems that should be equally resilient to all
the levels of an alteration within a given interval. On the other
hand, a linear probability can be preferred when the system
is not critical, and it is more important to perform better on
lower alterations than on the higher ones.

B. Tolerance

Different MAPE values can be more or less acceptable,
depending on the criticality of the task performed by the NN
and by the precision required by the system requirements.
Therefore, we define the tolerance to the NN error as follows:

Definition 3 (Tolerance). Let Θ be a threshold representing the
maximum MAPE value accepted by the system requirements,
and MAPE𝐴(𝑥) the value of the error when an alteration 𝐴

of level 𝑥 is applied to the input data. We identify the desired
tolerance to the error MAPE𝐴(𝑥) with a function TolMAPE𝐴

(𝑥)
such that:

TolMAPE𝐴
(𝑥) = 1 for MAPE𝐴(𝑥) = 0

0 ≤ TolMAPE𝐴
(𝑥) ≤ 1 for 0 < MAPE𝐴(𝑥) ≤ Θ

TolMAPE𝐴
(𝑥) = 0 for MAPE𝐴(𝑥) > Θ

Users can choose the desired type of tolerance function.
In the following, two examples of tolerance functions are
described:
• Uniform tolerance: all the different values of MAPE𝐴(𝑥)

are considered in an equal way, as shown in Fig. 5(a) and
formally defined as:

TolMAPE𝐴
(𝑥) = 𝐻 (Θ −MAPE𝐴(𝑥))

where 𝐻 (𝑘) =
{

1, 𝑘 ≥ 0
0, 𝑘 < 0

The intuition is that, as long as the MAPE is below
or equal to the threshold Θ, the tolerance is maximum,
otherwise is 0.

p(x)

x
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Fig. 4. Examples of functions describing the probability 𝑝𝐴 of an alteration
level 𝐴
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Fig. 5. Examples of functions describing the tolerance

• Linear tolerance: lower values of MAPE𝐴(𝑥) are more
tolerated than the higher ones, as shown in Fig. 5(b) and
formally defined as:

TolMAPE𝐴
(𝑥) = max (Θ −MAPE𝐴(𝑥), 0)

Θ

C. Robustness for an MLP

Applying alterations as defined in Def. 1 will change
the accuracy of the MLP model; generally, it decreases by
increasing the alteration level. A decreasing accuracy means
that the MAPE for the estimation will increase, as previously
shown in Fig. 3.

Given the tolerance function Tol, the alterations 𝐴, and their
probability 𝑝𝐴, we can define the robustness as follows.

Definition 4 (Robustness). Let 𝑀 be an MLP model under
evaluation. Let MAPE𝐴(𝑥) be the value of the error done by
𝑀 when an alteration 𝐴 of level 𝑥 is applied to the input
data, 𝑝𝐴(𝑥) the probability of the alteration, and TolMAPE𝐴

(𝑥)
the tolerance for MAPE values of the selected network. The
robustness robA (𝑀) ∈ [0, 1] of MLP 𝑀 w.r.t. alterations of
type 𝐴 in the range [𝐿𝐴,𝑈𝐴] is formally defined as:

robA (𝑀) =
∫ 𝑈𝐴

𝐿𝐴

TolMAPE𝐴
(𝑥) · 𝑝(𝑥) 𝑑𝑥 (2)

Intuitively, robustness is the sum (integral) of all the errors
the network commits when all the possible alterations are
applied. Alterations are weighted by their probability and
errors by the specified tolerance.

The robustness definition guarantees the following proper-
ties:

1) the robustness is always between 0 and 1, i.e., 0 ≤
robA (𝑀) ≤ 1;

2) if a network has always zero error, its robustness is 1,
i.e., robA (𝑀) = 1 if ∀𝑥 ∈ [𝐿𝐴,𝑈𝐴],MAPE𝐴(𝑥) = 0.
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Fig. 6. Graphical representation of different types of robustness

Note that the condition is sufficient but not necessary,
i.e., the robustness can also be 1 for systems in which
the error is greater than 0 for some alteration intervals
(e.g., if uniform tolerance is used and the error is never
greater than Θ);

3) if a network has an error always greater than the specified
threshold Θ, its robustness is 0: robA (𝑀) = 0 if ∀𝑥 ∈
[𝐿𝐴,𝑈𝐴],MAPE𝐴(𝑥) > Θ.

The robustness depends on the type of tolerance and prob-
ability chosen. For example, we can define the following sub-
types of robustness:

a) UL robustness: When uniform probability (any alter-
ation level is equally likely) and linear tolerance (lower errors
are preferable) are chosen, we obtain the following definition
of robustness:

robUL
A (𝑀) =

∫ 𝑈𝐴

𝐿𝐴
max (Θ −MAPE𝐴(𝑥), 0) 𝑑𝑥

Θ · (𝑈𝐴 − 𝐿𝐴)
This definition of robustness computes the ratio between the

striped red area and the gray one in Fig. 6(a). In this way, it
can be used for systems where, for higher alteration values,
large MAPE values are acceptable, while, for lower alteration
values, the smaller the MAPE value the better.

b) LU robustness: It is obtained when linear probability
and uniform tolerance are used:

robLU
A (𝑀) =

∫ 𝑈𝐴

𝐿𝐴
𝐻 (Θ −MAPE𝐴(𝑥)) · (𝑈𝐴 − 𝑥) 𝑑𝑥

1
2 · (𝑈𝐴 − 𝐿𝐴)2

=

=

∫
𝑥∈[𝐿𝐴,𝑈𝐴] |𝑀𝐴𝑃𝐸 (𝑥)<Θ

(
Θ · 𝑈𝐴 − 𝑥

𝑈𝐴 − 𝐿𝐴

)
𝑑𝑥

1
2
· Θ · (𝑈𝐴 − 𝐿𝐴)

This definition of robustness computes the ratio between
the area of the striped red region and the area of the gray
triangle in Fig. 6(b). The definition is suitable for systems
where it is crucial to respect the threshold Θ along all the
alteration interval [𝐿𝐴,𝑈𝐴], in particular for low (and more
likely) levels of alteration.

c) UU robustness: It is obtained when uniform probabil-
ity and uniform tolerance are used:

robUU
A (𝑀) =

∫ 𝑈𝐴

𝐿𝐴
𝐻 (Θ −MAPE𝐴(𝑥)) 𝑑𝑥
Θ · (𝑈𝐴 − 𝐿𝐴)

With this definition, we compute the ratio between the
lengths of the red and the gray lines in Fig. 6(c). UU
robustness is suitable for systems where it is crucial to respect
the threshold Θ along all the alteration interval [𝐿𝐴,𝑈𝐴],
independently from the probability of the alteration.

d) LL robustness: It is obtained when linear probability
and linear tolerance are used:

robLL
A (𝑀) =

∫ 𝑈𝐴

𝐿𝐴
max(Θ −MAPE𝐴(𝑥), 0) · (𝑈𝐴 − 𝑥) 𝑑𝑥

1
2
· Θ · (𝑈𝐴 − 𝐿𝐴)2

Higher alteration levels, which impact more on the input
data, may be the ones that lead to higher values of MAPE.
However, in some systems, these alteration levels can be less
probable than the lower ones, and a user may be less worried
about some high error in very rare cases. Thus, LL robustness
is suitable for these kinds of systems, when the user does not
want to penalize too much high error values for the highest
alteration levels. Note that it is difficult to provide a graphical
interpretation of LL robustness as done for the other types of
robustness.

IV. ROBUSTNESS ANALYSIS

The case study considered in this paper (see Sect. II) is
classified as a safety-critical system since the neural network
estimates the blood oxygen pressure, a critical blood param-
eter. The industrial partner, after a careful study, has set the
maximum accepted MAPE Θ to 10%, a value that physician
experts considered safe. In the following, we first describe in
Sect. IV-A the most plausible alterations in signal acquisition
that may affect the operation of the sensor; then, we describe
in Sect. IV-B how we actually measure the robustness, and
finally, in Sect. IV-C, we present the robustness results of the
case study.

A. Alterations

Table I shows the parameter values used for each alteration,
which have been chosen using the knowledge achieved through
the domain analysis. The value ×𝑛 represents the number
of alteration levels applied and uniformly sampled for each
alteration type in the range [𝐿𝐴,𝑈𝐴]. For each alteration, one
extreme of the interval consistently leaves the curve unaltered
(e.g., clock offset with 0 does not alter the curve).
Cut of the curve end: it consists in “cutting” the end of
the curve obtained in response to the spotlight pulse (see



(a) Cut of the curve end (b) Clock offset (c) Cut of the peak

(d) Amplification (e) Attenuation (f) Gaussian noise

Fig. 7. Typical alteration examples for the pO2 estimation case study

TABLE I
ALTERATIONS VALUES USED FOR ROBUSTNESS ANALYSIS

ID Alteration 𝐿𝐴 𝑈𝐴 × n

CC Cut of the curve end 620 ms 640 ms 21
CO Clock offset 0 ms 30 ms 31
CP Cut of the peak 1300 RFU 4000 RFU 271
AM Amplification (scale) 100 % 200 % 11
AT Attenuation (scale) 50 % 100 % 6
GN Gaussian noise 0 50 51

Fig. 7(a)). This alteration mimics a real situation in which
a disruption, failure, or anomalous system behavior leads to
a problem in which the final part of the curve is lost during
acquisition. In our analyses, we have considered only cuts in
the last range, i.e., in [620, 640]. The alteration is implemented
by choosing a 𝑡 in that range and setting to zero the response
after 𝑡.
Clock offset: it represents the difference of time calculation
in different systems (see Fig. 7(b)). It can happen when the
microprocessor of the acquiring system is not correctly set
up, or there is a delay in signal generation. We have used
a maximum offset of 30 ms, a value that guarantees a delay
in the clock greater than the maximum width of the intervals
considered as input.
Cut of the peak: it aims at representing a cut in the peak of
the curve, which simulates saturation events (see Fig. 7(c)).
This is a common phenomenon in electronics, where a signal
can not exceed a specific range of values, due to problems
in the acquisition chain or voltage drops. In these cases, high
values of the curve are set to a threshold. The signals analyzed
in our case study have a maximum amplitude of 4000 RFU
(Relative Fluorescence Units). So, in order to cover only the
relevant values, we have applied a cut starting from 1300 RFU

to 4000 RFU.
Amplification: it simulates the effect of different probes and
spotlights on the measurement of the same blood sample
(see Fig. 7(d)). In fact, from domain analyses, it has been
demonstrated that changing the probes or spotlights slightly
amplifies the response curve, even if the real pO2 value
remains the same. We have tested amplifications up to 200%
of the original amplitude.
Attenuation: it represents the opposite of the amplification,
i.e., the signal is attenuated by using different probes and/or
spotlights (see Fig. 7(e)). The two alteration types have been
evaluated separately since we wanted to highlight potential
differences between the two. We have used attenuation values
up to 50% of the original amplitude.
Gaussian noise: it simulates the noises that are common
for electronic signals (see Fig. 7(f)). In our case study, we
generate Gaussian noise with a standard deviation into the
range between 0 (i.e., the absence of noise) and 50 (i.e., the
maximum value leading to an acceptable and plausible signal-
to-noise ratio).

B. Measuring Robustness

In this section, we present the robustness analysis algorithm.
The pseudocode of the algorithm used for this purpose is
shown in Alg. 12. In order to analyze the robustness of an
MLP, we need to consider curves raw and targets, i.e., the
curves of fluorescence obtained in response to the bright pulse
and the true values for the pO2 (both at the current temperature
and at 37 ◦C). The analysis is performed over a model 𝑀 ,
for an alteration with values uniformly distributed in an
interval a levels, each one with a probability described by the

2The source code that computes the robustness is published at https://bit.
ly/3ilwNOX, while we can not distribute models and data for IP protection.

https://bit.ly/3ilwNOX
https://bit.ly/3ilwNOX


Algorithm 1 Algorithm for robustness analysis
Require: curves raw, the set of fluorescence curves obtained in response to

the bright pulse
Require: targets, the true values of pO2
Require: 𝑀, the model trained to estimate pO2 values
Require: alteration, the applied alteration
Require: a levels, the list of 𝑛 levels uniformly distributed in the range of

the chosen alteration, i.e., [𝐿𝐴,𝑈𝐴]
Require: prob, the probability distribution of the alteration to be applied
Require: Tol, the desired tolerance function
Require: intervals, the list of intervals on which the mean values have to be

computed (i.e., [50, 60], [90, 110], [190, 210], [340, 360], [620, 640])
Ensure: rob res, the computed robustness value

⊲ For each level of alteration
1: for all 𝑙 ∈ a levels do

⊲ Apply the alteration level to all the input curves
2: alt curves← alteration.apply(curves raw, 𝑙)
3: for all 𝑐 ∈ alt curves do

⊲ Compute the mean values in the intervals
4: meanValues← compMeanValues(𝑐, intervals)

⊲ Compute estimations for altered data
5: pred.𝑎𝑑𝑑 (𝑀.estimate(meanValues))
6: end for

⊲ Compute errors
7: MAPE [𝑙 ] = compute mape(pred, targets)
8: end for
9: rob res ← ROBUSTNESS(MAPE, prob, Tol, a levels)

10: return rob res

(a) pO2 at the current temperature (b) pO2 at 37 ◦C

Fig. 8. MAPE variation during robustness analysis for the Clock offset
alteration

probability distribution prob. Moreover, the tolerance function
Tol has to be specified. The algorithm describes the procedure
used to compute robustness. For each alteration level 𝑙 (line 1),
it performs the following instructions. First, starting from
curves raw, new altered fluorescence curves are generated
(line 2), by applying the defined level 𝑙 of the alteration.
Then, for each generated curve, the algorithm extracts the
mean values in the five intervals of interest (line 4), which
are used as input for computing the pO2 estimation (line 5).
The results are then used to compute the MAPE (line 7) for the
defined level 𝑙 of the alteration. Finally, having all the partial
MAPE values, the function ROBUSTNESS (line 9) performs the
robustness computation by solving the integral as per Def. 4.

C. Robustness Results

Using the alterations presented in Sect. IV-A, and applying
the procedure explained in Alg. 1, we have computed the
robustness of the MLP under analysis. As an example, we
report in Fig. 8 the data of the MAPE obtained during
robustness analysis applying Clock offset alteration from 0 ms
to a maximum offset of 30 ms. We can see that the MAPE

TABLE II
ROBUSTNESS W.R.T. ALTERATIONS FOR THE ORIGINAL NETWORK

UL Rob [%] LU Rob [%] UU Rob [%] LL Rob [%]
Alteration pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C

CC 5.16 6.70 26.53 26.53 14.29 14.29 9.85 12.65
CO 37.19 34.52 98.34 97.40 87.10 83.87 48.65 47.59
CP 48.84 50.96 97.10 96.97 82.96 82.59 59.61 62.52
AM 28.73 27.16 96.69 92.56 81.81 72.73 41.02 41.09
AT 33.52 32.31 88.89 88.89 66.67 66.67 47.71 47.54
GN 32.89 32.37 98.12 96.16 86.27 80.39 45.67 46.10

Avg Rob 31.06 30.67 84.28 83.09 69.85 66.76 42.09 42.92

remains under the fixed threshold (Θ = 10%) until an offset
of 26 ms, both for the pO2 at the current temperature and the
pO2 at 37 ◦C.

Table II reports the obtained robustness results (for UL,
LU, UU, and LL presented in Sect. III) for all the alterations
introduced in Sect. IV-A, both for the pO2 at the current
temperature and pO2 at 37 ◦C. From an analysis of the results,
we have obtained the following observations:

Robustness comparison among different formulas: The
selected probability distribution and tolerance function affect
the robustness value. Indeed, if we consider the same alteration
type, we observe that the robustness values of the different
robustness formulas vary greatly. For example, choosing a
linear tolerance function (i.e., UL and LL) the robustness is
much lower than that obtained with the uniform tolerance (i.e.,
LU and UU).

The different ways of considering the alteration levels and
the MAPE error do indeed lead to different robustness
levels, showing that some formulas are more demanding
than others.

Effect of different robustness formulas on network analy-
sis: In the previous observation, we have noticed that there is
indeed a difference between the robustness values computed
by the different formulas. We now observe that such difference
does not simply lead to a modification of the magnitude of
the robustness value across different formulas, but also affects
the comparison we can do between different alteration types.3

For example, considering alteration cut of the peak and the
robustness of pO2, we notice that it has the highest UL and
LL robustness values, while the robustness values for LU and
UU are both the third ones in their rankings. On the other hand,
considering the robustness of pO2 for alteration Gaussian
noise, we observe that UL and LL robustness values are both
ranked fourth in their rankings, while LU and UU robustness
values are both ranked second. Therefore, while UL and LL
consider the network to be more robust against cut of the peak
rather than against Gaussian noise, LU and UU consider the
opposite. This clearly shows that different formulas are really
considering different aspects related to the network error (i.e.,
the amount of the error and the probability of the alteration

3This would also apply to the comparison of the robustness values of
different networks.



causing it), and this leads to different judgments. This is a
positive aspect of our parameterized robustness definition.

The different robustness formulas are indeed different,
as they lead to different conclusions when analyzing the
robustness values of different alterations.

Agreement on best and worse cases: While in the pre-
vious points we have observed that the different robustness
formulas can consider differently some alterations (when the
amount of error and the probability affect the ranking), when
the error is always very high or very low, the different formulas
are consistent. For example, the cut of the curve end is
considered by all formulas as the alteration with the minimum
robustness value: indeed, values near the end of the curve
represent important information for the network estimation,
and cutting them greatly affects the MAPE, and so robustness
values of the different formulas are very low.

The different robustness formulas tend to agree when the
MAPE error is consistently very high or very low.

Because of the criticality of the case study system, as
suggested by our industrial partner, we have selected the UU
robustness, i.e., the uniform probability distribution for the
alteration and the uniform tolerance function. The choice of
uniform probability is motivated by the fact that, in medical
practice, the sensor should be robust against any alteration
level, regardless of the probability of the alteration (since even
a very rare alteration level can lead to terrible consequences).
On the other hand, the choice of uniform tolerance is motivated
by the industrial partner, in accordance with the physicians
who consider any error below the selected threshold Θ safe
for medical practice.

V. IMPROVING ROBUSTNESS

Our industrial partner, after having discussed with us about
the robustness analysis we have performed and presented in
Sect. IV-C, asked us to find a way (if existing) to improve the
robustness of their MLP model, with only minimal changes in
the system architecture. For this goal, we have examined three
different methods: (A) data augmentation with recombined
data, (B) data augmentation with altered data, and (C) incre-
mental learning. The first two methods consist in enriching the
training dataset by adding artificial or altered data, in order to
retrain the original MLP (without changing its structure); the
third method, instead, consists in adding another MLP aside
the original one and leaving the original one as it is.

A. Data Augmentation with Recombined Data (DA-RD)

Data Augmentation (DA) is a wide subject [23], including
a suite of techniques that increase the size and quality of the
training dataset.

The first suitable approach to improve the robustness is
the one using a modified version of some classical data
augmentation methods for classification tasks, i.e., the data
augmentation with recombined data (DA-RD). In particular,

TABLE III
MAPE0 OF THE ORIGINAL NETWORK AND THE RETRAINED ONES

# Training MAPE0 [%] Avg UU robustness
Model curves pO2 pO2 37 ◦C pO2 pO2 37 ◦C

Original 12,990 3.70 3.35 69.85 66.76
DA-RD 14,677 3.08 3.08 64.92 65.36
DA-AD 19,485 3.11 3.06 78.05 76.13
IL 6,495 3.32 3.20 78.89 76.25

the idea of this technique is to create new input data (virtual)
by recombining existing ones (real) [11]. This solution can
be easily applied to our case study because, in our data
set, there exist many curves that, although they represent the
same labeled pO2 true value, differ in shape, mainly because
of differences in temperature, and types of probes and/or
spotlights. For this reason, we have determined new samples in
two different ways: by averaging two curves with out-of-range
estimation errors (i.e., higher than 10%), and by averaging
a curve with a high estimation error with one with a low
error. In both cases, the curves which have been averaged are
with the same pO2 target values. The intent is to capture new
intermediate curves with a known true value of pO2. In our
case study, we had 1141 samples with high estimation error, so
we have generated 546 new samples with the first method and
1141 with the second one, obtaining a new dataset composed
of 1687 additional samples with which we have retrained the
MLP under analysis.

This new retrain has led to enhanced performance, in terms
of MAPE0, compared with the one of the network trained with
original data, as shown in Table III. In particular, the results
show that using the DA-RD we have reduced the values of
MAPE0, both for the pO2 and pO2 at 37 ◦C.

In terms of robustness, this technique has, unfortunately,
worsened the robustness on average (see Table III), but with
very different results depending on the specific alteration
applied. Table IV shows the results in terms of robustness
for the estimation provided by the new networks for each
alteration. The columns ΔRob show the difference w.r.t. the
robustness of the original network.

The results show that by using the DA-RD technique,
we only have been able to slightly increase (or maintain
equal) the performance for the majority of alterations, while
for the amplification and Gaussian noise alteration, we have
significantly degraded the robustness of the model. This has
proven not to be a very good solution, but it was not a surprise,
since by using this technique we do not add any new data that
could mimic possible unexpected alterations.

B. Data Augmentation with Altered Data (DA-AD)

Our robustness definition considers the error done by the
network on altered data. DA with altered data (DA-AD) is a
retraining approach that directly aims at increasing robustness:
it explicitly targets the alterations and consists in adding,
during the training phase, also data altered with the alterations
listed in Sect. III-A. To reduce the training time and to keep



TABLE IV
ROBUSTNESS W.R.T. ALTERATIONS FOR THE NETWORKS RETRAINED WITH THE THREE APPROACHES

Original DA-RD DA-AD Incremental learning
Rob [%] Rob [%] Δ Rob [%] Rob [%] Δ Rob [%] Rob [%] Δ Rob [%]

Alteration pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C pO2 pO2 37 ◦C

CC 14.29 14.29 19.05 19.05 4.76 4.76 28.57 28.57 14.28 14.28 14.29 19.05 0.00 4.76
CO 87.10 83.87 87.10 83.87 0.00 0.00 87.10 87.10 0.00 3.23 87.10 87.10 0.00 3.23
CP 82.96 82.59 83.70 83.70 0.74 1.11 83.33 84.07 0.37 1.48 83.70 83.70 0.74 1.11
AM 81.81 72.73 54.54 54.54 -27.27 -18.19 90.90 72.73 9.09 0.00 100.00 100.00 18.19 27.27
AT 66.67 66.67 66.67 66.67 0.00 0.00 100.00 100.00 33.33 33.33 100.00 83.33 33.33 16.66
GN 86.27 80.39 78.43 84.31 -7.84 3.92 78.43 84.31 -7.84 3.92 88.24 84.31 1.97 3.92

the network focused on the right values, we have added to
the training set only the alterations causing a variation of the
MAPE up to 5%, obtaining a dataset 1.5 times greater than
the original one.

This new retrain has led to enhanced performance, in terms
of MAPE0, compared to the one of the MLP trained with
original data as shown in Table III: the results show that using
data augmentation has reduced the values of MAPE0, both for
the pO2 at the current temperature and at 37 ◦C, w.r.t. the
original model. The comparison between DA-RD and DA-AD
highlights only minimal differences between the two.

Table III shows that the average robustness has significantly
increased on average (more than 13%). Table IV shows the
robustness results for the different alteration types. Unlike DA-
RD, with DA-AD, we have been able to consistently increase
the robustness of the analyzed MLP, even more than 33%
for a single alteration. However, the retrain requires more
time, since it is performed using nearly 7, 000 additional
input curves. The only alteration for which the robustness
has decreased is the Gaussian noise during the estimation
of the pO2 at the current temperature. However, the noise
is, by definition, randomly distributed and, so, increasing the
robustness w.r.t. this kind of alteration is very difficult.

C. Incremental Learning (IL)

Data augmentation contributes to enhancing the robustness
performance of a network but requires the retraining of
the original network with a larger set of inputs. Thus, in
order to reduce the learning time and increase the network
generalization at the same time, we have implemented a
different approach, known as incremental learning (IL). It
allows improving the model performances without retraining
the whole network. In the literature, incremental learning is
performed whenever new samples are available, by adjusting
what has been learned according to them. This method was
designed to work as an online technique, but we have adapted
it (as suggested by [19]) to be used as an offline approach.

Our approach adds knowledge to an existing MLP without
modifying it in order to improve the performance of the net-
work. For this reason, the system structure has been modified.
The new estimator is composed of two networks, as shown
in Fig. 9, one representing the original network and one the
new and non-previously trained network. During the retraining
phase, only the new network is trained using the new altered

Input data

Original model output

New model output

Original Model

New Model

0.5

0.5

Output

Fig. 9. Incremental learning technique

dataset; the outputs of the two networks are used in the loss
function computation and to update the weights in the new
network. In this way, we have obtained a new network that
is able to classify new inputs, using the support information
provided by the original one. After the retraining phase, the
inference of an input vector uses both networks: the final
estimation is obtained by averaging the estimations of both
models (the original and the new one).

This approach has the advantage of avoiding the retrain of
the whole system, but only a part of it, and of using a limited
dataset composed of only altered input data. This led to a lower
training time than the one required for the DA-AD technique,
despite having a total dataset of the same size. Moreover,
the original network is not modified; this is an advantage,
as sometimes modifications are not possible if the model is
read-only or available only as a black box.

Table III shows that the average robustness has significantly
increased on average (more than 13%) w.r.t. to the original
network. This value is slightly higher than the one obtained
with DA-AD. Regarding MAPE0, instead, it is slightly higher
than the one obtained with DA-AD, but still better than the
one of the original network. Table IV shows the results of
robustness for each alteration type. We have been able to
increase the robustness of the analyzed MLP up to 33%, and
no robustness is decreased with any alteration (differently from
DA-AD, for which we had some decreases).

These results show that IL is able to combine the advantages
of the original network, i.e., focusing only on relevant input
features, and the ones of the data augmentation, i.e., guaran-
teeing higher robustness w.r.t. the standard-trained network.
At the end, the industrial partner has decided to choose the IL
technique. Indeed, even if it is not the best choice in nominal
conditions (i.e., MAPE0), it still contributes to decreasing
the MAPE0 and is the best-performing method in terms of
robustness. Moreover, its application requires less training time
and does not change an important part of the network structure.



VI. DISCUSSION

We here report some considerations of the industrial partner,
we discuss how the proposed robustness measure can be
integrated in an industrial development process, and how it
can be used to provide confidence on the correctness of a
DNN-based component used in safety-critical domains.

In our proposed solution, the user needs to select the
probability of the alterations of interest. Nevertheless, in some
application scenarios, the probabilities may be unknown and
this can make it difficult to apply the formula for robustness
computation. In these cases, interpreting the probability as
a function that describes the “importance” of each alteration
level is a viable solution. Indeed in our approach, the probabil-
ity can act as alteration weight in the robustness computation.

From the experiments with the three robustness improve-
ment techniques (see Sect. V), we observe that, for most al-
terations, the robustness is not 100% also after retraining. This
shows that obtaining optimal robustness by simply retraining
may not be possible. In this case, by looking at the final
robustness results, the industrial partner has understood which
are the most critical alterations that can still affect the network,
and planned to adopt countermeasures from an electronic point
of view. For example, the impact of Gaussian noise may be
reduced by improving the cables shielding, or by amplifying
the acquired signal so that the noise is less relevant.

Our industrial partner plans to obtain the certification of the
new sensor. Note that, nowadays, many medical devices based
on AI algorithms are certified by competent authorities [6],
but a lack of clarity on the approval of AI/ML-based medical
devices and algorithms characterizes the certification process.
FDA approves AI-based medical systems in three cases: (i) AI
algorithms have shown to be at least as safe and effective as
another similar legally marketed; (ii) critical algorithms with
high impact on humans are premarket approved, then the FDA
determines if the device’s safety and effectiveness is supported
by satisfactory scientific evidence; (iii) novel medical devices
which offer adequate safety and effectiveness are approved
after performing a risk-based assessment. In our case, the
sensor can be certified by showing that on the extensive data
set, it proves to be at least as reliable as other devices already
in the market. Although no robustness assessment is currently
formally required, the industrial partner may include our re-
sults as part of a risk-assessment documentation because they
allow to evaluate how the model resists to input perturbations.

After our case study, the industrial partner is planning to
introduce an automatic robustness assessment phase in their
current pipeline when developing ML-based solutions. To this
end, we are working on extending ROBY [4] in order to
support also NN-based estimators.

We have applied the proposed approach based on MLP to
the estimation of pO2, nevertheless, our method is applicable
to other models also in different application domains.

VII. RELATED WORK

Nowadays, the testing of NN-based systems [18] is per-
formed by analyzing different properties of the networks,

and robustness is one of them [26]. The robustness of NNs
has been studied in a lot of different ways since they are
increasingly used in safety-critical domains. Most of the
researches are focused on robustness for NN classifiers. For
example, in [2], we have investigated on the robustness of
neural networks images classifiers used for medical analysis,
while in [4] we have extended the analysis to classifiers for
all types of data, by introducing ROBY, a tool for robustness
analysis. Nevertheless, in recent years, some researches have
been conducted also for other kinds of NNs. For example,
Xiange et al. [21] study the robustness of an MLP used in
nuclear power plants for the diagnosis of loss of coolant
accidents in nuclear reactors. The authors propose a robustness
measure based on the maximum value assumed by the mean
square error of the estimation. However, most of the robustness
analyses are focused on adversarial robustness [22], [5], i.e.,
the robustness of the network w.r.t. adversarial examples.
Carlini and Wagner [7] demonstrate that some of the most
recent techniques used to increase the robustness w.r.t. adver-
sarial examples can be easily fooled with other adversarial
generation techniques. Thus, when creating an NN, especially
for safety-critical domains, it is of paramount importance to
evaluate and increase the robustness for plausible alterations
as well, depending on the application field.

In our experiments, among all the alterations, we have added
Gaussian noise to assess the robustness of the model. This
approach has been also proposed by Dey et al. [9], who
add three regularizing terms to the loss function of an MLP,
in order to obtain a higher robustness w.r.t. multiplicative
and/or additive noise. Other methods try to improve the
robustness of an MLP by changing the training algorithm. For
instance, Kerlirzin and Vallet [15] propose a modified back-
propagation algorithm leading to enhanced robustness versus
the destruction of neurons. In our case, instead, the industrial
partner asked to maintain the same training algorithm.

VIII. CONCLUSION

In this paper, we have proposed a new robustness estimation
measurement that includes two important concepts in its
definition: alteration probability and tolerance. The former
indicates the probability of an alteration level, while the latter
indicates the acceptance of certain amounts of error, specified
as Mean Absolute Percentage Error (MAPE). These functions
are chosen by domain experts and they significantly affect
robustness results. We have applied the robustness definition
to an industrial case study to estimate the value of blood
oxygen pressure, and we have compared the robustness results
obtained with different alteration probability distributions and
tolerance functions. Moreover, we have proposed three meth-
ods to increase the robustness without significant changes to
the system architecture: data augmentation with recombined
data, data augmentation with altered data, and incremental
learning. The industrial partner, based on the obtained results,
has chosen incremental learning because it increases the
robustness and decreases the nominal MAPE (i.e., MAPE0).
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[22] M. Uličný, J. Lundström, and S. Byttner. Robustness of deep convolu-
tional neural networks for image recognition. In Intelligent Computing
Systems, pages 16–30. Springer International Publishing, Cham, 2016.

[23] D. A. van Dyk and X.-L. Meng. The art of data augmentation. Journal
of Computational and Graphical Statistics, 10(1):1–50, mar 2001.

[24] C. J. Willmott and K. Matsuura. Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance. Climate Research, 30(1):79–82, 2005.

[25] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See. DeepHunter: A coverage-guided fuzz testing
framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, pages 146–157, New York, NY, USA, 2019. ACM.

[26] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, pages 1–1, 2020.


