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Abstract. Formal methods are increasingly used in the development
of safety-critical systems, offering a rigorous approach from model to
implementation. However, in the validation process, the nondetermin-
ism is a hindrance in their application, as it can lead to flaky tests or
flaky scenarios. Scenarios written for models that implement nondeter-
minism produce unpredictable outcomes by complicating model valida-
tion and reducing developer confidence. In this paper, we present an
approach to address the nondeterminism in the validation phase when
using the Asmeta framework. We extend the Avalla language, used for
scenario specification in Asmeta, to allow deterministic control over non-
deterministic choices. This extension ensures that scenarios written for
nondeterministic models execute predictably by eliminating flakiness. We
demonstrate our approach using a running example of an automatic cof-
fee vending machine.

Keywords: Scenario-based Validation · Flaky Tests · Nondeterminism.

1 Introduction

Formal methods play a crucial role in software engineering, especially in the de-
velopment of safety-critical systems [3,17] such as those in the automotive [26],
aviation [5,11], and medical domains [10]. These systems demand high relia-
bility and correctness to ensure safety, as errors can lead to catastrophic con-
sequences [34]. Formal methods provide a mathematically rigorous approach to
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specifying, modeling, and verifying systems, reducing the likelihood of errors not
detected during development. They are increasingly being adopted to meet strict
regulatory standards and improve the robustness and reliability of safety-critical
systems [19,21].

Formal notations very often allow the use of nondeterminism, which may be
employed to account for the environment or uncertain events [8], such as timed
behavior or stochastic decisions [29], or to keep the model more abstract [7].
More specifically, we can distinguish two types of nondeterminism: external and
internal. External nondeterminism arises from the uncertainty associated with
inputs, whose values cannot always be predicted. Internal nondeterminism, on
the other hand, refers to the nondeterministic execution of a system, regardless of
the inputs, i.e., when the system itself has multiple possible behaviors or choices
at a particular point in its execution, without external influence. In this work,
we focus on internal nondeterminism.

Many formal methods support scenario-based validation, which is crucial for
ensuring the reliability and robustness of formal specifications in system design.
Practitioners can test how the specifications handle diverse and often complex
operational conditions by simulating scenarios. This approach helps testers and
developers uncover ambiguities, inconsistencies, or malfunctioning [22,23]. When
using scenarios to validate formal models is possible and allowed by the chosen
formalism, the presence of nondeterminism can hinder developers’ adoption of
these methodologies. The abstract tests generated or written for formal models
may reveal unknown behaviors, making it challenging to predict how the model
will behave. This problem is a well-explored issue in software engineering and
software testing, even beyond the formal methods community, and is normally
known as the problem of flaky tests [24,28]. The literature classifies a test as
being flaky when its outcome is nondeterministic with respect to a given soft-
ware version. Flaky tests can cause several problems, especially during regression
testing [24]. Firstly, test failures caused by flaky tests are difficult to reproduce.
Secondly, flaky tests may prevent the identification of genuine bugs. If a flaky
test fails repeatedly, developers tend to overlook its failures, potentially missing
real bugs [30].

For the work we present in this paper, we build on the Asmeta [13] frame-
work, an open-source framework defining modeling notations and tools inspired
by the well-known formal method of the Abstract State Machines (ASMs) [15,16].
Asmeta supports model editing, visualization, simulation, animation, validation
through scenarios, verification, as well as source code generation from formal
models. It has been used for the modeling and verification of many safety-critical
systems (e.g., a Mechanical Ventilator [12], a Pill-Box [10], an airplane arrival
manager [11], a landing gear system [5], a hemodialysis device [4], and the Hy-
brid European Rail Traffic Management System [20]). As in many other formal
methods, Asmeta allows developers to embed nondeterminism in formal models.
More specifically, Asmeta supports a specific type of rule, called choose rule,
which randomly extracts a value meeting a specific condition from a domain.
However, if scenarios are used to validate models containing nondeterminism,
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their usage is not suitable, as scenarios will fail or not depending to random
reasons. We call these scenarios flaky scenarios.

In this paper, we introduce an extension to the Avalla language, the language
used to write test scenarios in Asmeta. This extension addresses the issue of non-
determinism and eliminates the flakiness associated with scenarios. This stands
in contrast to the conventional approach to solving nondeterminism, which in-
volves analyzing all possible outcomes of random choices [33]. While this method
is effective, it can be computationally intensive and prone to errors, particularly
when recursive calls are involved. This is because test scenarios are, in general,
manually written by testers. With the contribution we provide in this paper, it
is now possible to force nondeterministic choices to have deterministic values. As
a result, scenarios can be written in relation to nondeterministic formal models
and executed without encountering flakiness. We present our approach and the
extension we have implemented. Moreover, we exemplify our contribution by ex-
ploiting a simple running example of a coffee machine, that randomly dispenses
coffee, milk, or tea, and we show how we have addressed the problem of flaky
scenarios.

The paper is structured as follows. Section 2 describes the Asmeta frame-
work, details the Avalla language used for writing scenarios, and outlines the
characteristics of our running example of the automatic coffee vending machine
(ACVM). Section 3 shows the Asmeta specifications including nondeterminism
for the ACVM. Section 4 explains how the Avalla grammar has been extended
in order to address the problem of scenario flakiness, while the semantics and
the way in which Avalla deterministic scenarios are handled by Asmeta are
presented in Section 5. Section 6 discusses the impact of controlling the nonde-
terminism on testing results and scenarios effectiveness. Then, in Section 7 we
present related works in test flakiness in formal methods and software engineer-
ing. Finally, Section 8 concludes the paper.

2 The Asmeta framework

In this section, we introduce the Asmeta framework [3,13], which is based on
Abstract State Machines (ASM), an extension of Finite State Machines (FSM)
in which unstructured control states are replaced by states with arbitrarily com-
plex data. As shown in Figure 1, the Asmeta framework includes various tools
designed to assist developers in different stages of the software life-cycle: De-
sign, Development, and Operation. The design phase includes activities such as
modeling, validation, and verification, beginning with the system requirements.
Once these requirements are formalized and verified, iterative refinements can
incorporate additional details into the model. Subsequently, the development
and operation phases can advance independently. The development phase in-
volves generating code or tests from models, while the operation phase supports
runtime simulation and monitoring.

This paper focuses on the Modeling and Validation phases. In the model-
ing phase, the user implements the system models using the AsmetaL language
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Fig. 1: The ASM development process powered by the Asmeta framework

and the editor AsmetaXt, which provides editing support. The model simulator
AsmetaS supports the validation process, which enables users to execute their
models. Additionally, the animator AsmetaA provides users with step-by-step
execution, facilitated by a graphical interface. Furthermore, the model reviewer
AsmetaMA verifies the meta-properties of the specification under analysis. Lastly,
the AsmetaV executes scenarios written using the Avalla language [18]. Each
scenario comprises the anticipated system behavior, and the tool meticulously
checks whether the machine operates correctly.

In this paper, we address the problem of validating Asmeta specifications
including nondeterminism. In Asmeta, it is possible to model two different types
of nondeterminism: external or internal. The former employs monitored functions
to make choices from the environment, whereas the latter uses algorithms to
make those choices. Here, we focus on the second type, implemented in AsmetaL
through the choose rule.

choose v1 in D1, ..., vn in Dn with Gv1,...,vn do Rv1,...,vn [ ifnone P]

This rule allows the simulator to select a set of random variables v1, ..., vn
from the specified domains or sets of elements D1, ..., Dn, that can fulfill the
defined condition Gv1,...,vn, and then execute the rule Rv1,...,vn using the
selected variables. In case no elements satisfies the condition Gv1,...,vn, the P
transition rule is executed, which is assumed to be skip1 as default.

Validating a specification containing a choose rule using an Avalla scenario
can be challenging because it’s impossible to guarantee that the execution under

1 In Asmeta, the skip rule is a rule doing nothing.
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Listing 1: Ground model for the ACVM

1 asm ACVMGround
2 import StandardLibrary
3
4 signature:
5 enum domain Product = {COFFEE | TEA |

MILK}
6 controlled dispensed : Product

8 definitions:
9 main rule r_Main =

10 choose $p in Product with true do
11 dispensed := $p
12
13 default init s0:
14 function dispensed = undef

test will select the same value as the tester intends when writing the scenario.
So in this paper, we address this issue.

2.1 Automatic Coffee Vending Machine

The running example we use to test and explain our approach for address-
ing scenario flakiness in Asmeta is a simple automatic coffee vending machine
(ACVM) [14].

The ACVM distributes coffee, tea, or milk and accepts only 1 Euro and 2
Euros coins. If the user inserts 1 Euro, the machine distributes milk if available;
if the user inserts 2 Euros the machine randomly distributes coffee or tea, if
available. When the machine distributes a drink, its availability is decremented
and the money is preserved in the machine. At the start, the machine has 10
coffees, 10 teas, and 10 milks. The machine can contain 25 coins at maximum;
When this limit is reached the machine does not distribute products any longer.

3 ACVM implementation

As supported and suggested by the Asmeta workflow, we developed our ASM by
taking advantage of model refinement techniques [6]. In this section, we describe
the two refinements we implemented and demonstrate how scenarios for them
can be flaky. It is worth noting that we separated the development of the Asmeta
models into two distinct refinements to streamline the development process and
accommodate specifications with an unconstrained choose rule, in one case, and
with a constrained choose rule in the other.

3.1 Ground model

In the ground model of the ACVM, we modeled a simplified version of the
coffee machine. The machine randomly distributes one product among coffee, tea,
and milk at each step. The Asmeta specification is reported in Listing 1, where
the distributable products (COFFEE, TEA, and MILK) are listed in the Product
enumerative domain (Line 5). Once the ACVM has randomly chosen a product



6 A. Bombarda et al.

Listing 2: Flaky Avalla scenario for
the specification in Listing 1
scenario scenario1
load ACVMGround.asm

step
check dispensed = TEA;

Listing 3: Non-flaky Avalla scenario for
the specification in Listing 1
scenario scenario1
load ACVMGround.asm
step
check dispensed = TEA or dispensed = COFFEE or

dispensed = MILK;

Listing 4: Successful execution
[...]
<State 1 (controlled)>

dispensed = TEA
result = 1
step__ = 1

</State 1 (controlled)>
check succeeded: dispensed = TEA

Listing 5: Failing execution
[...]
<State 1 (controlled)>

dispensed=MILK
result = 1
step__= −1

</State 1 (controlled)>
CHECK FAILED: dispensed = TEA at step 1

$p in the Product domain (Line 10), the product is stored in the dispensed
controlled function2 (Line 11).

This Asmeta specification exhibits a nondeterministic behavior, and this can
cause every scenario to be flaky. An example of a flaky scenario for this speci-
fication is reported in Listing 2: The ACVM machine does one execution step
and then checks whether the dispensed product is the TEA.

Listing 4 and Listing 5 present an excerpt of the output obtained from ex-
ecuting the scenario in Listing 2 with the AsmetaV validator. In the first case,
the ACVM chooses to dispense TEA, and the scenario terminated without er-
rors. Instead, in the second case, the ACVM choses to dispense MILK and a
check failed is signaled by the Asmeta validator. An example of an alternative
scenario that would never be flaky is reported in Listing 3: Instead of checking
the equivalence between dispensed and a specific value, the scenario checks its
equivalence with any of the elements in the domain specified in the choose rule
(i.e., in the Product domain). The two scenarios in Listing 2 and Listing 3 assess
different behaviors of the ACVM, capturing a subset of behaviors in one scenario
compared to the other. A machine consistently dispensing TEA would pass both
tests; A machine consistently dispensing COFFEE would only pass the second
test. Moreover, writing scenarios always with a set of OR to avoid flakiness may
be infeasible, as the user loses the control to verify that a function takes on a
specific value, and the number of possible paths after a nondeterministic choice
may grow exponentially. Therefore, the issue of flaky scenarios is inescapable
and cannot be resolved effortlessly by modifying checks within scenarios.

2 A controlled function is a function whose value is set by the machine and read by
the environment.
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Listing 6: Refined model for the ACVM

1 asm ACVMRef
2 import StandardLibrary
3
4 signature:
5 enum domain Product = {COFFEE | TEA | MILK}
6 domain QuantityDomain subsetof Integer
7 domain CoinDomain subsetof Integer
8 domain InputCoinDomain subsetof Integer
9 controlled dispensed: Product

10 controlled available: Product −> QuantityDomain
11 controlled coins: CoinDomain
12 monitored insertedCoin: InputCoinDomain
13 static price: Product −> InputCoinDomain
14
15 definitions:
16 domain QuantityDomain = {0 : 10}
17 domain InputCoinDomain = {1 : 2}
18 domain CoinDomain = {0 : 25}
19
20 function price($prod in Product) = switch $prod
21 case COFFEE: 2
22 case TEA: 2

23 case MILK: 1
24 endswitch
25
26 rule r_serveProduct($p in Product) = par
27 dispensed := $p
28 available($p) := available($p) − 1
29 coins := coins + price($p)
30 endpar
31
32 main rule r_Main =
33 if(coins < 25) then
34 choose $p in Product with price($p) =
35 insertedCoin and available($p) > 0
36 do r_serveProduct[$p]
37 ifnone
38 dispensed := undef
39 endif
40
41 default init s0:
42 function coins = 0
43 function dispensed = undef
44 function available($p in Product) = 10

3.2 Refined model

In this refined model, we implemented the full behavior of the ACVM, by in-
cluding coins and considering the availability of each product. In this manner,
the products will only be dispensed by the ACVM if the number of inserted
coins matches the specific product’s price, and the quantity of the chosen prod-
uct is sufficient. Listing 6 reports the refined model of the ACVM. In addition
to what already introduced in the ground model, this refined version creates
three more domains (Line 6-Line 8) to restrict the amount of products available
(QuantityDomain), the coins accepted (InputCoinDomain), and those contained
in the ACVM (CoinDomain). Furthermore, this specification adds new controlled
functions (Line 10-Line 11) to store the availability for each product (available)
and the amount of coins contained in the ACVM (coins). Considering that this
refinement level allows the interaction with the user, we added a monitored3 func-
tion insertedCoin which stores the coin type inserted by the user (Line 12).
Finally, the price for each product is statically defined (Line 20).

When executing the ACVM (Line 32), if a new coin is inserted, the machine
randomly chooses a product $p with price equal to the amount of insertedCoin
and which is still available. If such a product exists, it is served by executing
the r_serveProduct rule; If not, the dispensed product is set to undef.4

As for the ground model, this refined version of the ACVM still contains
nondeterminism, and the scenario shown in Listing 7 is flaky. More specifically,
even if a nondeterministic main rule is executed, the initial scenario step remains
3 A monitored function is a function whose value is set by the environment and read

by the machine.
4 In Asmeta, undef is equivalent to the null value, and can be used in any domains.
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Listing 7: Avalla scenario for
the specification in Listing 6
scenario scenario2
load ACVMRef.asm

/∗ First step. 1 Euro is
inserted: only MILK can be
dispensed ∗/

set insertedCoin := 1;
step
check dispensed = MILK;
check available(MILK) = 9;
check available(TEA) = 10;
check available(COFFEE) = 10;

/∗ Second step. 2 Euros are inserted:
COFFEE or MILK can be dispensed ∗/

set insertedCoin := 2;
step
check dispensed = COFFEE;
check available(COFFEE) = 9;
check available(MILK) = 9;
check available(TEA) = 10;

Listing 8: Scenario with failing execution
[...]
<State 2 (controlled)>

[...]
dispensed=TEA

</State 2 (controlled)>
CHECK FAILED: dispensed = COFFEE at step 2
CHECK FAILED: available(COFFEE) = 9 at step 2
check succeeded: available(MILK) = 9
CHECK FAILED: available(TEA) = 10 at step 2

Listing 9: Scenario with successful execution
[...]
<State 2 (controlled)>

[...]
dispensed=COFFEE

</State 2 (controlled)>
check succeeded: dispensed = COFFEE
check succeeded: available(COFFEE) = 9
check succeeded: available(MILK) = 9
check succeeded: available(TEA) = 10

deterministic because the only product that can be dispensed when inserting 1
Euro is MILK. However, in the second step, when the user inserts 2 Euros, the
ACVM may choose to dispense COFFEE or TEA leading to a failing (Listing 9) or
successful (Listing 8) execution.

4 Extending Avalla language

Flakiness is due to nondeterminsm in Asmeta specification, but it is revealed
when a tester writes a scenario without considering the nondeterministic be-
havior. Here, we explain how the Avalla language has been extended to allow
deterministic control over scenario validation, given a nondeterministic behavior
in the specification. The rationale behind the Avalla extension is that it enables
users to validate the behavior of the model when specific values are selected by
choose rules. We have defined the pick statement to force the nondeterministic
choice to a known value:

pick $v [in ruleSignature] := value;

The logical variable $v, used in a choose in the specification, is forced to
value, where value is an expression having the same domain D as the $v vari-
able. Note that the Asmeta grammar does not permit the reuse of the same name
for two local variables within a single macro rule; reuse across different rules,
however, is permitted. To resolve this issue, if more logical variables with the
same name are used in the Asmeta specification, the rule where the variable is
used can be explicitly specified. The Asmeta grammar supports overloading of
macro rules, i.e., it allows defining multiple macro rules with the same name as
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Listing 10: Non-flaky Avalla sce-
nario for the specification in List-
ing 1
1 scenario scenario1
2
3 load ACVMGround.asm
4
5 pick $p := TEA;
6 step
7 check dispensed = TEA;

Listing 11: Non-flaky Avalla scenario
for the specification in Listing 6
1 [...]
2 // Second step
3 set insertedCoin := 2;
4 pick $p in r_Main := COFFEE;
5 step
6 check dispensed = COFFEE;
7 check available(COFFEE) = 9;
8 check available(MILK) = 9;
9 check available(TEA) = 10;

long as their parameters differ. To specify the macro rule signature the format
r_ruleName(domain1,domain2,...) must be followed, where the domains rep-
resent the types of the parameters. If the macro rule does not take any parameter,
the parentheses must be omitted.

Given the flaky scenario reported in Listing 2, where the execution randomly
ended with check succeeded or check failed result, here we present the same
scenario using the pick statement to force the value selected by the choose rule.
The scenario is reported in Listing 10, where TEA is chosen (see Line 5). Similarly,
the scenario in Listing 7 for the refined ACVM model can be modified as shown
in Listing 11, by removing its flakiness and forcing the selection of COFFEE (see
Line 4).

When validating the Asmeta specification with the Avalla scenarios modified
as described above, the outcome of their execution is always the same, and both
scenarios pass.

5 Semantics: translating pick from Avalla to Asmeta

As explained in [18], the Avalla language semantics is given in terms of Asmeta
specification. The translation is performed by the AsmetaV validator which, given
the original Asmeta specification as input, translates the scenario into an Asmeta
model to make it behave as required by the user-defined scenario. Some princi-
ples are adopted during the translation process, the main ones of which are as
follows.5 Monitored functions are converted into controlled to set their values
based on the set commands. check commands are translated into conditional
rules over controlled functions to check whether the function values are as ex-
pected and, if not, signal an error. Furthermore, the main rule is overwritten,
and a wrapper is created to execute the original rule step by step. At each step,
checks and sets are performed.

To maintain consistency with the approach already implemented by AsmetaV,
we decided to follow the same process for the pick statement. More specifically,
when defining the translation mechanism we considered three principles:

5 For further details, refer to [18].
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asm ACVMRef
[....]
main rule r_Main =
[...]
choose $p in Product 
  with price($p) = insertedCoin
    and available($p)> 0 do
      r_serveProduct[$p]
  ifnone
    dispensed := undef
[...]

(1) 
add new 
function

(2) translate pick

(3)
translate
choose

SCENARIO ASMETA GENERATED TO RUN SCENARIO

ASMETA ACVM

asm ACVMRefGen
import ...

signature:
  [...]
  controlled p_r_Main__actual_value: Product

definitions:
  [...]
  macro rule r_Main =
    [...]
    let ($p=p_r_Main__actual_value) in
      r_serveProduct[$p]
    endlet
    [...]

  main rule r_main__ =
    switch step__
      case 0:
         seq
           p_r_Main__actual_value := COFFEE
           if not(price(p_r_Main__actual_value) = insertedCoin
             and available(p_r_Main__actual_value)> 0) then
               seq
                 p_r_Main__actual_value := undef
                 result := print("Error unfeasible condition")
               endseq
           endif
           r_Main[]
           [...]
 [...]

scenario simpleScenario

load ACVMRef.asm

set insertedCoin := 2;
pick $p := COFFEE;

step
check dispensed = COFFEE;

Fig. 2: Translation of pick in Asmeta for a simple scenario of ACVMRef specifi-
cation

(A) Scenarios with no pick statements should be treated as they were treated
before;

(B) pick statements could be present only in some steps, and when in a step
there is no pick, the update set is computed as before with a nondetermin-
istic behavior;

(C) Only valid values can be selected with a pick, i.e., it should not be possible
to select a value outside the original domain of the choose rule, or a value
clashing with the condition in the choose.

In the following, we better detail how we exploited these principles for the
translation of the pick statement from Avalla to its corresponding Asmeta code.

Signature - New controlled functions. For each logical variable $v used in a
choose rule that has at least one variable picked during the scenario, we intro-
duce a controlled function v_macroSignature__actual_value of the same type
as $v, where macroSignature denotes the signature of the macro rule in which
the choose rule is defined. This function is used to store the actual value chosen
by the user during the scenario execution when the variable is picked. Otherwise,
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it holds a randomly chosen value, in accordance with principle B. For instance,
the command pick $p := COFFEE requires the insertion of a corresponding con-
trolled function (see (1) in Figure 2).

Translation of choose rules. The translation of a choose rule takes into account
the previously mentioned principle A: If none of the logical variables defined by
the choose rule are ever picked in the scenario, the choose rule is left as in
the original Asmeta specification. Instead, if at least a logical variable is picked
at least once in the scenario, the original choose rule is translated into a let
rule, as shown in step (3) of Figure 2. The resulting let rule declares the same
variables as the original choose rule and assigns to each of them its corresponding
controlled function. The do rule of the original choose rule becomes the in rule
of the newly introduced let rule. Since the guard of the original choose rule is
incorporated into the translation of pick statements, the ifnone rule is omitted
in this part of the translation.

Translation of pick statements. For every choose rule in which at least one
variable is picked at least once in the scenario, two situations can occur at each
step of the scenario: (i) all the variables in the choose rule are picked for that
step, (ii) some or all variables are not picked. In both cases, for each variable
$v that is picked in the step, the picked value is assigned to the corresponding
controlled function v_macroSignature__actual_value. If the assigned value
falls outside the original domain specified by the choose rule, an error is raised,
in accordance with principle C. After that, in the former case, shown in step
(2) in Figure 2, a conditional rule checks whether the picked values satisfy
the condition of the original choose rule: If the condition is not satisfied, an
error is raised (as per principle C) and the controlled functions are set to undef.
In the latter case, following principle B, a single choose rule is used to assign
random values to all variables $v that are not picked in the step and to update
the corresponding v_macroSignature__actual_value controlled functions. The
condition of this choose rule is derived from the condition of the original choose
rule by substituting picked variables with the corresponding controlled function.
In the event that, given the values already assigned for the picked variables, there
is no possible assignment for the remaining (not-picked) variables that satisfies
the condition, an error is raised (principle C) and the controlled functions are
set to undef.

6 Qualitative evaluation

In this section, we preliminary assess the proposed technique by qualitatively
evaluating its advantages and disadvantages. We summarize the pros and cons
of each approach that could be used when writing Avalla scenarios for nondeter-
ministic Asmeta specifications in Table 1, and we detail them in the following. In
general, when writing Avalla scenarios, we can follow three different approaches:
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Approach Pro Cons

CLASSIC No need to control nondeter-
minism Reduced fault detection capability

No new commands to learn It may be infeasible

FLAKY No new commands to learn Failure causes unclear

PICK Clear cause for failure Need to learn a new command
Fault detection capability Need to control nondetermism

Need to write multiple scenarios

Table 1: Preliminary Evaluation

CLASSIC: Users write the scenarios without the approach proposed in this
paper, and they require that they never fail. The check commands will be
written in a way that they won’t fail (e.g., using weak conditions over the
state when the exact value is unknown). An example is the scenario reported
in Listing 3 where the check states that a product is dispensed, but it accepts
any possible value.

FLAKY: Users create scenarios as they were traditionally written before the
approach proposed in this paper, acknowledging that some tests may be
flaky. They may occasionally fail when executed repeatedly, but one may
require that each scenario does not fail at least once when executed a rea-
sonable number of times. Otherwise, we deem the scenario wrong. An ex-
ample is the scenario reported in Listing 2, which can either pass or fail (as
illustrated in Listing 4 and Listing 5) due to nondeterministic factors.

PICK: Users adopt the pick commands as proposed in this paper, so no correct
scenario is expected to ever fail when the specification is not faulty. An ex-
ample is the scenario reported in Listing 10, where we force nondeterministic
choices to a deterministic value.

The main advantage of the CLASSIC approach is that it does not require
the tester to exactly drive the machine when nondeterministic choices are made.
The behavior remains nondeterministic as originally specified by the modeler.
No extra commands (like pick) are used. However, this makes the scenarios
more tolerant and they may not be effective in revealing potential faults. If, for
instance, the machine always chooses a behavior, the CLASSIC approach won’t
allow testers to notice it, assuming that the specific behavior is captured by a
series of OR in the check condition, as in Listing 3. If the original choose, which
is:

choose $p in Product do dispensed := $p

is erroneously implemented, by simply removing MILK from the possible choices,
as in the following excerpt

choose $p in {TEA, COFFEE} do dispensed := $p
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such fault can not be discovered, and the scenario would not fail, because the
check is capturing an OR of all the elements in the Product domain. Indeed,
with this approach, the conditions have to be general enough to be satisfied by
any possible behavior, and this reduces the scenario fault detection capability.
Note that writing a scenario that can pass for every behavior may be infeasible,
as the conditions and paths may exponentially grow in number.

With the FLAKY approach, the tester can write precise checks, however,
they can fail sometimes, leaving unclear if the failure is a real fault or it is be-
cause of the nondeterminism. Of course, one could accept flaky scenarios and
require that they sometimes pass, but this increases the time required for run-
ning the tests and leaves uncertainty about the correctness of the specification,
since some faults may be undetected. For instance, if during the simulation,
a specification selects a behavior different from that specified in a scenario s,
the failure of s could be due to a different nondeterministic choice or an actual
fault that manifests only in specific cases. For example, if the choose rule in the
specification in Listing 1 is implemented as in the following

choose $p in Product do
if $p = MILK then dispensed := COFFEE
else if $p = TEA then dispensed := TEA
else if $p = COFFEE then dispensed := COFFEE
endif

a scenario like the one implemented in Listing 2 would not fail, if the random
choice selects TEA, while it would fail in all other cases. In the case the machine
chooses COFFEE, the scenario would fail because of the nondeterminism, while
in the case MILK is selected, it would fail and reveal an implementation fault. In
this setting, a scenario implemented with the CLASSIC approach would not fail
in any case, and no faults would be revealed.

Finally, with the PICK approach, the tester can write multiple scenarios,
each targeting one specific behavior of the nondeterministic ASM. This is made
possible by the use of the pick statement, introduced in this paper, which allows
for forcing the value of nondeterministic choices to a known value. In this way,
the scenario will be executed as being deterministic and its failure will either
correspond to an error in the specification or in the scenario itself. Suppose a
correct scenario written with this approach fails. In that case, testers can be
sure that there is a fault in the Asmeta specification, allowing for a higher fault
detection rate. However, this approach comes with a cost. First, testers need
to explicitly control nondeterminism. Thus, this approach is unsuitable when
performing black-box testing. Moreover, since with the PICK approach, one has
to write scenarios to test specific system behaviors, there is the need to write
multiple (or longer) scenarios while, with the CLASSIC and FLAKY approaches,
a single scenario could cover more behaviors.
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7 Related work

To the best of our knowledge, no existing work in the literature addresses the
problem of removing flakiness from test scenarios executed against Asmeta non-
deterministic specifications, highlighting the novelty of our proposed approach.
However, flaky tests are a well-explored issue in software engineering.

Flaky tests can originate due to different reasons [24], with nondeterminism
being the most common one. Nondeterminism in formal models is frequently
adopted to account for the environment or uncertain events [8], such as timed
behavior or stochastic decisions [29], or to keep the model more abstract [7]. This
inherent nondeterminism, while useful for abstraction and modeling uncertainty,
can also introduce challenges, such as Heisenbugs, which are addressed in [32].
Those are bugs that disappear or change their behavior under different observa-
tion because of the presence of nondeterminism in modeled systems. Tests can
be flaky when they reveal a Heisenbug. In [9], the authors report the need to es-
tablish a well-defined testing process, considering flaky tests, for safety assurance
of safety-critical systems, e.g., in the avionics or medical domains. This applies
not only to validation, as we discuss in this paper, but also to verification [31],
in systems where nondeterminism is present.

Asmeta is not the only formal approach supporting nondeterminism. Event-B
has its own implementation of probabilistic behaviors [2,1]. However, validating
models written in this formalism necessitates either modifying them or providing
an ad-hoc implementation of nondeterministic aspects [25]. This is in contrast
with what we propose in this paper, where no modification to the Asmeta spec-
ification is needed. Similarly, UML-B allows for expressing probabilistic behav-
ior [27], as well as Simulink [35]. We believe that an approach similar to what we
propose in this paper would be beneficial also for the validation of specifications
written with other formalisms.

8 Conclusion

Nondeterminism plays a crucial role in formal specifications by enabling the
modeling of uncertainty, environmental factors, and abstract behaviors; Yet its
presence during validation can lead to flaky tests that undermine the reliability
and reproducibility of validation efforts.

To solve this limitation, in this paper, we addressed the issue of flaky sce-
narios in the validation of nondeterministic formal models within the Asmeta
framework. By extending the Avalla language, we introduced a novel mechanism
to control internal nondeterminism, ensuring deterministic behavior during sce-
nario execution. This approach eliminates flakiness, allowing developers to write
deterministic scenarios even for models with nondeterministic features. Through
a running example of an automatic coffee vending machine, we demonstrated
how deterministic scenarios can be defined and executed without encountering
flakiness, validating the effectiveness of our extension. Our contribution enhances
the usability of scenario-based validation in systems with nondeterministic spec-
ifications, where previously it was not possible to write scenarios with known
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outcomes. As future work, we plan to extend the set of specifications on which
it is possible to apply the approach proposed in this paper, e.g., by allowing the
use of the pick statement with choose rules involving variables not declared
within the rule itself, either in their guard or in the domains, and to test the
quantitative impact of deterministic control over nondeterminism for more com-
plex specifications. Moreover, we plan to extend the use of pick to automatic
scenario generation.
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