Integrating Formal Methods with Model-driven Engineering

Angelo Gargantini

Elvinia Riccobene

Patrizia Scandurra

Universita di Bergamo, Italy Universita degli Studi di Milano, Italy Universita di Bergamo, Italy

angelo.gargantini @unibg.it

Abstract

In this paper, we present our position and experience
on integrating formal methods with the Model-driven
Engineering (MDE) approach to software development.
Both these two approaches have advantages and dis-
advantages, and we here show how the advantages
of one can be exploited to cover or weaken the
disadvantages of the other. We also propose an in-
the-loop integration which allows the development of
a general framework for software engineering where
rigorousness and preciseness of formal methods are
combined with flexibility and automation of the MDE.
We discuss the feasibility of unifying these two separate
worlds, referring to our experience on integrating the
Abstract State Machine formal method with the Eclipse
Modeling Framework supporting MDE facilities.

1. Introduction

It is nowadays widely acknowledged that the use of
Formal Methods (FMs), based on rigorous mathemat-
ical foundations, is essential for system development,
especially for high-integrity systems where safety or
security are important. On the other hand, the Model-
driven Engineering (MDE) [1], [2] is emerging as a
new paradigm in software engineering, which bases
system development on (meta-)modeling and model
transformations, and provides methods to build bridges
between similar or different technical spaces and do-
mains Both these two approaches have advantages and
disadvantages.

In this paper, we discuss how these two approaches
can be combined showing how the advantages of one
can be exploited to cover or weaken the disadvantages
of the other. We refer to our experience in integrating
the Abstract State Machine (ASM) formal method
[3] with the EMF (Eclipse Modeling Framework) (as
framework for MDE). The effort of this work has
been up to now twofold worth: ASMs used to provide
semantics to languages defined in the MDE context
[4], and MDE used in building and integrating tools

elvinia.riccobene @dti.unimi.it

patrizia.scandurra@unibg.it

around ASMs [5], [6]. Here, we also propose an in-
the-loop integration that allows the development of
a general framework for software engineering where
rigorousness and preciseness of FMs (in our case,
ASMs) are combined with flexibility and automation
of the MDE.

The remainder of this paper is organized as fol-
lows. Sect. 2 presents our integration envisioning by
suggesting how MDE methodologies and technologies
can be combined with FMs. Sect. 3 provides basic
concepts concerning ASMs. Sections 4 and 5 show
a concrete scenario of in-the-loop integration between
the ASM formal method and the EMF framework.
Sect. 6 sketches some related work. Finally, our con-
clusion and future directions are provided in Sect. 7.

2. Integration Envisioning

Fig. 1 briefly summaries advantages and disadvan-
tages of the MDE and FMs.

Advantages of FMs. The use of formal methods
in system engineering is becoming essential, especially
during the early phases of the development process.
Indeed, an abstract model of the system can be used
to understand if the system under development satisfies
the given requirements (by simulation and model-based
testing), and guarantees certain properties by formal
analysis (validation & verification).

Advantages Disadvantages

*

MD E User-friendly notation * Lack of semantics

*

Derivative artifacts for
tool development

* Unfit for model
analysis

*

Automated model
transformations

*"Hard notation

*

Rigorous mathematical

foundation

Suitable for model
analysis

FM

* Lack of tools

*

* Lack of integration

Figure 1. Formal methods and MDE

Disadvantages of FMs. While there are several
cases proving the applicability of formal methods in
industrial applications and showing very good results,
many practitioners are, however, still reluctant to adopt
formal methods. Besides the well-known lack of train-
ing, this skepticism is mainly due to: the complex
notations that formal techniques use rather than other
lightweight and more intuitive graphical notations, like
the Unified Modeling Language (UML); the lack of
easy-to-use tools supporting a developer during the life
cycle activities of the system development, possibly in
a seamless manner; and the lack of integration among
formal methods themselves and their associated tools.

Advantages of MDE. MDE technologies with a
greater focus on architecture and automation yield
higher levels of abstraction in system development by
promoting models as first-class artifacts to maintain,
analyze, simulate, and eventually reduce into code or
transformed into other models. Meta-modeling is a key
concept of the MDE paradigm and it is intended as
a way to endow a language or a formalism with an
abstract notation, so separating the abstract syntax and
semantics of the language from its different concrete
notations. Metamodel-based modeling languages are
increasingly being defined and adopted for specific
domains of interest addressing the inability of third-
generation languages to alleviate the complexity of
platforms and express domain concepts effectively [2].

Disadvantages of MDE. Although the definition
of a language abstract syntax by a metamodel is well
mastered and supported by many meta-modeling
environments (EMF/Ecore, GME/MetaGME,
AMMA/KM3, XMF-Mosaic/Xcore, etc.), the
semantics definition of this class of languages is
an open and crucial issue. Currently, meta-modeling
environments are able to cope well with most syntactic
and transformation definition issues, but they lack
of any standard and rigorous support to provide the
(possibly executable) semantics of metamodels, which
is usually given in natural language. This implies that
most currently adopted metamodel-based languages
are not yet suitable for effective model analysis due
to their lack of a strong semantics necessary for a
formal model analysis assisted by tools.

The lack of user-friendly notations, of integration of
techniques, and of their tool inter-operability, is still
a significant challenge for formal methods that can
be achieved by exploiting the metamodeling approach
suggested by the MDE. Sect. 2.1 briefly introduces
a process for language engineering which starts by
defining an abstract notation for a FM in terms of a
metamodel, and then to build a general framework for

tools development and integration around the FM.
On the other hand, the problem of providing a
way to express the semantics of metamodel-based
languages and to perform model validation and ver-
ification can be solved by the use of FMs. Sect. 2.2
presents an approach to endow language metamodels
with precise (and possibly executable) semantics, and
to associate formal models, suitable for model analy-
sis, to language terminal models by automatic model

mapping.
2.1. MDE for FMs

Applying the MDE development principles to a
formal method should have the following overall goal:
(a) to provide an intuitive modeling notation having
rigorous syntax and semantics, possibly supporting a
graphical view of the model; (b) to allow modeling
techniques which facilitate the use of FMs in many
stages of the development process, and analysis tech-
niques that combine validation (by simulation and test-
ing) and verification (by model checking or theorem
proving) methods at any desired level of detail; and (c)
to support an open and flexible architecture to make
easier the development of new tools and the integration
with other existing tools.

In practice, this activity consists mainly of

« designing the formal language by metamodeling

(i.e. building a metamodel of the formal notation),
o defining language concrete syntaxes, i.e. meta-
model derivatives (also called language artifacts),
to handle (i.e. create, storage, control, exchange,
access, manipulate) language models, and
« developing processing tools by exploiting the cho-
sen metamodeling framework and the language
artifacts able to process and analyze such models.

In principle, the choice of a specific meta-modeling
framework should not prevent the use of mod-
els in other different meta-modeling spaces, since
model transformations among meta-modeling frame-
work should be theoretically supported by the environ-
ments. However, although in theory one could switch
framework later, a commitment with a precise meta-
modeling framework is better done at the very early
stage of the development process, mainly for practical
reasons. The chosen MDE framework should support
easy (e.g. graphical) editing of (meta) models, model
to model transformations, and text to model and model
to texts mappings to assist the developing a concrete
notations in textual form. It should also possibly
provide a mapping to a programming language (i.e.
API artifacts) to allow the integration in programs and
software applications.

2.2. FMs for MDE

Applying a formal method to a language L de-
fined in a meta-modeling framework should have the
following overall goal: (a) allow the definition of
the behaviors (semantics) of models conforming to L
and (b) provide several techniques and methods for
the formal analysis of such models (e.g. validation,
property proving, model checking, etc,).

A metamodel-based language L has a well-defined
semantics if a semantic domain S is identified and
a semantic mapping Mg : A — S is provided [7]
between the L’s abstract syntax A (i.e. the metamodel
of L) and S to give meaning to syntactic concepts of
L in terms of the semantic domain elements.

The semantic domain S and the mapping Mg can
be described in varying degrees of formality, from
natural language to rigorous mathematics. It is very
important that both S and Mg are defined in a precise,
clear, and readable way. The semantic domain S is usu-
ally defined in some formal, mathematical framework
(transition systems, pomsets, traces, the set of natural
numbers with its underlying properties, are examples
of semantic domains). The semantic mapping Mg is
not so often given in a formal and precise way, possibly
leaving some doubts about the semantics of L. Thus,
a precise and formal approach to define it is desirable.

Sometimes, in order to give the semantics of a lan-
guage L, another helper language L', whose semantics
is clearly defined and well established, is introduced.
Therefore, Mg and S should be already well-defined
for L'. L' can be exploited to define the semantics
of L by (1) taking S’ as semantic domain for L too,
ie. S = S, (2) by introducing a building function
M : A — A, being A’ the abstract syntax of L/,
which associates an element of A’ to every construct
of A, and (3) by defining the semantic mapping
MstA—)SaS MS:MéOM.

In this way, the semantics of L is given by translating
terminal models m of A to models of L’.

The M function hooks the semantics of A to the S’
semantic domain of the language L’. The complexity
of this approach depends on the complexity of building
the function M.

To be a good candidate, a language L’ should (i)
be abstract and formal to rigorously define model
behavior at different levels of abstraction, but without
formal overkill; (ii) be able to capture heterogenius
models of computation (MoC) in order to smoothly in-
tegrate different behavioral models; (iii) be executable
to support model validation; (iv) be endowed with a
model refinement mechanism leading to correct-by-
construction system artifacts; and (v) be supported

MDE FM

ly MDE FM
apply o to ‘.‘
L)
1
q
L4
am®

apply FM to MDE (2)

Figure 2. In the loop integration of FM and MDE

by a set of tools for model simulation, testing, and
verification.

2.3. In-the-loop integration

Although the two activities of applying the MDE to
a FM and apply a FM to the MDE can be considered
unrelated and could be performed in parallel even
by using two different notations for the MDE and
FMs, the best results can be obtained by a tight
integration between the MDE and a FM in a in-the-
loop integration approach. In this approach the MDE
technology and the FM notation are unique in both of
the above activities and the application of the MDE
to the FM is carried on before the application of the
FM to the MDE. Thanks to the first activity, the FM
will be endowed with a metamodel and possibly a set
of tools (e.g. a grammar, artifacts, etc.) which can be
used in the second activity to automatize (meta-)model
transformations and apply suitable tools for formal
analysis (i.e. validation and verification) of models.
Indeed, although for applying FM to the MDE it is in
principle not required that the FM is provided with a
metamodel (see Sect. 2.2), a formal notation endowed
with a representation of its concepts in terms of a
metamodel would allow to exploit MDE transforma-
tion languages (as ATL) to define the building function
M and to automatize the application of M as model
transformation by means of a transformation engine.
Therefore, having a metamodel is a further constraint
for an helper language L', and it justifies why the
second activity must precede the first one.

Sect. 4 and 5 present our instantiation of the in-
the-loop integration with the EMF (Eclipse Modeling
Framework) as MDE technologies supporting frame-
work and the ASMs (Abstract State Machines) as
formal method. This choice is justified by the following
motivations:

« EMF is based on an open-source Eclipse frame-
work and unifies the three most important tech-
nologies, i.e. Java, XML, and UML, currently
used for software development.

e ASMs own all the characteristics of pre-
ciseness, abstraction, refinements, executability,
metamodel-based definition that we identified as
the desirable properties a FM should have in order
to be a good candidate for integration.

3. Abstract State Machines

Abstract State Machines are an extension of Finite
State Machines, where unstructured “internal” control
states are replaced by states comprising arbitrary com-
plex data. The states of an ASM are multi-sorted first-
order structures, i.e. domains of objects with functions
and predicates defined on them. The transition relation
is specified by “rules” describing the modification of
the functions from one state to the next. Basically,
a transition rule has the form of guarded update “if
Cond then Updates”, where Updates are a set of
function updates of the form f(¢1,...,t,) := t and
are simultaneously executed' when Cond is true.

The notion of ASMs moves from a definition which
formalizes simultaneous parallel actions of a single
agent, either in an atomic way, Basic ASMs, and in
a structured and recursive way, Structured or Turbo
ASMs, to a generalization where multiple agents inter-
act Multi-agent ASMs. Appropriate rule constructors
also allow non-determinism (existential quantification)
and unrestricted synchronous parallelism (universal
quantification).

A complete mathematical definition of the ASM
method can be found in [3], together with a pre-
sentation of the great variety of its application in
different fields like: definition of industrial standards
for programming and modeling languages, design and
re-engineering of industrial control systems, modeling
e-commerce and web services, design and analysis of
protocols, architectural design, verification of compi-
lation schema and compiler back-ends, etc.

4. EMF for ASMs

We started by defining a metamodel [8], [9], the Ab-
stract State Machine Metamodel (AsmM), as abstract
syntax description of a language for ASMs. From the
AsmM, by exploiting the MDE approach and its facili-
ties (derivative artifacts, APIs, transformation libraries,
etc.), we obtained in a generative manner (i.e. semi-
automatically) several artifacts (an interchange format,

1. f is an arbitrary n-ary function and t1, . . ., tn, t are first-order
terms. To fire this rule to a state S;, ¢ > 0, evaluate all terms
t1,...,tn,t at S; and update the function f to ¢ on parameters
t1,...,tn. This produces another state S; 1 which differs from .S;

in the new interpretation of f.

Menerated ~ Toosea” "~ " " "~~~ L

generated
Asmetal || AsmEE || AsmetaV | | AsmetaS ||
(L ol

Asmetalc | - - — -

|
|
|
Il Asm XMl |l
| |
| Asm |MI |

Figure 3. The ASMETA tool set

APIs, etc..) for the creation, storage, interchange, ac-
cess and manipulation of ASM models [6]. The AsmM
and the combination of these language artifacts lead to
an instantiation of the EMF metamodeling framework
for the ASM application domain, the ASM mETA-
modeling framework (ASMETA) that provides a global
infrastructure for the interoperability of ASM tools
(new and existing ones) [9], [5].

The ASMETA tool set (see Fig. 3) includes (among
other things) a textual concrete syntax, Asmetal, to
write ASM models (conforming to the AsmM) in
a textual and human-comprehensible form; a text-to-
model compiler, AsmetaLc, to parse Asmetal. models
and check for their consistency w.r.t. the AsmM OCL
constraints; a simulator, AsmetaS, to execute ASM
models; the Avalla language for scenario-based vali-
dation of ASM models, with its supporting tool, the
AsmetaV validator; the ATGT tool that is an ASM-
based test case generator based upon the SPIN model
checker; a graphical front-end called ASMEE (ASM
Eclipse Environment) which acts as IDE and it is an
eclipse plug-in.

All the above artifacts/tools are classified in: gener-
ated, based, and integrated. Generated artifacts/tools
are derivatives obtained (semi-)automatically by ap-
plying appropriate Ecore projections to the techni-
cal spaces Javaware, XMLware, and grammarware.
Based artifacts/tools are those developed exploiting
the ASMETA environment and related derivatives; an
example of such a tool is the simulator AsmetaS).
Integrated artifacts/tools are external and existing tools
that are connected to the ASMETA environment.

5. ASMs for EMF

We here describe how the ASM formal method can
be exploited as helper language to define a formal
semantic framework to provide languages with their
(possible executable) semantics natively with their
metamodels.

Recall, from Sect. 2.2, that the problem of giving the
semantics of a metamodel-based language L is reduced
to define the function M : A — A’, being A and

A’ the language and the helper language abstract syn-
taxes, respectively. Let us assume the ASMs as helper
language satisfying the requirements, given in Sect.
2.2, of having a mathematical well-founded semantics
and a metamodel-based representation. The semantic
domain S 44 is the first-order logic extended with
the logic for function updates and for transition rule
constructors defined in [3] and the semantic mapping
Mg : AsmM — Sasmar to relate syntactic concepts
to those of the semantic domain is given in [6].

Exploiting the ASMs, the semantics of a metamodel-
based language is expressed in terms of ASM transition
rules by providing the building function M : A —
AsmM. As already mentioned above, the definition
of the function M may be accomplished by differ-
ent techniques (see [4]), which differ in the way a
terminal model is mapped into an ASM. As example
of such techniques, the semantic hooking technique is
presented below. A concrete example is also provided
by applying the described technique to a possible
metamodel for the simple Petri net formalism. The
results of this activity are executable semantic models
for Petri nets which can be make available in a model
repository either in textual form using Asmetal. or
also in abstract form as instance model of the AsmM
metamodel.

Even the reader could have expected the case study
of a domain specific language (DSL) metamodel, we
preferred to report here an example of metamodel
whose semantics is well-know, as, indeed, that of the
Petri Nets. In our opinion, this example facilities the
reader understanding of our approach since (s)he can
concentrate on acknowledging the ASM capabilities
of being a very abstract language able to express the
semantics, rather then concentrating in understanding
the semantics of a specific, possibly unknown DSL
whose semantics would have had to be presented in
natural language.

Semantic hooking. The semantic hooking en-
dows a language metamodel A with a semantics by
means of a unique ASM for any model conforming
to A. By using this technique, designers hook to the
language metamodel A an abstract state machine I 4,
which is an instance of AsmM and contains all data
structures modeling elements of A with their relation-
ships, and all transition rules representing behavioural
aspects of the language. I' 4 does not contain the initial-
ization of functions and domains, which will depend
on the particular instance of A. The function which
adds the initialization part is called ¢. Formally, the
building function M is given by M (m) = vta(I"a, m),
for all m conforming to A.

I'g: AsmM, is an abstract state machine which

NamedElement
+ name: String [1]

i)

Net o Place + inputPlaces [*] Transition

4
+places 4]

+ outputPlaces [*]

T + transitions [1]

Figure 4. A metamodel for basic Petri nets

Figure 5. A basic Petri net with its initial marking

contains only declarations of functions and domains
(the signature) and the behavioral semantics of L in
terms of ASM transition rules.

ta: AsmM x A — AsmM, properly initializes the
machine. ¢4 is defined on an ASM « and a terminal
model m instance of A; it navigates m and sets the
initial values for the functions and the initial elements
in the domains declared in the signature of a. The ¢4
function is applied to I'4 and to the terminal model m
for which it yields the final ASM.

5.1. Basic Petri Nets semantics

Fig. 4 shows the metamodel for the basic Petri
net formalism. It describes the static structure of
a net consisting of places and transitions (the two
classes Place and Transition), and of directed
arcs (represented in terms of associations between
the classes Place and Transition) from a place
to a transition, or from a transition to a place. The
places from which an arc runs to a transition are
called the input places of the transition; the places
to which arcs run from a transition are called the
output places of the transition. Places may contain
(see the attribute tokens of the Place class) any
non-negative number of tokens, i.e. infinite capacity.
Moreover, arcs are assumed to have a unary weight.
Fig. 5 shows (using a graphical concrete syntax) an
example of Petri net (with its initial marking) that can
be intended as instance (a terminal model) of the Petri
net metamodel in Fig 4.

According to the semantic hooking approach, first
we have to specify an ASM TI'pr (i.e. a model con-
forming to the AsmM metamodel) containing only dec-

larations of functions and domains (the signature) and
the behavioral semantics of the Petri net metamodel
in terms of ASM transition rules. Listing 1 reports
a possible I'pr in Asmetall notation. It introduces
abstract domains for the nets themselves, transitions,
and places. The static function isEnabled is a predicate
denoting whether a transition is enabled or not. The
behavior of a generic Petri net is provided by two rules:
r_fire, which express the semantics of token updates
upon firing of transitions, and r_PetriNetReact, which
formalizes the firing of a non-deterministic subset of
all enabled transitions. The main rule executes all nets
in the Net set.

Listing 1. T'pr

is created in the signature of the ASM model I'pr
in order to initialize the domain corresponding to the
underlying class. Moreover, class instances with their
properties values and links are inspected to initialize
the ASM functions declared in the ASM signature.
For example, for the Petri net shown in Fig. 5, the
tp7 mapping would automatically add to the original
I" pr the initial state (and therefore the initial marking)
shown in Listing 2. The initialization of the abstract
domains Net, Transition, and Place, and of all
functions defined over these domains, are added to the
original I'pp.

Listing 2. 1pp

asm PT_hooking

signature:
abstract domain Net
abstract domain Place
abstract domain Transition

//Functions on Net
controlled places: Net —> Powerset(Place)
controlled transitions: Net —> Powerset(Transition)

//Functions on Place
controlled tokens : Place —> Integer

//Functions on Transition
controlled inputPlaces: Transition —> Powerset(Places)
controlled outputPlaces: Transition —> Powerset(Places)
static isEnabled : Transition —> Boolean

definitions:
function isEnabled ($t in Transition) =
(forall $p in inputPlaces($t) with tokens($p)>0)

rule r_fire($t in Transition) =
seq
forall $i in inputPlaces($t) do tokens($i) := tokens($i)—1
forall $o in outputPlaces($t) do tokens($0) := tokens($0)+1
endseq

rule r_PetriNetReact($n in Net) =
choose $transSet in Powerset(Transitions($n))
with (forall $t in $transSet with isEnabled($t)) do
iterate let ($t = chooseOne($transSet)) in par
remove($t,$transSet)
if isEnabled($t) then r_fire[$t] endif
endpar endlet

//Run all Petri nets
main rule r_Main = forall $n in Net do r_PetriNetReact[$n]

asm PT_hooking
signature:

static myNet: Net
static P1,P2,P3,P4:Place
static t1,t2:Transition

default init sO:

//Functions on Net

function places($n in Net) = at({myNet —> {pl,p2,p3,p4}},$n)
function transitions($n in Net) = at({myNet —> {t1,t2}},$n)

//Functions on Place (the "initial marking")
function tokens($p in Places) =
at({pl—>1,p2—>0,p3—>2,p4—>1},$p)

//Functions on Transition

function inputPlaces($t in Transition) =
at({tl—>p1,22—>{p2,p3}},%t)

function outputPlaces($t in Transition) =
at({t1—>{p2,p3},22—>{p4,p1}}.$v)

One has also to define a function ¢pr which adds
to I'pr the initialization necessary to make the ASM
model executable. Any model transformation tool can
be used to automatize the ¢ pr mapping by retrieving
data from a terminal model m and creating the corre-
sponding ASM initial state in the target ASM model.
We adopted the ATL model transformation engine to
implement such a mapping. Essentially, for each class
instance of the terminal model, a static O-ary function

6. Related work

Concerning the metamodeling technique for lan-
guage engineering, we can mention the official meta-
models supported by the OMG for MOF itself, for
UML, for OCL, etc. A recent result [10] shows how
to apply metamodel-based technologies for the creation
of a language description for Sudoku. This is on
the same line of our approach of exploiting MDE
technologies to develop a tool-set around ASms.

Formal methods communities like the Graph Trans-
formation community [11], [12] and the Petri Net
community [13], have also started to settle their tools
on general metamodels and XML-based formats. A
metamodel for the ITU language SDL-2000 has been
also developed [14]. Recently, a metamodel for the
AsmL language is available as part of a zoo of
metamodels defined by using the KM3 meta-language
[15]. However, this metamodel is not appropriately
documented or described elsewhere, so this prevented
us to evaluate it for our purposes.

On the problem of integrating graphical notations
and formal methods, [16] shows how the process
algebra CSP and the specification language Object-
Z, can be integrated into an object-oriented software
engineering process employing the UML as a modeling
and Java as an implementation language. In [17],
the author presents an approach to formal methods
technology exploitation which introduces formal no-
tations into critical systems development processes.
Both approaches are based on translating graphical
models to formal specifications, and are similar to
our approach on moving from terminal models of a
metamodel-based language to an ASM specification.

An MDE-based approach for integrating different
formal methods was recently proposed in [18]. Firstly,
the heterogeneous formal models are introduced into
MDE as domain specific languages by metamodeling.
Then, transformation rules are built for semantics map-
ping. At last, model-text syntax rules are developed,
so as to map models to programs. As case study, the
approach was applied for bridging MARTE to LOTOS.

On the application of ASMs for specifying the
execution semantics of metamodel-based languages
in a MDE style, we can mention the translational
approach described in [19], [20]. They propose a
semantic anchoring to well-established formal mod-
els of computation (such as FSMs, data flow, and
discrete event systems) built upon AsmL [21] (an
ASM dialect), by using the transformation language
GME/GReAT (Graph Rewriting And Transformation
language) [22]. Still concerning the translational cate-
gory, two other experiments have to be mentioned: the
dynamic semantics of the AMMA/ATL transformation
language [23] and SPL, a DSL for telephony ser-
vices, [24] have been specified in the XASM [25], an
open source ASM dialect. A direct mapping from the
AMMA meta-language KM3 to an XASM metamodel
is used to represent metamodels in terms of ASM
universes and functions, and this ASM model is taken
as basis for the dynamic semantics specification of
the ATL metamodel. However, this mapping is neither
formally defined nor the ATL transformation code
which implements it have been made available in the
ATL transformations Zoo or as ATL use case [26];
only the Atlantic XASM Zoo [27], a mirror of the
Atlantic Zoo metamodels expressed in XASM (as a
collection of universes and functions), has been made
available. By exploiting the semantic framework in
[4], we defined in [28] the semantics of the AVALLA
language of the AsmetaV validator, a domain-specific
modeling language for scenario-based validation of
ASM models.

7. Conclusion and future directions

On the basis of our experience in developing the
ASMETA toolset, we believe a formal method can gain
benefits from the use of MDE automation means either
for itself and toward the integration of different formal
techniques and their tool inter-operability. Indeed, the
metamodel-based approach has the advantage of being
suitable to derive from the same metamodel several
artifacts (concrete syntaxes, interchange formats, APIs,
etc.) which are useful to create, manage and inter-
change models in a model-driven development context,
settling, therefore, a flexible infrastructure for tools
development and inter-operability. Moreover, meta-
modeling allows to establish a “global framework”
to enable otherwise dissimilar languages (of possibly
different domains) to be used in an interoperable man-
ner by defining precise bridges (or projections) among
different domain-specific languages to automatically
execute model transformations. That is in sympathy
with the SRI Evidential Tool Bus idea [29], and can
contribute positively to solve inter-operability issues
among formal methods, their notations, and their tools.

On the other hand, the definition of a means for
specifying rigorously the semantics of metamodels is a
necessary step in order to develop formal analysis tech-
niques and tools in the model-driven context. Along
this research line, for example, we are tackling the
problem of formally analyzing visual models devel-
oped with the UML Profile for SystemC [30]. In con-
clusion, we believe MDE principles and technologies
combined with formal methods elevate the current level
of automation in system development and provide the
widely demanded formal analysis support, especially
exploiting the in-the-loop approach.

Future work will include the definition of the exe-
cutable semantics of the AsmM metamodel itself by
using the ASM-based semantic framework outlined in
Sect. 2.2. In this way, we would make a further step in
the direction of a tighter integration between ASM and
EMF by closing the loop (see Fig. 2), i.e. we would
use the Asm formal method itself in order to give its
semantics by defining suitable semantic mappings in
the Asmeta/EMF framework.

References

[1] J. Bézivin, “On the Unification Power of Models,”
Software and System Modeling, vol. 4, no. 2, pp. 171-
188, 2005.

[2] D. C. Schmidt, “Guest editor’s introduction: Model-
driven engineering,” IEEE Computer, vol. 39, no. 2,
pp. 25-31, 2006.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

E. Borger and R. Stirk, Abstract State Machines: A
Method for High-Level System Design and Analysis.
Springer Verlag, 2003.

A. Gargantini, E. Riccobene, and P. Scandurra, “A
semantic framework for metamodel-based languages,”
Journal of Automated Software Engineering, vol. On-
line First, 2009.

——, “Model-driven language engineering: The AS-
META case study,” in /ICSEA. IEEE Computer Society,
2008, pp. 373-378.

, “A metamodel-based language and a simulation
engine for abstract state machines,” J. UCS, vol. 14,
no. 12, pp. 1949-1983, 2008.

D. Harel and B. Rumpe, “Meaningful modeling:
What’s the semantics of "semantics"?” IEEE Computer,
vol. 37, no. 10, pp. 64-72, 2004.

A. Gargantini, E. Riccobene, and P. Scandurra, “Meta-
modelling a Formal Method: Applying MDE to Ab-
stract State Machines,” DTI Dept., University of Milan,
Tech. Rep. 97, 2006.

“The Abstract State Machine Metamodel website,”
http://asmeta.sf.net/, 2006.

T. Gjgsater, 1. F. Isfeldt, and A. Prinz, “Sudoku - a
language description case study,” in SLE, ser. LNCS,
D. Gasevic, R. Lammel, and E. V. Wyk, Eds., vol. 5452.
Springer, 2008, pp. 305-321.

R. Holt, A. Schiirr, S. E. Sim, and A. Win-
ter, “Graph eXchange Language,” http://www.
gupro.de/GXL/index.html.

G. Taentzer, “Towards common exchange formats for
graphs and graph transformation systems,” in J. Pad-
berg (Ed.), UNIGRA 2001: Uniform Approaches to
Graphical Process Specification Techniques, satellite
workshop of ETAPS, 2001.

“Petri Net Markup Laguage (PNML),” http://www.
informatik.hu-berlin.de/top/pnml.

J. Fischer, M. Piefel, and M. Scheidgen, “A Metamodel
for SDL-2000 in the Context of Metamodelling ULF,”
in Fourth SDL And MSC Workshop (SAM’04), 2004,
pp- 208-223.

F. Jouault and J. Bézivin, “KM3: a DSL for Metamodel
Specification,” in Proc. of the 8th IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems, Bologna, Italy, 2006.

M. Mueller, E.-R. Olderog, H. Rasch, and
H. Wehrheim, “Integrating a formal method into
a software engineering process with uml and java,”
Form. Asp. Comput., vol. 20, no. 2, pp. 161-204,
2008.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Armstrong, “Industrial integration of graphical and
formal specifications,” Journal of Systems and Soft-
ware, vol. 40, no. 3, pp. 211 — 225, 1998.

T. Zhang, F. Jouault, J. Bézivin, and J. Zhao, “A
MDE Based Approach for Bridging Formal Models,”
in Theoretical Aspects of Software Engineering, 2008.
TASE ’08. 2nd IFIP/IEEE International Symposium on.
IEEE Computer Society, 2008, pp. 113-116.

K. Chen, J. Sztipanovits, and S. Neema, “Toward a
semantic anchoring infrastructure for domain-specific
modeling languages,” in EMSOFT, 2005, pp. 35-43.

, “Compositional specification of behavioral se-
mantics,” in DATE, 2007, pp. 906-911.

“The ASML language website,” http://
research.microsoft.com/foundations/
AsmL/, 2001.

D. Balasubramanian, A. Narayanan, C. VanBuskirk,
and G. Karsai, “The graph rewriting and transformation
language: Great,” in International Workshop on Graph
Based Tools (GraBaTs), 2006.

D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and
A. Pierantonio, “Extending AMMA for Supporting
Dynamic Semantics Specifications of DSLs,” LINA,
Tech. Rep. 06.02, 2006.

, “A Practical Experiment to Give Dynamic Se-
mantics to a DSL for Telephony Services Develop-
ment,” LINA, Tech. Rep. 06.03, 2006.

M. Anlauff, “XASM - An Extensible, Component-
Based ASM Language,” in Proc. of Abstract State
Machines, 2000, pp. 69-90.

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Val-
duriez, “Atl: a qvt-like transformation language,” in
OOPSLA *06: Companion to the 21st ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications. ~ACM, 2006, pp. 719—
720.

“The Atlantic XASM Z700,”
www.eclipse.org/gmt/am3/zoos/
atlanticXASMZoo/, 2006.

http://

A. Carioni, A. Gargantini, E. Riccobene, and P. Scan-
durra, “Exploiting the ASM method for Validation
& Verification of Embedded Systems,” in Proc. of
ABZ’08, LNCS 5238. Springer-Verlag, 2008, pp. 71—
84.

J. M. Rushby, “Harnessing disruptive innovation in
formal verification,” in SEFM, 2006, pp. 21-30.

A. Gargantini, E. Riccobene, and P. Scandurra, “A
Model-driven Validation & Verification Environment
for Embedded Systems,” in Proc. of the IEEE third
Symposium on Industrial Embedded Systems (SIES’08).
1IEEE, 2008.

