
Automatic Detection and Removal of
Conformance Faults in Feature Models

Paolo Arcaini
Charles University in Prague

Faculty of Mathematics and Physics, Czech Republic
Email: arcaini@d3s.mff.cuni.cz

Angelo Gargantini
DIGIP

University of Bergamo, Italy
Email: angelo.gargantini@unibg.it

Paolo Vavassori
DIGIP

University of Bergamo, Italy
Email: paolo.vavassori@unibg.it

Abstract—Building a feature model for an existing SPL can
improve the automatic analysis of the SPL and reduce the effort
in maintenance. However, developing a feature model can be
error prone, and checking that it correctly identifies each actual
product of the SPL may be unfeasible due to the huge number of
possible configurations. We apply mutation analysis and propose
a method to detect and remove conformance faults by selecting
special configurations that distinguish a feature model from its
mutants. We propose a technique that, by iterating this process,
is able to repair a faulty model. We devise several variations of
a simple hill climbing algorithm for automatic fault removal and
we compare them by a series of experiments on three different
sets of feature models. We find that our technique is able to
improve the conformance of around 90% of the models and find
the correct model in around 40% of the cases.

I. INTRODUCTION

Feature models (FMs) allow designers to specify families of
products, generally called Software Product Lines (SPLs), in
a simple way. A feature model lists the features in a product
line together with their possible values and constraints. In this
way, it can represent in a compact and easily manageable
way millions of variants, each representing a possible product.
The availability of a feature model enables several analysis
activities on the SPL, like verification of product line con-
sistency, automatic product configuration, interaction testing
among features on the products, and similar actions [1].

Building the correct feature model for an SPL is not an easy
task: while identifying the features may be easy and performed
in a semiautomatic way [2], modeling the relationships among
features and their constraints can be very complex and time
consuming [3]. There exist numerous attempts to help the
designer to reverse engineer a feature model from an SPL [4].
These techniques generally require the set of valid products,
normally given as a list, as in [5], or symbolically as a propo-
sitional formula specifying dependencies among features, as
in [6]. Some also require a starting feature model [7], while
others promise to synthesize a model from scratch [8].

In many cases, though, modeling the entire set of valid
products may be impossible or too costly. Consider, for
example, the Linux kernel: with its thousands of features, the
list of valid configurations is intractable. In many cases, also
a representation of the constraints among the features can be
difficult to obtain. In general, discovering if a configuration is
valid or not may require a great effort in terms of time (for

example, if a compilation and build are necessary) and in terms
of human effort (if checking whether a configuration is correct
or not requires some human intervention). In these cases,
traditional reverse engineering techniques are not efficient.

In this paper, we assume to have an SPL and already a fea-
ture model describing it. We assume that the model correctly
identifies the features of the SPL (although some of them may
be not necessary), but the relations among features may be
wrong. Moreover, we assume that static anomalies like dead
features, redundant constraints and so on [1] have already been
found and removed (if any) with, for example, FeatureIDE [9].
However, the designer could be not sure that the feature model
exactly captures the SPL: correct configurations over the SPL
may be judged wrong by the feature model or the other way
around. We call these discrepancies conformance faults (that
are different from feature model anomalies, like dead features
and so on, that generally indicate non-minimal models). We
want to automatically discover the conformance faults and
remove them in order to obtain a model which is closer
to the SPL. Moreover, we assume that checking whether a
configuration is a valid product or not is costly and we want
to keep the number of checks limited.

In order to do this, we apply a mutation-based approach
that, through a sequence of mutations, obtains a feature model
having a better quality. Quality is defined in terms of number
of configurations that are correctly evaluated. The approach
consists in generating some mutants of the starting model,
computing configurations that permit to distinguish the model
from its mutants, checking the quality of the mutants and the
original model over the generated configurations, and choosing
the best model. We propose several versions of the previous
general process which differ in the number (and kind) of
considered mutants, in the number of generated configurations,
in the order in which the phases are executed, etc.

In Sect. II we give background on feature models, mutation
of them, and generation of configurations able to distinguish
a model from a mutant. Sect. III presents the notion of
conformance fault and conformance index. Sect. IV presents
our approach for repairing a possible faulty feature model,
and gives different versions of the general approach with a
preliminary evaluation. A more throughout evaluation is done
in Sect. V. Sect. VI identifies possible threats to the validity of
the proposed approach. Finally, Sect. VII reviews some related



Fig. 1: Example of a Feature Model

work and Sect. VIII concludes the paper.

II. BACKGROUND

A. Feature models

In software product line engineering, feature models are a
special type of information model representing all possible
products of an SPL in terms of features and relations among
them. Specifically, a basic feature model is a hierarchically
arranged set of features, where each parent-child relation
between them is one of the following types (each having a
suitable graphical notation as shown in Fig. 1):
• Or – at least one of the sub-features must be selected if

the parent is selected.
• Alternative (xor) – exactly one of the sub-features must

be selected whenever the parent feature is selected.
• And – if the relation between a feature and its sub-features

is neither an Or nor an Alternative, it is called And. Each
child of an And must be either:
– Mandatory – child feature is required, i.e., it is selected

whenever its respective parent feature is selected.
– Optional – child feature is optional, i.e., it may or may

not be selected if its parent feature is selected.
In addition to the parental relations, it is possible to add

extra-constraints, i.e., cross-tree relations that specify incom-
patibility between features:
• A requires B – The selection of feature A in a product

implies the selection of feature B.
• A excludes B – A and B cannot be part of the same

product.
• It is also possible to specify a constraint in general form

through a propositional formula (using the usual Boolean
operators ∨,∧,→,¬, . . . ) representing the features as
propositional variables. Not all the frameworks support
the general form of constraints. Allowing general con-
straints guarantees logical completeness [10].

Feature models can be visually represented by means of
feature diagrams. In order to present the visual notation
commonly adopted for feature modeling, Fig. 1 depicts a
simplified example model presented in [1] and inspired by the
mobile phone industry. The example also shows how a model
can be used to specify a product family, i.e., to determine
the features that will be supported (selected) in a particular

phone configuration of the considered family. According to
the model, all mobile phones must include support for calls,
and must display information in either a basic, color or high
resolution screen. Furthermore, the software for mobile phones
may optionally include support for GPS and multimedia
devices such as the camera, the MP3 player, or both of them.
An extra-constraint (excludes) specifies that the GPS and the
basic screen are incompatible, and another constraint asserts
that the camera requires a high resolution screen.

Extensions to the basic feature model notation have been
proposed in literature, e.g., for specifying the cardinality of the
features and/or additional types of information. However, in
this paper we only consider basic feature models with general
form constraints.

Several languages/tools for specifying/analyzing feature
models are currently available, some of them already mature
enough to be part of a software production IDE. In this work,
FeatureIDE [9] has been used to design, import, analyze,
mutate, and validate the models used in the evaluation section.

Feature Model semantics: Feature models semantics can be
rather simply expressed by using propositional logic as already
done in [11], [1]. Every feature becomes a propositional letter,
and every relation among features becomes a propositional
formula modeling the constraints about them.

B. Configurations and Validity

Definition 1: A configuration of a feature model fm is a
subset of the features in fm that must include the root.

If fm has n features (including the root), there are 2n−1

possible configurations, which, however, are not all valid. For
instance, a configuration may miss a mandatory feature. In
the following, let Cfm be the set of configurations of a feature
model fm .

Definition 2 (Validity): Given a feature model fm , a config-
uration c is valid if it respects the constraints of fm , derived
from the parental relations and by the extra-constraints. We
represent the validity of a configuration c over a feature model
fm by the predicate val(fm, c). A valid configuration is called
product.

C. Mutating feature models

Our idea is that conformance faults can be discovered
through mutation analysis. In [12], we have proposed some
mutation operators for feature models, divided in feature-based
and constraint-based operators. We here consider all of them
and introduce new ones.

Feature-based mutation operators are:
• AlToOr: an Alternative is changed to an Or;
• AlToAnd: an Alternative is changed to an And;
• OrToAl: an Or is changed to an Alternative;
• OrToAnd: an Or is changed to an And;
• AndToOr: an And is changed to an Or;
• AndToAl: an And is changed to an Alternative;
• ManToOpt: a mandatory relation is changed to optional;
• OptToMan: an optional relation is changed to manda-

tory;
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Fig. 2: A model and a ManToOpt mutant

• MF: a feature f is removed and it is replaced by its
sub-features which inherit the same relation the removed
feature had with its parent. f is replaced by false in any
constraint containing it;

• MoveF: a feature f is moved (with its descendants) as
child of another feature (not belonging to its descendants)
in the feature model.

When a relation is changed to And, all the children in the
relation are set to mandatory (if the parent is selected, all
the children must be selected). We never remove the root,
otherwise we would obtain a void model.

Constraint-based mutation operators are:
• MC: an extra-constraint is removed;
• ReqToExcl: a requires constraint is transformed into an

excludes constraint;
• ExclToReq: an excludes constraint is transformed into a

requires constraint;
• A general constraint is modified by inserting a new

feature, changing a logical operator (e.g., and becomes
or), or removing part of it. These mutation operators are
borrowed from the classical logical mutation operators of
Boolean expressions in general form [13].

Example 1: Fig. 2 shows a model and one of its possible
faulty implementations, namely the model obtained by apply-
ing the ManToOpt operator to the relation between the root
node a and its child b.

Definition 3 (Mutants set): Given a feature model fm , we
identify with mut(fm) the mutants obtained by applying the
mutation function mut.

Function mut applies (a subset of) the operators defined
previously, once (first order mutation) or several times in
sequence (higher order mutation).

Note that mutation operators can produce equivalent mu-
tants, i.e., mutants representing the same set of products of
the original feature model.

D. Distinguishing configurations

Definition 4 (Distinguishing configuration): We say that
a configuration c distinguishes a feature model fm from a
mutant fm ′, if c is valid in fm and not in fm ′ (i.e., val(fm, c)
and ¬val(fm ′, c)) or vice versa. We call this a distinguishing
configuration.

A distinguishing configuration is able to find the difference
between fm and fm ′. It could be either a product or an invalid
configuration for the original model, but it is a product for only
either fm or fm ′, never for both. Note that equivalent mutants
do not have distinguishing configurations. In the following,

we identify with DCs(fm, fm ′) the set of distinguishing
configurations between fm and fm ′.

Example 2: Consider the model in Fig. 2a and its mutant in
Fig. 2b. The configuration {a, c} is valid in fm ′ but it is invalid
in fm: therefore, it is a distinguishing configuration. The
configuration {a, b}, instead, is valid in both feature models
fm and fm ′ and so it is not a distinguishing configuration.

In [12], we described an approach for generating compact
distinguishing configuration sets based on the computation
(through a SAT/SMT solver) of a model for the exclusive or
between fm and fm ′. In this work, we generate distinguishing
configurations by exploiting a feature of FeatureIDE [9] that
directly calls Sat4j.

III. CONFORMANCE FAULTS AND CONFORMANCE INDEX

In this section, we show how we compare a feature model
with the SPL it is supposed to represent. We do this by
comparing the validity evaluations given to some specific
configurations by the feature model and the SPL (acting as
oracle). Since we suppose to have only one software product
line under representation, we directly use SPL for indicating
it, whereas we give different names to the different feature
models allegedly describing SPL.

We assume that there is an oracle able to tell us whether a
given configuration is a product in the SPL or not.

Definition 5 (Oracle): An oracle o, given a configuration c,
gives the validity value of c over the SPL. An oracle is defined
as follows

o : C → Boolean

A feature model may wrongly assess the validity of some
configurations. In this case, we say that it is killed by the
configuration.

Definition 6 (Killed feature model): A feature model fm is
killed by a configuration c if the validity value of c over fm is
different from the expected value given by the oracle o, i.e.,

killed(fm, c, o) iff o(c) 6= val(fm, c)

Definition 7 (Conformance fault): A feature model fm for
SPL contains a conformance fault if there exists a configura-
tion c that is a product in fm but not in the SPL or vice versa
(i.e., fm is killed by c). Formally,

∃c ∈ C : killed(fm, c, o)

A conformance fault is a discrepancy between the feature
model and the SPL under representation represented by the
oracle o. Such faults are due to wrong relations among features
or because of wrong constraints.

We give an index of the quality of the feature model as
conformance w.r.t. the oracle.

Definition 8 (Conformance index): Given a feature model
fm and an oracle o, we define the conformance index
(confIndex ) of fm as the percentage of configurations of the
oracle (Co) whose validity is correctly judged by fm:

confIndex (fm, o) =
|{c ∈ Co : ¬killed(fm, c, o)}|

|Co|
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Fig. 3: Mutation-conformance

A correct model will never be killed, and therefore has
100% conformance index: in that case, we say that it is
conformant to the oracle.

Since computing the conformance can be expensive and is
sometimes impossible, as all the configurations of the oracle
are required, in the following we give a weaker notion of
conformance that will be used in our approach.

Definition 9 (Mutation-conformance): Given a feature
model fm and a function mut producing mutants, fm is
mutation-conformant (mutConf ) if every non-equivalent mu-
tant fm ′ ∈ mut(fm) is killed by a configuration which
confirms fm instead.

mutConf (fm, o) =

∀fm ′ ∈ mut(fm) :

 fm 6≡ fm ′ =⇒

∃c ∈ Cfm :
¬killed(fm, c, o)∧
killed(fm ′, c, o)


Mutation-conformance does not guarantee that fm is cor-

rect, and neither that it has a conformance index better than its
mutants. However, it guarantees that the mutations introduced
in the mutants fm ′ are conformance faults that are not present
in fm (that, however, may contain other faults).

Example 3: Fig. 3 shows an example in which mutation-
conformance does not imply to have a model equivalent
to the oracle. The candidate is in the middle, while its

mutations obtained by applying the mutation operators mut

={OptToMan, MF, ManToOpt, AndToAl, AndToOr, MC}
are displayed around it. The candidate is mutation-conformant
w.r.t. the mutation function mut because each mutant is either
equivalent or killed by at least a configuration c (shown on the
line connecting the candidate with the mutant). However, the
candidate is not correct w.r.t. the oracle in grey in the bottom
of the figure and its conformance index is only 3/4.

A. Using distinguishing configurations to prove mutConf

We have already observed that the set Cfm may be too big
to compute, but we can exploit distinguish configurations to
operatively prove the weak form of conformance, thanks to
the following theorem.

Theorem 1: Given a feature model fm , if for every non-
equivalent mutant fm ′ ∈ mut(fm) there exists a distinguishing
configuration dc ∈ DCs(fm, fm ′) such that killed(fm ′, dc, o),
then fm is mutation-conformant.

The advantage of the previous theorem is that it gives us a
way for assessing mutation-conformance, since we know how
to generate distinguishing configurations. A further advantage
is that if we find a configuration dc that does not kill a mutant
fm ′ (i.e., we fail in assessing mutation-conformance), we can
say that, in that particular case, fm ′ is better than fm because
fm is killed instead (by Def. 4). This gives us a way to repair
the original model.

In the following, we make two classical assumptions: cou-
pling effect and competent programmer hypothesis [14], which
are adapted for feature models.

a) Coupling effect: According to Offutt, the Coupling
Effect Hypothesis is that “complex faults are coupled to simple
faults in such a way that a test data set that detects all
simple faults in a program will detect a high percentage of
the complex faults?” [15]. In our case, we hypothesize that
distinguishing configurations that detect all simple mutants in
a feature models will also detect a large percentage of the
complex faults. Unfortunately, this may be not always true,
as shown in Example 3, where each distinguish configuration
was unable to find the faults in the candidate model.

b) Competent designer: In principle, to prove that fm
is conformant to the oracle, one would need to check all the
configurations, since it is always possible to build a feature
model that behaves as the oracle on all the configurations but
one. This is not feasible because the number of configurations
grows exponentially with the number of features. However, we
can assume that the designer is competent enough and (s)he
may insert a small number of local mistakes that can be indi-
vidually found and fixed by our distinguishing configurations.
We refer to this hypothesis as competent designer.

IV. ALGORITHMS FOR DETECTING AND REMOVING
CONFORMANCE FAULTS

Fig. 4 graphically depicts the situation in which we are
operating. We start with a feature model fm that, however,
may be not totally correct. In order to obtain a correct feature
model for the SPL, we can iteratively apply some mutation
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Algorithm 1 Meta-approach
Require: fm initial feature model
Require: o oracle
Require: mut mutation function
Ensure: a repaired feature model

while stoppingCondition do
MUTs ← mut(fm)
DCs ← buildDCs(fm,MUTs)
evalMUTsAndCandidate(fm,MUTs,DCs)
updateCandidate(fm,MUTs)

end while
return fm

operators (i.e., we try to remove some faults from the feature
model), and so traverse a path (i.e., a sequence of mutations)
that brings to a feature model conformant with the oracle (or,
at least, having a better conformance index than the initial
model). Note that two feature models fm1 and fm2 may be
connected by different paths, i.e., the correct feature model
may be obtained from the original one with different sequences
of mutations.

Alg. 1 shows an approach that, based on the previously
mentioned idea, tries to repair a (possibly) faulty feature
model. It is a classical greedy algorithm for traversing a
graph. We choose a greedy approach because we assume
that the exhaustive exploration of the graph is unfeasible.
The algorithm consists in generating some mutants (using
a given mutation function mut) for the current candidate,
computing some distinguishing configurations between the
current candidate and (a subset of) its generated mutants,
checking how the candidate and the mutants evaluate the
distinguishing configurations, and finally decide whether to
change the candidate or not. These activities are repeatedly
executed till the current candidate is not updated anymore.

This algorithm can be classified as a hill climbing [16]
exploration of the graph, since it makes a small modification
(mutation) at a time (local search) and it takes the new
candidate if it is a better model. It is well known that hill
climbing is very good in finding local optimum, but it may
fail to find the global optimum.

Such a meta-algorithm is very general, since it does not
specify which mutation function mut is used (i.e., which
are the used mutation operators and which is the order of
mutations), how many mutants are considered at a time, how
the comparison is done between the candidate and the mutants,
when the candidate is changed, and which is the stopping

TABLE I: SPLOT models properties

model #features model #features

aircraft 13 car 9
connector 20 fame_dbms 21
MarketPlace 26 monitor_engine 20
movies_app 13 REAL-FM-13 12
REAL-FM-14 18 REAL-FM-20 44
ReferenceManagement 31 SmartPhone 36
stack_fm 17 VolkswagenUp 35

#ifdef HELLO
char* msg = "Hello!\n";
#endif
#ifdef BYE
char* msg = "Bye bye!\n";
#endif
main() {

printf(msg);
}

(a) The source code (b) Its feature model

Fig. 5: Synthesis of feature models

condition. Different implementations of the previous phases
are given in the algorithms we propose in Sects. IV-B–IV-E.

A. Benchmarks

In order to compare the different algorithms, we have
gathered the following three sets of benchmarks1.

1) SPLOT: The first set consists of 14 SPLOT models
which are often used as benchmarks2. They include models
of aircraft configurations, car configurations, DBMS settings,
configurations of a smartphone application, configurations of
a monitor engine, etc. Table I reports the data about the 14
models in terms of number of features (recall that the number
of configurations is equal to 2#features−1). For each of these 14
models, we have built 10 faulty versions of the original model
by randomly selecting by hand from 1 to 3 operations from the
possible actions allowed by the FeatureIDE editor. We prefer
to modify the original models not programmatically (i.e., by a
simple Java program) in order to be more faithful to possible
human errors and to avoid the use of the same mutation
operators to insert and remove faults. For this benchmark set,
the oracle is the original model.

2) CPP: A typical use of feature models is to model SPLs
represented by preprocessor directives. For instance, Fig. 5a
shows a C code fragment using preprocessor directives to
build a small SPL; Fig. 5b shows the feature model obtained
from the source code. The CPP set contains feature models
developed by 6 of our students for 6 small programs taken
from the literature regarding the synthesis of feature models
from preprocessor directives of C/C++ source code. Although
this technique is programming language specific, it can be
easily extended in order to deal with more abstract and general
concepts [17]. Each program has from 19 to 38 lines of code

1The tool, benchmarks, and results are available at https://github.com/
fmselab/fmautorepair

2http://www.splot-research.org/



Fig. 6: Fragment of the LibSSH feature model

containing from 2 to 5 #ifdef or equivalent directives. We
have instructed the students and asked them to build the 6
feature models. The resulting models contain from 2 to 6
features and maximum 2 constraints. In this case, we use the
compiler as oracle: a configuration is valid if and only if it
compiles successfully (this was explained to the students).

3) LibSSH: As real-life case study, we have analyzed
libssh, a multi-platform library implementing SSHv1 and
SSHv2 written in C3. The library consists of around 100
KLOC and can be configured by several options and several
modules (like an SFTP server and so on) can be activated
during compile time. We have analyzed the cmake files and
identified 16 features (besides the root) and the relations
among them. We have built a feature model for the case study
which has 57344 products. Fig. 6 shows a fragment of the
feature model in which WITH_BENCHMARKS can be activated
only when WITH_TESTING is selected. In this case, the cmake
and the gcc compiler act as oracles: a configuration is valid if
the building system is able to produce an executable (without
changing the options). A deeper analysis could consider suc-
cessful only the builds that produce an executable that passes
the tests, but this would require a deeper knowledge of the
system (and some tricks when WITH_TESTING is not selected).
Starting from the initial model, we have built 9 variations by
introducing small errors. In total, we have 10 models for libssh.

Comparison of the techniques: In order to compare the
different algorithms that we will present, we have executed
each technique and computed the following measures:
AvgTime the average time taken (in secs) by the algorithm

over all the models. In case we use as oracle external
programs (like gcc and cmake), the time includes both
the generation of distinguishing configurations and the
execution of such programs.

MaxTime the maximum time taken by the algorithm over all
the models.

#DCs the average number of generated distinguishing config-
urations over all the models.

∆C ratio between the average of the differences between the
final and the initial conformance4 over the average gap
distance (in terms of conformance) between the initial
model and the oracle. Formally:

AVG(confIndexfinal − confIndex init)

1− AVG(confIndex init)

∆C measures how much the initial unconformity has
been repaired.

3https://www.libssh.org/
4We have computed confIndex only for evaluation purposes. However, it

cannot be used in the algorithms since it may very expensive to calculate.

Algorithm 2 Naïve approach
Require: fm initial feature model
Require: o oracle
Ensure: a feature model being mutation-conformant

1: MUTs ← mut1(fm)
2: genDCs ← ∅
3: while MUTs 6= ∅ do
4: fm ′ ← pickone(MUTs)
5: if ∃c ∈ genDCs : killed(fm ′, c, o) then
6: MUTs ← MUTs \ {fm ′}
7: else
8: dc ← generateDc(fm, fm ′)
9: genDCs ← genDCs ∪ {dc}

10: if killed(fm ′, dc, o) ∨ fm ≡ fm ′ then
11: MUTs ← MUTs \ {fm ′}
12: else
13: fm ← fm ′

14: MUTs ← mut1(fm)
15: end if
16: end if
17: end while
18: return fm

%F the percentage of models that are improved (some faults
are repaired). It counts how many times ∆C is strictly
positive.

%C the percentage of models that are transformed in a correct
model (i.e., a model equivalent to the oracle). It counts
how many times ∆C is equal to 100%.

%W the percentage of models whose conformance has been
lowered by the algorithm. It counts the number of cases
in which ∆C is negative.

All the experiments have been executed on a Linux PC with
two Intel(R) Xeon(R) CPU E5-2630 (2.30GHz) and 64 GB of
RAM. All the reported results are the average of 20 runs with
a timeout for a single model of 3600 secs.

B. Naïve approach

In this first approach, we try to repair the feature model
by looking for a model being mutation-conformant. Alg. 2
shows the proposed approach (called Naïve). It takes in input
a feature model fm describing the SPL and an oracle (the
SPL itself). It first generates the set of first-order mutants for
fm (line 1) and initializes the set genDCs of distinguishing
configurations with the empty set. Then, for each mutant
fm ′ of fm , it checks if there is a (previously computed)
configuration able to kill fm ′ (line 5), and, if this is the case,
it removes fm ′ from the set of mutants (line 6). Otherwise,
it computes a new distinguishing configuration for fm and
fm ′ (line 8), and adds it to the set genDCs . If the new
distinguishing configuration dc is able to kill fm ′ or if fm
and fm ′ are equivalent (i.e., there is no configuration that
distinguishes them) (line 10), fm ′ is removed from the set of
mutants (line 11). Instead, if fm ′ is a non-equivalent mutant
not killed by dc, it means that fm contains a fault that has



TABLE II: Naïve approach – Results

benchmark AvgTime MaxTime ∆C #DCs %F %C %W

SPLOT 54.24 1979.56 65.66 32.99 90.71 27.92 4.29

CPP 0.67 3.24 25.78 3.20 83.18 73.18 0

LibSSH 209.70 627.45 67.76 28.92 94 56 3

All 43.41 1979.56 48.91 28.21 87.4 34.35 3.56

been removed in fm ′; therefore, fm ′ is now considered as the
new best candidate for correctly representing the SPL (i.e.,
fm is substituted by fm ′) (line 13) and a new set of mutants
is computed for the new candidate (line 14). The algorithm
iterates until the set of mutants to be considered is empty, i.e.,
when it finds a feature model whose mutants are all killed:
this means that the algorithm guarantees to return a mutation-
conformant feature model (see Def. 9).

Note that the algorithm does not guarantee to return a
feature model with a better conformance (see Def. 8) than
the original one.

Theorem 2: Under the assumption that no features are added
in the mutated models (i.e., the space of configurations does
not increase during the computation), the naïve algorithm
terminates.

Proof: At each iteration of the algorithm, the set of
mutated models MUTs can be reduced of one unit or reini-
tialized with the mutants of the new feature model. Every time
MUTs is reinitialized, a new configuration has been added to
genDCs . Since the number of configurations is finite, when
all the configurations have been added to genDCs , any new
considered mutated model is removed, either because killed
or because equivalent. Therefore, the algorithm terminates.

Results are reported in Table II. It reports the measures for
the three benchmarks taken individually and for all the models
considered together. We will use these results as comparison
for the following approaches. We will always refer to the data
regarding all the models, if not stated otherwise.

C. MultiDCs approach: Incrementing the number of DCs

In the naïve algorithm, the current candidate fm is updated
with the mutant fm ′ if fm is killed by the configuration
generated for the comparison with fm ′. However, the mutant
may be killed by other distinguishing configurations and
changing the candidate may be not a good choice since it
would bring us towards models with lower conformance.
Based on this observation, the MultiDCs approach consists
in generating n distinguishing configurations (with n ≥ 2) at
line 8 of Alg. 2 and keeping the model (either fm or fm ′) that
survives more times. Alg. 3 shows the modifications w.r.t. the
naïve algorithm. Note that there may be not n distinguishing
configurations between fm and fm ′: in these cases, we will
generate less than n configurations.

We have executed the algorithm with values of n, from 2
to 7. We here report the results related to n = 3 that has been
experimentally proved to be the best option; indeed, it seems
that considering too much configurations is not advantageous:

Algorithm 3 MultiDCs approach
Require: n # of distinguishing configurations to generate

8: DCs ← generateDCs(fm, fm ′, n)
9: genDCs ← genDCs ∪DCs

10: if |{c ∈ DCs|killed(fm ′, c, o)}| ≥
|{c ∈ DCs|killed(fm, c, o)}| then

11: . . .
15: end if

TABLE III: MultiDCs approach (n = 3) – Results

benchmark AvgTime MaxTime ∆C #DCs %F %C %W

SPLOT 104.56 2853.81 76.86 75.61 91.21 31.71 4.0

CPP 0.87 4.62 28.22 4.19 84.01 72.73 0

LibSSH 536.04 1124.72 69.10 74.61 93 60 6

All 83.61 2853.81 52.4 64.67 87.85 37.51 3.50

TABLE IV: 2nd-order approach – Results

benchmark AvgTime MaxTime ∆C #DCs %F %C %W

SPLOT 1424.76 3600 61.48 62.04 91.00 21.57 4.79

CPP 0.91 5.236 39.33 3.99 88.18 80.45 0

LibSSH 490.26 1126.57 72.60 87.27 100 58 0

All 1143.83 3600 56.07 51.24 88.47 30.38 3.78

it increases the time spent in generation and evaluation without
producing any increase in the final conformance.

Results are reported in Table III. They show that requiring
more distinguishing configurations permits to obtain better re-
sults in terms of final conformance (∆C is 3.5% higher than in
the naïve approach). This is due to the fact that the algorithm
is less greedy and changes the candidate only if the mutant
correctly evaluates more distinguishing configurations than the
current candidate. This permits to reduce the probability of
diverging from the oracle. A disadvantage of the approach is
that it produces more configurations (more than the double
of the naïve approach) and, therefore, the execution time
increases; this is particular concerning for SPLs in which the
verification of a configuration over the oracle is expensive
(e.g., if some code must be compiled). The percentages of
fixed, and worsened models are similar to the naïve approach,
while 3% more models are corrected completely.

D. nth-order approach: Incrementing the order of mutations

This approach consists in increasing the order of mutations
in Alg. 2 (at lines 1 and 14). In our experiments, we have
considered second order mutation (i.e., mutation function
mut2). The approach is called 2nd-order from now on.

Results are reported in Table IV. They show that increasing
the order of mutation can give some advantages, but at the
price of an increase of one order of magnitude of the execution
times w.r.t. the previous approaches. Indeed, second order
mutation produces a high number of mutants (the square of the
number of mutants produced with the other approaches) and
this has a huge effect on the computation times. Moreover, we
can note that, although ∆C is higher (the approach can find
more faults), the percentage of models corrected completely



Algorithm 4 Breadth approach
Require: fm initial feature model
Require: o oracle
Ensure: a feature model with a possibly better confIndex

1: genDCs ← ∅
2: bestFM ← null
3: while bestFM 6= fm do
4: if bestFM 6= null then
5: fm ← bestFM
6: end if
7: MUTs ← mut1(fm)
8: for all fm ′ ∈ MUTs do
9: if ¬∃c ∈ genDCs : val(fm, c) 6= val(fm ′, c) then

10: dc ← generateDc(fm, fm ′)
11: if fm 6≡ fm ′ then
12: genDCs ← genDCs ∪ {dc}
13: end if
14: end if
15: end for
16: bestConf ← partialConfIndex(fm, o, genDCs)
17: bestFM ← fm
18: for all fm ′ ∈ MUTs do
19: mutConf ← partialConfIndex(fm ′, o, genDCs)
20: if mutConf > bestConf then
21: bestConf ← mutConf
22: bestFM ← fm ′

23: end if
24: end for
25: end while
26: return fm

is lower: indeed, approach 2nd-order is very greedy and it
can quickly find a candidate that is a local maximum but that
it may be far from the oracle.

E. Breadth approach

This approach starts from the observation that the previous
algorithms may change the candidate before checking all the
mutants of the current candidate. In this way, we may not
evaluate some feature models that could give good results.
The idea of the approach is to generate a distinguishing
configuration for all the mutants and then to choose the mutant
that correctly evaluates most of the generated configurations.
The approach is called Breadth because it executes a kind of
breadth exploration of the graph near the current candidate,
instead of quickly going in depth as the previous approaches.

Alg. 4 shows the proposed approach. Given a candidate
fm , it first generates all the first order mutants of fm (line 7)
and generates a distinguishing configuration for each non-
equivalent mutant (line 10); we avoid generating a config-
uration if there is a previously generated configuration that
is distinguishing for the mutant (control at line 9). Then it
computes how many generated configurations are evaluated
correctly (called partialConfIndex) by the current candi-
date (line 16) that is marked as best feature model over the

TABLE V: Breadth approach – Results

benchmark AvgTime MaxTime ∆C #DCs %F %C %W

SPLOT 732.35 3600 71.42 72.75 91.57 42.79 2.42

CPP 0.73 3.218 28.89 3.43 82.27 73.18 0

LibSSH 311.86 912.35 71.0 32.97 100 61 0

All 583.95 3600 51.68 59.92 88.30 46.39 1.92
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Fig. 7: # Features vs # generated DCs

configurations in genDCs (line 17). Then, it checks if there
is a mutant better than the candidate and all the other mutants
(loop at line 18). If the current candidate is still the best model,
the algorithm terminates returning the current candidate as
repaired model; otherwise, the while loop continues using as
current candidate the found best model.

Note that this approach does not guarantee to obtain a
feature model that is mutation-conformant.

Results are reported in Table V. The approach is expensive
in terms of execution time because all the mutants of the
current candidate are always considered; however, it still takes
half of the time taken by 2nd-order. Regarding ∆C, it is only
slightly better than naïve, but worst than the other two ap-
proaches: this is due to the fact that the current candidate may
also be killed by some configurations in genDCs . However, it
is the approach that completely repairs the greater percentage
of models (9% more models than MultiDCs) and worsens the
lower percentage of models.

V. EVALUATION

We have already presented a preliminary evaluation of
the algorithms in Tables II, III, IV, and V. In this section,
we deepen our analysis guided by the following research
questions.

RQ1 How does the number of generated distinguishing
configurations grow w.r.t. the number of features of the
starting feature model?

Such question permits to evaluate if our techniques scale
well, i.e., if the number of generated configurations does not
grow too much with the size of the model. Fig. 7 shows
the number of configurations generated by each technique
depending on the number of the features. We can see that
number of generated configurations is linear with the number
of features of the model. Indeed, the techniques usually



●●●●●●●●●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●●●

●

●

●●●

●

●

●

●

●●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●
●
●

●●

●

●

●●

●●

●

●

●

●●●●●
●

●

●

●

●●●●●
●
●

●
●

●

●●
●
●

●

●●●

●

●

●
●

●

●●●●●●
●

●

●

●●

●

●●●●●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●●●●●●
●

●

●

●●

●

●●●●●
●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●●●
●

●

●

●●

●●●●●
●
●

●
●

●●●

●

●

●

●
●●

●
●

●

●●

●

●

●●●●●

●

●
●

●

●

●●●●●
●

●

●

●

●
●

●
●

●●

●●
●

●

●

●

●●●●

●

●
●

●

●

●●●●●
●

●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●
●●●

●

●●●●●

●

●
●

●●

●●

●

●●●●●
●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●●●
●

●

●

●

●
●

●

●●●●●
●
●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●●●●●●●
●

●

●

●

●

●●●●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●
●

●●●●●●
●

●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●●●

●●●

●

●●●●●

●

●●

●

●●

●●●

●

●●

●

●●●

●●

conffinal < confinit conffinal = confinit conffinal > confinit conffinal = 100

75
80

85
90

95
10

0

co
nf

in
iti

al

Fig. 8: Initial conformance vs reparability

generate a configuration for each mutant of the model and the
number of mutants is linear with the number of features [12].
In case of 2nd-order, the number of mutants should grow in
a quadratic way, but a distinguishing configuration may kill
many mutants at once. Overall, even for the bigger model
with 244 configurations, we generate at most only around
300 configurations. Our approach has therefore the advantage
that a small number of configurations must be considered,
differently from approaches that do synthesis starting from
the configuration set (like, for instance, [18]).

RQ2 Is the initial conformity a good indicator of the
reparability of the feature model?

We can hypothesize that models with an initial conformity
near to 100% are more easily repaired. Fig. 8 shows the
correlation between the initial conformity and the final one
in four cases: the conformity is lowered, it remains as the
initial one, the model has been repaired, and it has been totally
fixed. It is apparent that the hypothesis cannot be confirmed
with enough confidence. Our techniques are able to repair
even models with lower conformity than models for which the
techniques do not complete the repairs or even introduce new
faults. There is evidence (second boxplot) that if the model has
a relatively low conformance (around 75%), it is very likely
that the algorithms will leave it as it is. A deeper investigation
suggests that the conformance index is not a good indicator of
the number of faults contained in the model, because there are
single faults that are able to significantly reduce the conformity
(for examples faults near the root) but can be easily removed
by a single mutation.

RQ3 Which is the best technique? How to choose it?

From the experiments, it is apparent that there is no one best
technique: algorithms that are fast produce fewer distinguish-
ing configurations but may miss some faults, while techniques
that are slow may produce better results in terms of fault
detection. In order to compare the algorithms, we introduce
a cost model, which takes into account the following main
cost factors of our process:
ct the cost of the single time unit during generation of the

distinguishing configurations.
cc the cost of checking a single configuration. It can be the

time required to run some external tool or to manually
verify the validity of a configuration.

cu the cost of the missing conformity. It can be the time
needed to find and fix unexpected faults.

(a) SPLOT (b) LibSSH

Fig. 9: Cost model

We can therefore compute the cost of an algorithm by the
following schema:

Cost = timegen × ct + #DCs × cc + (100−∆C)× cu

We can compare the four algorithms using the statistical
data we have collected for timegen , #DCs , and ∆C. For
simplicity, we assume the cost ct = 1 and we compute for each
technique the Cost at the variation of parameters cc and cu.
The technique that gives the least cost is displayed in Fig. 9.
Fig. 9a shows the best techniques for the SPLOT models:
only the naïve and the multiDCs approaches are convenient.
However, the results also depend on the considered feature
model. If we check the results in Fig. 9b for LibSSH, we
can see that the multiDCs approach is never convenient, and
instead 2nd-order and breadth approaches are convenient
for some parameter values. For example, if the cost cu of an
inconformity is high (higher than 100), using 2nd-order is
worthy, regardless the cost of checking a single configuration.

Since the constants timegen , #DCs , and ∆C may depend
on the single model under repair, we plan to study other
techniques able to predict such quantities starting from the
characteristics of the SPL. In absence of such a predictive
model, the user could hypothesize that the starting feature
model is the oracle, build a couple of mutations and run
the different algorithms on such mutations using the original
model as oracle instead of the real system, and then use the
measured timegen , #DCs , and ∆C in the cost model in order
to decide which technique to apply. Although this may be not
very precise and more experiments are needed, we believe that
this should give a good estimation of such quantities.

VI. THREATS TO VALIDITY

Regarding internal validity, the first threat regards the choice
of the framework and the feature models on which we per-
formed the experiments. We have chosen a public repository
(SPLOT) and a good number of models, besides our own
SPLs (CPP and LibSSH). FeatureIDE is a mature framework
and, whenever possible, we have checked the results using
also the SPLOT Java library (for example, to count the valid
configurations). Therefore, we believe that our experiments
report accurate data. Regarding mutation for feature models,
there is a good level of consensus on which operators to



use [12], [5], [19]. We believe that other approaches, like
mutating the propositional formulas representing the feature
model [20], do not suit our goals of finding conformance
errors. Another threat regards the type of faults we have
artificially inserted in the original models for the SPLOT
benchmark set and for the LibSSH set. In order to avoid
biased modifications, each author has generated around one
third of the mutations and he has used only the graphical
editor of FeatureIDE. Unfortunately, the limited knowledge
of the domain the feature models refer to, makes our faults
only plausible. We plan to work with real users and real faults
(as done for the CPP benchmark set).

In our experiments, all the mutation operators (and therefore
the faults they try to fix) are treated equally, while in the
reality a type of fault may occur more often than others and the
designer may have an idea on which faults to target. One could
introduce a probabilistic model on faults and filter or order the
mutations accordingly. For instance, if one suspects that the
designer may have confused the use of Or with And among
features, the technique should try to find that type of fault by
using the mutation operators AndToOr and OrToAnd. We
believe that by using such fault models, our techniques can
only improve, but further studies are necessary.

VII. RELATED WORK

The problem of reverse engineering a feature model is
well studied in the literature. A direction of research tries to
synthesize a feature model from its feature sets. Generally,
these techniques identify patterns among features in products
and in invalid configurations and build hierarchies and con-
straints (in limited form) among them. For instance, Davril
et al. apply feature mining and feature associations mining to
informal product descriptions [21]. There exist several papers
that apply search based techniques, which generally give better
results [22], [23], [24], [25]. They are similar to our technique
since they use evolutionary algorithms which mutate feature
models using mutation and crossover operators (as in [5]).
However, their starting hypotheses are much different, since
they assume that the list of products is available and therefore
they can check a mutant with all the configurations (valid and
invalid) and build a very precise fitness function (which is
similar to our conformance index).

Feature models can be synthesized also from propositional
formulas describing the relations among features [6], [26].
These approaches employ ad hoc algorithms that extract log-
ical formulas from configuration, documentation, and source
files. Once the formulas are extracted, the construction of the
feature model begins (for example with the identification of
the parents). No technique is proposed to validate the starting
formula, and we believe that our technique could be used also
to check and repair constraints among features.

The new idea presented in [7] is very close to our work.
They start from a feature model given as a set of constraints
over the features and, through a continuous cycle of test-and-
fix, they improve the original constraints in order to reduce the

number of wrong constraints. At every step, three possible op-
erations on the constraints are considered (altering, removing,
and inserting). Configurations both derived from the model
and from the real system are checked in order to discover
errors in the model. Besides the fact that they use feature
models represented exclusively by constraints, they assume the
availability of a great number of configurations (the evaluation
has been done with 1000 configurations), while we assume that
the number of checked configurations is kept small. Moreover,
while they produce products randomly using a SAT solver
(from the model) or using an oracle from the actual system
(like make), we generate configurations solely from the model
and not randomly, but guided by fault classes in a way that
precise behavioral faults can be detected. Moreover, we do not
generate only products, but any possible configuration.

In order to kill mutants we use a symbolic approach,
based on the definition of distinguishing configurations, the
logical representation of feature models, and a SAT solver.
There are other approaches that instead use a search based
Evolutionary Algorithm (EA) also for mutating the set of
configurations [27]. It would be interesting to extend their test
generation technique also for repairing feature models.

The use of constraint solvers to fix an invalid configuration
is also proposed in [28]. However, in that case it is used to
mediate conflicts among several versions of the same SPL,
which may be produced from different actors in the feature
modeling process. Our distinguishing configurations could
be reused to pinpoint configuration errors and identifying
corrective actions.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a methodology that can either detect a
conformance fault in the feature model candidate to represent
the SPL under test or prove its mutation-conformance. We
have devised a family of techniques that are able to iteratively
remove conformance faults from the candidate. Experiments
show that our techniques are efficient, and can repair most of
the faults with a reasonable number of configurations to check
against the oracle.

As future work we plan to explore the use of well known
techniques able to free the search from being stuck in local
optima when using hill climbing. For instance, a direction
would be to apply simulated annealing, in which we could
change the candidate even if its mutation is not better than
it (to also accept equivalent mutants, for instance). Another
direction is using random restarts. This would increase the
number of configurations to be used against the oracle, but it
would increase the success of the search.

Although we have applied our technique to a real case study
like libssh, we would like to test our framework on big feature
models like that of the Linux kernel, for which there exists a
feature model which is expressed in terms of constraints over
features (and not as feature diagram) [29].

With our surprise, generating second order mutants did not
improve the results, also because many times the algorithm
was stopped by the timeout. We plan to work on improving



the mutation generation in order to speedup and filter the
generation of better higher order mutants.
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