
Using Model Checking to Generate Tests
from Requirements Specifications?

Angelo Gargantini1 and Constance Heitmeyer2

1 Politecnico di Milano, Milano, Italy
Angelo.Gargantini@elet.polimi.it

2 Code 5546, Naval Research Laboratory, Washington DC 20375
heitmeyer@itd.nrl.navy.mil

Abstract. Recently, many formal methods, such as the SCR (Software
Cost Reduction) requirements method, have been proposed for improving
the quality of software specifications. Although improved specifications
are valuable, the ultimate objective of software development is to produce
software that satisfies its requirements. To evaluate the correctness of a
software implementation, one can apply black-box testing to determine
whether the implementation, given a sequence of system inputs, produces
the correct system outputs. This paper describes a specification-based
method for constructing a suite of test sequences, where a test sequence
is a sequence of inputs and outputs for testing a software implementation.
The test sequences are derived from a tabular SCR requirements spec-
ification containing diverse data types, i.e., integer, boolean, and enu-
merated types. From the functions defined in the SCR specification, the
method forms a collection of predicates called branches, which “cover”
all possible software behaviors described by the specification. Based on
these predicates, the method then derives a suite of test sequences by
using a model checker’s ability to construct counterexamples. The paper
presents the results of applying our method to four specifications, includ-
ing a sizable component of a contractor specification of a real system.

1 Introduction
During the last decade, numerous formal methods have been proposed to im-
prove software quality and to decrease the cost of software development. One
of these methods, the SCR (Software Cost Reduction) method, is based on a
user-friendly tabular notation and offers several automated techniques for de-
tecting errors in software requirements specifications, including an automated
consistency checker to detect missing cases and other application-independent
errors [14]; a simulator to symbolically execute the specification to ensure that
it captures the users’ intent [13]; and a model checker to detect violations of
critical application properties [3,12]. Recently, groups at NASA and Rockwell
Aviation as well as our group at NRL have used the SCR techniques to detect
serious errors in requirements specifications of real-world systems [7,21,12]. By
exposing defects in the requirements specification, such techniques help the user
improve the specification’s quality. This improved specification provides a solid
foundation for the later phases of the software development process.

While high-quality requirements specifications are clearly valuable, the ulti-
mate objective of the software development process is to produce high-quality
? This research is funded by the Office of Naval Research and SPAWAR.

O. Nierstrasz, M. Lemoine (Eds.): ESEC/FSE ’99, LNCS 1687, pp. 146–162, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Using Model Checking to Generate Tests from Requirements Specifications 147

software, i.e., software that satisfies its requirements. To weed out software errors
and to help convince customers that the software performance is acceptable, the
software needs to be tested. An enormous problem, however, is that software test-
ing, especially of safety-critical systems, is extremely costly and time-consuming.
It has been estimated that current testing methods consume between 40% and
70% of the software development effort [2].

One benefit of a formal method is that the high-quality specification it pro-
duces can play a valuable role in software testing. For example, the specification
may be used to automatically construct a suite of test sequences. These test
sequences can then be used to automatically check the implementation software
for errors. By eliminating much of the human effort needed to build and to apply
the test sequences, such an approach should reduce both the enormous cost and
the significant time and human effort associated with current testing methods.

This paper describes an original method for generating test sequences from
an operational SCR requirements specification containing mixed variable types,
i.e., integers, booleans, and enumerated types. In our approach, each test se-
quence is a sequence of system inputs and their associated outputs [19]. The
requirements specification is used both to generate a valid sequence of inputs
and as an oracle [17] that determines the set of outputs associated with each
input. To obtain a valid sequence of inputs, the input sequence is constrained
to satisfy the input model (i.e., assumptions about the inputs) that is part of
the requirements specification. Our method for generating test sequences “cov-
ers” the set of all possible input sequences by organizing them into equivalence
classes and generating one or more test sequences for each equivalence class.

Section 2 reviews the SCR method, and Section 3 describes the objectives
of an effective suite of test sequences. After showing how test sequences can
be derived from system properties, Section 4 presents our original method for
generating test sequences from operational requirements specifications and the
branch coverage criterion that the method applies. Section 5 describes a tool we
developed that uses either of two model checkers to automatically generate test
sequences; it also presents the results of applying the tool to four specifications.
Section 6 reviews related work, and Section 7 presents a summary and plans for
future work.

2 Background: The SCR Requirements Method
The SCR method was formulated in 1978 to specify the requirements of the Op-
erational Flight Program (OFP) of the U.S. Navy’s A-7 aircraft [15]. Since then,
many industrial organizations, including Bell Laboratories, Grumman, Ontario
Hydro, and Lockheed have used SCR to specify the requirements of practical
systems. The largest application to date occurred in 1994 when Lockheed en-
gineers used SCR tables to document the complete requirements of Lockheed’s
C-130J OFP [9], a program containing more than 250K lines of Ada. Each of
these applications of SCR had, at most, weak tool support. To provide powerful,
robust tools customized for the SCR method, we have developed the SCR toolset,
which includes the consistency checker, simulator, and model checker mentioned
above. To provide formal underpinnings for the tools, we have formulated a for-
mal model which defines the semantics of SCR requirements specifications [14].

An SCR requirements specification describes both the system environment,
which is nondeterministic, and the required system behavior, which is usually

148 A. Gargantini and C. Heitmeyer

deterministic [14]. The SCR model represents the environmental quantities that
the system monitors and controls as monitored and controlled variables. The
environment nondeterministically produces a sequence of input events, where an
input event signals a change in some monitored quantity. The system, represented
in the model as a state machine, begins execution in some initial state and then
responds to each input event in turn by changing state and by possibly producing
one or more output events, where an output event is a change in a controlled
quantity. An assumption of the model is that at each state transition, exactly one
monitored variable changes value. To concisely capture the system behavior, SCR
specifications may include two types of auxiliary variables, mode classes, whose
values are modes, and terms. Mode classes and terms often capture historical
information.

In the SCR model, a system is represented as a 4-tuple, (S, S0, E
m, T), where

S is the set of states, S0 ⊆ S is the initial state set, Em is the set of input events,
and T is the transform describing the allowed state transitions [14]. Usually, the
transform T is deterministic, i.e., a function that maps an input event and the
current state to a new state. To construct T , we compose smaller functions, each
derived from the two kinds of tables in SCR requirements specifications, event
tables and condition tables. These tables describe the values of each dependent
variable, that is, each controlled variable, mode class, or term. The SCR model
requires the entries in each table to satisfy certain properties. These properties
guarantee that all of the tables describe total functions.

In SCR, a state s is a function that maps each variable in the specification
to a type-correct value, a condition is a predicate defined on a system state,
and an event is a predicate defined on a pair of system states implying that the
value of at least one state variable has changed. When a variable changes value,
we say that an event “occurs”. The expression “@T(c) WHEN d” represents a
conditioned event, which is defined by

@T(c) WHEN d
def= ¬c ∧ c′ WHEN d,

where the unprimed conditions c and d are evaluated in the current state and
the primed condition c′ is evaluated in the next state.

3 Attributes of an Effective Suite of Test Sequences
A practical method should be supported by “pushbutton” techniques, techniques
that can be invoked with the mere push of a button. One example of a pushbut-
ton technique is automated consistency checking [14]. Our goal is to also make
software testing a pushbutton technique, i.e., as automatic as possible. Our ap-
proach to software testing focuses on conformance testing, black-box testing
that determines whether an implementation exhibits the behavior described by
its specification. This approach divides testing into two phases. During the first
phase, an operational requirements specification is used to automatically con-
struct a suite of test sequences. During the second phase, a test driver feeds
inputs from the test sequences to the software implementation, and then a com-
parator compares the outputs produced by the implementation with the outputs
predicted by each test sequence, reporting all discrepancies between the two sets
of outputs. Clearly, discrepancies between the two sets of outputs expose cases
in which the software implementation violates the requirements specification.

Using Model Checking to Generate Tests from Requirements Specifications 149

The challenge of software testing methods is to produce an effective suite of
test sequences. Like Fujiwara et al. [10], we believe that an effective suite of test
sequences satisfies two (conflicting) objectives:

– The number of test sequences in the suite should be small. Similarly, the
number of test data (i.e., the length of the input sequence) in each test
sequence should also be small.

– The test suite should “cover” all errors that any implementation may contain.
That is, it should evaluate as many of the different possible behaviors of the
software as possible.

In our approach, each test sequence is a complete scenario, which starts in
a legal initial state and which contains, at each state transition, a valid system
input coupled with a set of valid system outputs. Both the assumptions that
constrain the system inputs and how the system outputs are computed from the
system inputs are described by an SCR requirements specification.

4 Generating Test Sequences with a Model Checker
Normally, a model checker is used to analyze a finite-state representation of a
system for property violations. If the model checker analyzes all reachable states
and detects no violations, then the property holds. If, in contrast, the model
checker finds a reachable state that violates the property, it returns a “coun-
terexample,” a sequence of reachable states beginning in a valid initial state and
ending with the property violation. We use model checking not for verification
nor to detect specification errors but, like some others [1,5,8], to construct test
sequences. Like these others, we base our method on two ideas. First, the model
checker is used as an oracle to compute the expected outputs. Second, the model
checker’s ability to generate counterexamples is used to construct the test se-
quences. To force the model checker to construct the desired test sequences, we
use a set of properties called trap properties.

Section 4.1 describes how trap properties are derived from system proper-
ties provided by designers or customers. Then, Section 4.2 describes an original
extension of this method which derives trap properties systematically and au-
tomatically from an operational SCR requirements specification. Deriving trap
properties in this manner ensures that the test sequences “cover” all possible
behaviors described by the specification. To demonstrate that our method can
be used with different model checkers, we use two different model checkers to
construct the test sequences. The example presented in Section 4.1 uses the
symbolic model checker SMV [20], whereas the example presented in Section 4.2
uses the explicit state model checker Spin [16]. To translate an SCR specification
into either the language of Spin or the language of SMV, we use the translation
method described in [3]. A Spin specification and an SMV specification obtained
from an SCR specification using this translation method are semantically equiv-
alent. Section 4.3 describes our coverage criterion, a form of branch coverage.

4.1 Generating Test Sequences from Properties

To introduce our method, we illustrate how the model checker SMV may be
used to obtain a test sequence from a system property and an SCR requirements
specification. We consider a system called the Safety Injection System (SIS), a

150 A. Gargantini and C. Heitmeyer

simplified version of a control system for safety injection in a nuclear plant [6],
which monitors water pressure and injects coolant into the reactor core when the
pressure falls below some threshold. The system operator may override safety
injection by turning a “Block” switch to “On” and may reset the system after
blockage by setting a “Reset” switch to “On”.

To specify the SIS requirements in SCR, we represent the SIS inputs with
the monitored variables WaterPres, Block, and Reset and the single SIS output
with a controlled variable SafetyInjection. The specification also includes two
auxiliary variables, a mode class Pressure, an abstract version of WaterPres,
and a term Overridden which indicates when safety injection has been overrid-
den. An important component of the SIS specification is the input model for
WaterPres, which constrains WaterPres to change by no more than 3 psi1 from
one state to the next. The input model that describes the possible changes to
WaterPres is defined by {(w, w′) : |w′ − w| ≤ 3, 0 ≤ w, w′ ≤ 30}, where w
represents the value of WaterPres in one state and w′ represents its value in
the next state. In this example, a constant Low=10 defines the threshold that
determines when WaterPres is in an unsafe region.

Suppose that we have verified that the operational SCR specification of SIS
satisfies a safety property called P , which is defined by

@T(WaterPres < Low) WHEN Block = On ∧ Reset = Off ⇒ SafetyInjection′ = Off.

Property P states that if WaterPres drops below the constant Low when Block
is On and Reset is Off, then SafetyInjection must be Off.

We can use the property P and the operational SCR specification of the SIS
to construct a test sequence as follows. First, the operational specification is
translated into the SMV language in the manner described in [3]. If our goal was
to verify P , we would next translate P into CTL, the temporal logic of SMV.
Because our goal is not to verify P but to construct a test sequence from P ,
instead we translate the negation of P ’s premise into CTL, i.e.,

AG!(EX(WaterPres<Low) & ! WaterPres<Low & Block = On & Reset = Off),

where AG! represents ‘never’, EX represents ‘next’, and ! represents negation.
Because the negation of P ’s premise is false in the SCR specification, running
SMV detects a violation. To demonstrate the violation, SMV produces a coun-
terexample, i.e., a trace of input events which starts in a valid initial state and
ends when a violation of the CTL property is detected. This trace provides the
basis for the desired test sequence. The CTL property is an example of a trap
property.

Table 1 illustrates the test sequence that can be constructed from the coun-
terexample produced when SMV detects a violation of the above trap property
in the SIS specification. In the table, the initial values of WaterPres, Block,
Reset, SafetyInjection, and Pressure are shown in step 0, which represents
the initial state. (Due to lack of space, Table 1 omits the term Overridden.)
To clarify which variable values change from one state to the next, Table 1 only
shows the variable values which change at each step and omits the values that
remain the same. Note that the changes in WaterPres from one state to the
next never exceed 3 psi and thus satisfy the constraints of the input model.

1 The abbreviation “psi” represents “pounds per square inch.”

Using Model Checking to Generate Tests from Requirements Specifications 151

Step Monitored Var. Controlled Var. Mode Class
No. Value Value Value

0 WaterPres=2 SafetyInjection=On Pressure=TooLow
Block=Off
Reset=On

1 Reset=Off
2 WaterPres=5
3 WaterPres=8
4 WaterPres=10 SafetyInjection=Off Pressure=Permitted
5 Block=On
6 WaterPres=8 Pressure=TooLow

Table 1. Test Sequence Constructed from SMV Counterexample.

The six inputs that lead to the violation of the trap property form the input
sequence for the test sequence. Table 1 shows that the only change to the SIS
output produced by this input sequence is the change at step 4 in the value of
SafetyInjection.

The test sequence of length six shown in Table 1 may be represented more
concisely as

< (r, off; −), (w, 5;−), (w, 8;−), (w, 10; s, off), (b, on;−), (w, 8;−) >, (1)

where r, w, and b represent the input variables Reset, WaterPres, and Block;
s represents the single output variable SafetyInjection; and − indicates that
no output variable changes.2 Clearly, checking the software behavior with this
test sequence will test whether the software satisfies property P . In addition to
changes in output values, a test sequence may also include changes in the values
of one or more auxiliary variables. For example, the test sequence in (1) could
be extended to include changes in the mode class Pressure, which changes (see
Table 1) to Permitted at step 4 and to TooLow at step 6.

Although this method can test many critical aspects of the system behavior,
it has several weaknesses. First, the method assumes that the customers (or the
designers) have formulated a set of system properties. Unfortunately, formulat-
ing such properties is not a normal step in requirements specification, and hence
such properties may not be available. Second, and more important, is the incom-
pleteness of the test sequences. Even if a large set of properties are available for
generating test sets, questions remain about how completely the test sequences
cover all possible system behaviors. Finally, the method assumes the correctness
of both the operational specification and the properties. Our experience with
SCR specifications and the SCR tools convinces us that achieving a high-quality
SCR specification is feasible. In contrast, verifying that the specifications satisfy
a given set of properties is more problematic. Although there has been recent
progress in using model checkers and theorem provers to verify properties, for-
mal verification still suffers from both theoretical problems (e.g., problems of
decidability) and practical problems (time and space necessary for the proofs).
2 In this example, the initial state is unique and thus may be omitted from the test

sequence.

152 A. Gargantini and C. Heitmeyer

4.2 Generating Test Sequences from an Operational Specification

This section describes an original method for constructing test sequences which
does not depend on a set of system properties. This method automatically trans-
lates an operational requirements specification in the SCR notation to the lan-
guage of a model checker and automatically and systematically generates test
sequences. This section first describes how test sequences can be generated from
an event table and next how they can be generated from a condition table.

Old Mode Event New Mode

TooLow @T(WaterPres ≥ Low) Permitted

Permitted @T(WaterPres ≥ Permit) High
@T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table 2. Event Table Defining the Mode Class Pressure.

Generating Test Sequences from an Event Table. To illustrate the method,
we consider the event table in the SIS specification (see Table 2) which defines
the value of the mode class Pressure. The mode class has three modes: TooLow,
Permitted, and High. At any given time, the system must be in one and only
one of these modes. A drop in water pressure below the constant Low causes the
system to enter mode TooLow; an increase in pressure above a larger constant
Permit=20 causes the system to enter mode High. Figure 1 shows the function
that can be derived from Table 2 using the definition in [14]. The else clause in
Figure 1 indicates that events not explicitly named in the table do not change the
value of the variable being defined. To make the set of test sequences complete,
we need to construct test sequences not only for the cases described explicitly
in the table but for these “no-change” cases as well.

if
2 Pressure = TooLow

∧ @T(WaterPres ≥ Low) -> Pressure′ = Permitted
2 Pressure = Permitted

∧ @T(WaterPres ≥ Permit) -> Pressure′ = High
2 Pressure = Permitted

∧ @T(WaterPres < Low) -> Pressure′ = TooLow
2 Pressure = High

∧ @T(WaterPres < Permit) -> Pressure′ = Permitted
2 (else) -> Pressure′ = Pressure

fi

Fig. 1. Function Defining Pressure With a Single else Clause.

To produce an interesting suite of test sequences for the no-change cases, we
replace the definition of the mode class Pressure in Figure 1 with the equivalent
definition in Figure 2, which associates an else clause with each possible value of
Pressure. In Figure 2, the no-changes cases are labeled C2, C5, and C7. In each
case, the value of Pressure does not change. Further, in each case, either the
monitored variable WaterPres changes (in a way that satisfies the constraints

Using Model Checking to Generate Tests from Requirements Specifications 153
if

2 Pressure = TooLow
if
2 @T(WaterPres ≥ Low) -> Pressure′ = Permitted C1
2 (else) -> Pressure′ = Pressure C2
fi

2 Pressure = Permitted
if
2 @T(WaterPres ≥ Permit) -> Pressure′ = High C3
2 @T(WaterPres < Low) -> Pressure′ = TooLow C4
2 (else) -> Pressure′ = Pressure C5
fi

2 Pressure = High
if
2 @T(WaterPres < Permit) -> Pressure′ = Permitted C6
2 (else) -> Pressure′ = Pressure C7
fi

fi

Fig. 2. Function Defining Pressure With One else Clause per Mode.

of that case) or WaterPres does not change but another monitored variable (in
this example, either Block or Reset) changes. In our approach, each of the Ci
labels a “branch,” i.e., an equivalence class of state transitions. Together, these
branches cover the interesting state transitions, i.e., those that change the value
of the variable that the table defines and those that do not. Our approach is
to construct one or more test sequences for each branch. For example, for the
branch labeled C1, one or more test sequences will be constructed that satisfy
both the hypothesis and the conclusion of the property

Pressure = TooLow ∧ @T(WaterPres ≥ Low) → Pressure′ = Permitted.

To translate from the tabular format into Promela, the language of Spin, we
apply the translation method described in [3]. Figure 3 shows the translation into
Promela of the two branches labeled C1 and C2 in Figure 2. Because Promela
does not allow expressions containing both “current” and “primed” values of
variables, two Promela variables are assigned to each SCR variable. In Figure 3,
each variable with a suffix of “P” represents a primed variable. We also translate
each event in an event table to a Promela if statement. Thus, the event in the
first row of Table 2 (labeled C1 in Figure 2) is translated to the if statement
in lines 4–5 of the Promela code in Figure 3. In addition, we translate each else
clause to a corresponding else statement in Promela. Thus, the else clause in the
branch labeled C2 in Figure 2 is translated to a corresponding else statement
in the sixth line of the Promela code in Figure 3.

To label the different cases3 in the Promela code, we introduce an auxil-
iary integer-valued variable Casevar, where var names the variable defined by
the table. To indicate the case corresponding to Ci, we assign Casevar the
value i.4 In this manner, we ensure that every branch assigns Casevar a dif-

3 Henceforth, this paper uses the terms “branch” and “case” interchangeably.
4 The introduction of an auxiliary variable is unnecessary and used here solely for clar-

ity and generality. Our method works just as well without the use of new variables.
For example, we may use Promela’s goto statement or similar alternatives.

154 A. Gargantini and C. Heitmeyer
if

:: (Pressure == TooLow) ->
if
:: (WaterPresP >= Low) && ! WaterPres >= Low

-> PressureP = Permitted; CasePressure = 1;
:: else CasePressure = 2;
fi

. . .
fi

Fig. 3. Promela Code for Cases C1 and C2.

ferent value. Thus, in Figure 3, which shows two branches, the first branch is
labeled CasePressure = 1 and the second CasePressure = 2.

Next, we use Spin to construct one or more test sequences for each branch.
To that end, we define a trap property which violates the predicate in the case
statement. To construct a test sequence that corresponds to CasePressure = 1
in Figure 3, we construct the negation of CasePressure = 1 and insert it into a
Promela assert statement:

assert (CasePressure != 1).

Then, any trace violating this trap property is a trace which satisfies the case
(i.e., branch) with which CasePressure = 1 is associated.

When Spin analyzes the SIS specification for the above trap property, it
produces, as expected, a counterexample. From this counterexample, our method
derives the test sequence of length 20 shown in Table 3. As required, the last
two states of the test sequence satisfy the predicate labeled C1 in Figure 2.
That is, the sequence concludes with two states (s, s′) such that, in state s,
WaterPres 6≥ Low and Pressure is TooLow (implied by WaterPres = 9 at step
19) and, in state s′, WaterPres≥Low and Pressure is Permitted (implied by
WaterPres equals 10 at step 20). Moreover, as required by the input model,
the value of WaterPres from one state to the next never exceeds three psi. One
problem with this test sequence is its excessive length. Section 5 discusses this
problem and shows how a much shorter test sequence may be built using SMV.

Step Monitored Var. Controlled Var. Step Monitored Var. Controlled Var.
No. Value Value No. Value Value
1 Block On 11 WaterPres 4
2 Reset Off 12 Block On SafetyInjection Off
3 Block Off 13 Block Off
4 Block On SafetyInjection Off 14 Reset On SafetyInjection On
5 Block Off 15 Block On
6 WaterPres 3 16 Reset Off
7 Block On 17 WaterPres 5
8 Reset On SafetyInjection On 18 WaterPres 6
9 Block Off 19 WaterPres 9
10 Reset Off 20 WaterPres 10 SafetyInjection Off

Table 3. Test Sequence Derived from Spin Counterexample for Case C1 of Fig. 2.

Using Model Checking to Generate Tests from Requirements Specifications 155

Mode Conditions

TooLow Overridden NOT Overridden

Permitted, High True False

SafetyInjection Off On

Table 4. Condition Table defining SafetyInjection.

Generating Test Sequences from a Condition Table. Test sets are gener-
ated from condition tables in a similar manner. For example, consider the con-
dition table in Table 4, which defines the controlled variable SafetyInjection.
Table 4 states, “If Pressure is TooLow and Overridden is true, or if Pressure is
Permitted or High, then Safety Injection is Off; if Pressure is TooLow and
Overridden is false, then Safety Injection is On.” The entry “False” in the
rightmost column means that Safety Injection is never On when Pressure is
Permitted or High. This table generates the four cases, C1, C2, C3, and C4,
shown in Figure 4. Because condition tables explicitly define total functions (they
never contain implicit no-change cases), there is no need to generate additional
branches containing else clauses. Note that the the two modes in the second row
of Table 4 generate two different cases, C3 and C4.

if
2 Pressure = TooLow

if
2 Overridden = true -> SafetyInjection = Off C1
2 Overridden = false -> SafetyInjection = On C2
fi

2 Pressure = Permitted -> SafetyInjection = Off C3
2 Pressure = High -> SafetyInjection = Off C4

fi

Fig. 4. Function Defining SafetyInjection.

4.3 Branch Coverage

Associated with the method described in Section 4.2 is a precise, well-defined
notion of test coverage. Our method assures branch coverage by observing the
following rules:
1. In each condition table, every condition not equivalent to false is tested at

least once.
2. In each event table, every event is tested at least once.
3. In each event table, in each mode, every no-change case is tested at least

once.
For example, applying the first rule to the condition table in Table 4 generates
a minimum of four test sequences, one each for the two conditions shown when
Pressure is TooLow and one each for the two modes, Permitted and High, which
guarantee that SafetyInjection is off.

156 A. Gargantini and C. Heitmeyer

The third rule, which addresses the no-change cases, is very important, es-
pecially for high assurance systems, where very high confidence is needed that
a variable changes when it should change but does not change when it should
not change. We found the coverage provided by the third rule too weak because
many input events do not change any dependent variable. To achieve greater cov-
erage, we modified our method so that it can generate test sequences satisfying
a stronger rule, i.e.,

3′. In each event table, in each mode, a change in each monitored variable which
does not change the value of the variable that the table defines is tested at
least once.

For example, consider the no-change case C2 for the function defining the mode
class Pressure (see Figure 2). For this case, our method would generate three
test sequences, one corresponding to a change in each of the monitored variables
Block, Reset, and WaterPres. (Of course, WaterPres could only change to some
other value below the constant Low.) Similarly, three test sequences would also
be constructed for each of the other no-change cases, C5 and C7. Hence, for this
event table, our method would construct 13 test sequences.

We obtain coverage for the event table defining Pressure because the modes
TooLow, Permitted, and High cover the state space. In many event tables, how-
ever, not all of the modes are mentioned explicitly because, in some modes, no
event changes the value of the variable that the table defines. In such situations,
the no-change cases that involve the missing modes are covered by appending
an additional else clause to the function definition derived from the table.

5 A Tool for Automatically Generating Test Sequences

We have developed a tool in Java that uses a model checker to construct a suite
of test sequences from an SCR requirements specification. To achieve this, the
tool automatically translates the SCR specification into the language of either
SMV or Spin, constructs the different cases, executes the model checker on each
case and analyzes the results, derives the test sequences, and writes each test
sequence into a file. For each case that it processes, the tool checks whether
the case is already covered by one or more existing test sequences. If so, it
proceeds to the next case. If not, the tool runs the model checker and transforms
the counterexample generated by the model checker into a test sequence. As it
processes cases, the tool sometimes finds that a new test sequence t2 covers all
cases associated with a previously computed test sequence t1. In this situation,
the test sequence t1 is discarded because it is no longer useful.

Because many software errors occur at data boundaries, we designed a tool
option that causes extra test sequences to be constructed at data boundaries.
Turning on this comparison-split option causes the tool to split a branch contain-
ing the relation x ≥ y (x and y are integers) into two branches, one containing
x > y and the other containing x = y. Similarly, this option splits a branch
containing x > y into two branches, one containing x = y + 1 and the second
containing x > y + 1. When this option is selected, the tool will generate two
test sequences to test the given relation rather than one alone.

Using Model Checking to Generate Tests from Requirements Specifications 157

Specif. No. of No. of Total Test Seq. Useful Test Seq. Exec. Time Total Steps
Vars Branches Spin SMV Spin SMV Spin SMV Spin SMV

Small SIS 6 33 7 14 5 11 73s 3.7s 280 62
Large SIS 6 33 12 14 3 11 165s 4099s 10,529 778

Cruise Cont. 5 27 19 23 7 15 100s 5.1s 245 66
WCP1 55 50 15 - 10 � 500s 1 4795 �

Table 5. Automatic Generation of Test Sequences Using Spin and SMV.

5.1 Experimental Results

This section describes the results of applying our tool to four specifications:
the small SIS specification described in Section 4; a larger SIS specification;
the small Cruise Control specification in [18]; and the WCP1 specification, a
mathematically sound abstraction of a large contractor specification of a real
system [12]. The larger SIS is identical to the small SIS, except Low is 900,
Permit is 1000, and WaterPres ranges between 0 and 2000 and changes by no
more than 10 psi per step. The purpose of applying our test generation tool to the
WCP1 specification was to evaluate our method on a large, realistic specification.
The WCP1 specification is a sizable component of a contractor specification in
which five real-valued variables have been replaced by five integer variables.5
(Model checking the original contractor specification is infeasible because its
state space is infinite.) The reduced specification is still quite large, containing
55 variables—20 monitored variables, 34 auxiliary variables, and one controlled
variable. In processing all four specifications, the comparison-split option was off.
In generating test sequences for the three smaller specifications, we applied rule
3′ from Section 4.3 to obtain wider coverage. Due to the large size of the WCP1
specification and consequently the long execution time that we anticipated, in
generating test sequences for WCP1, we applied rule 3, which is weaker.

Tables 5 and 6 summarize some results from our experiments. In Table 5,
No. of Vars gives the total number of variables in each specification and No. of
Branches the total number of branches, Total Test Seq. gives the total number
of test sequences generated and Useful Test Seq. the number of test sequences
remaining after weaker test sequences (those covered by other test sequences) are
discarded, Exec. Time indicates the total seconds required to construct the test
sequences, and Total Steps describes the total number of input events the tool
processed in constructing the test sequences. For both Spin and SMV, Table 6
shows the number of “unreachable” cases the tool encountered (see below) and
the lengths of the useful test sets generated for each specification.

5.2 Spin vs. SMV

Because their approaches to model checking are significantly different, Spin and
SMV produced very different results, both in the test sequences generated and in
their efficiency on large examples. As Table 6 shows, the main problem with Spin
5 Although the test sequences generated from the WCP1 specification contain abstract

versions (i.e., discrete versions) of the real-valued variables, translating each abstract
variable to one or more real-valued variables, while tedious, is straightforward. We
have developed, and plan to implement, an algorithm that automatically transforms
an abstract test sequence into a concrete test sequence.

158 A. Gargantini and C. Heitmeyer

Specif. Spin-Generated Test Sequences SMV-Generated Test Sequences
Useful Unreach. Lengths Useful Unreach. Lengths

Small SIS 5 1 1, 20, 54, 99, 106 11 1 2, 3(2), 5(2), 6(2), 8(4)
Large SIS 3 1 3082, 3908, 3539 11 1 2, 3(2), 91(2), 101(4)

Cruise Cont. 7 7 31(2), 35, 37(4) 15 7 2(3), 3(3), 5(3), 6(6)
WCP1 10 2? 2(2), 3, 30, 72, 104 � � �

895, 1086, 1292, 1309

Table 6. Unreachable Cases and Test Sequence Lengths for Four Specifications.

is the length of the test sequences it generates. Because Spin does a depth-first
search of the state-machine model, it produces very long counterexamples (for
us, very long test sequences). Although we applied the Spin switch which finds
the shortest counterexample, this approach rarely (if ever) found a test sequence
with the shortest possible length.

This led us to experiment with SMV, which produces the shortest possible
counterexamples because its search is breadth-first. To illustrate the results of
generating test sequences using counterexample generation in SMV, we recon-
sider the branch labeled C1 in Figure 2 (see Section 4.2). Table 7 shows the test
sequence of length 3 that our tool derived from the counterexample generated
by SMV. Clearly, this test sequence is a cheaper way to test a software imple-
mentation of SIS for the behavior described in case C1 than the test sequence
of length 20 shown in Table 3.

Step Monitored Var. Controlled Var.
No. Value Value
1 WaterPres 5
2 WaterPres 8
3 WaterPres 10 SafetyInjection Off

Table 7. Test Sequence Derived from SMV Counterexample for Case C1 of Fig. 2.

For each of the three specifications for which it produced results, using SMV
to construct the test sequences dramatically reduced the length of the test se-
quences. However, SMV also produced many more test sequences than Spin. For
example, in analyzing the smaller SIS specification (see Table 6), SMV produced
11 useful test sequences ranging in length from 2 to 8, whereas Spin generated
five useful test sequences of lengths 1, 20, 54, 99, and 106.

As Tables 5 and 6 show, not only did SMV generate shorter counterexam-
ples, in addition, for small examples, SMV was faster than Spin. However, for
large examples, SMV required long computation times, whereas Spin was gen-
erally faster and covered the entire specification with fewer, but very long, test
sequences. In the case of WCP1, SMV ran out of memory before it generated
any test sequences (indicated by ∞ in Table 5). In contrast, Spin generated test
sequences for every specification.

The reason for these difference lies in the different approaches to model check-
ing taken by Spin and SMV. Spin uses explicit state enumeration to verify prop-
erties, i.e. computes the set of reachable states by enumeration (i.e. “running the
model”), whereas SMV represents the reachable states symbolically as a BDD
formula. Because the number of reachable states in requirements specifications

Using Model Checking to Generate Tests from Requirements Specifications 159

is usually far fewer than the number of possible states and because the BDD
formula computed by SMV becomes enormous when it includes constraints on
input variables, Spin often does better than SMV on large SCR specifications,
especially in finding a state where the property is false [3].

5.3 “Unreachable” States
In generating test sequences for the three smaller specifications, our tool exposed
several cases that involved “unreachable” states (see Table 6). For example, the
tool found one unreachable state in each of the SIS specifications. In each, the
model checker tried to find a trace in which the mode Pressure made a transition
from TooLow to High. In both specifications, such a transition is impossible given
the constraints on changes in WaterPres and the values of the constants Low and
Permit. Similarly, all seven of the unreachable cases shown in Table 6 for the
Cruise Control specification also involve impossible transitions; for example, a
transition in which IgnOn changes and the mode class CruiseControl remains
the same is easily shown to be impossible, using the invariants in [18].

For large specifications, a model checker sometimes runs out of memory (or
time) before it finds a counterexample. In this situation, our method cannot
detect whether the case is unreachable or is simply too complex to be analyzed
by the model checker with the available memory. When this situation occurs, our
tool identifies the case that the method failed to cover, so that the designer can
consider the problem and, if necessary, build the test sequence by hand. This
situation occurred when the tool was model checking the WCP1 specification
with Spin and ran out of memory before it had generated test sequences for the
two “unreachable” cases listed in Table 6. Our suspicion is that these two test
sequences do not involve impossible transitions. Instead, the large size of the
WCP1 specification probably caused Spin to run out of memory before it found
traces for these two cases.

5.4 Role of Abstraction
Although the WCP1 specification has many more variables and is much more
complicated than the larger SIS specification, Spin required many fewer input
events in generating test sequences for the WCP1 specification than in gener-
ating test sequences for the larger SIS specification. In our view, the reason is
that abstraction was applied effectively to the WCP1 specification; in contrast,
no abstraction was applied to the SIS specification. In processing specifications,
Spin usually changes every input variable in the specification, not only the “in-
teresting” input variables, many times. By eliminating the uninteresting input
variables using abstraction, it should be possible to decrease the length of the
test sequences that Spin produces.

5.5 Effective Use of Model Checking
Although model checking may be used to verify properties of specifications, the
enormous state space of finite-state models of practical software specifications
often leads to the state explosion problem: the model checker runs out of memory
or time before it can analyze the complete state space. This occurs even when
partial order and other methods for reducing the state space are applied. Model
checking is thus usually more effective in detecting errors and generating coun-
terexamples than in verification [11,3]. Hence, we are using a model checker in
the most effective way.

160 A. Gargantini and C. Heitmeyer

6 Related Work
At least two groups [22,23] have formulated a formal framework where both test-
ing criteria and test oracles are formally defined. In this approach programmers
use the same model both to specify programs and to construct test sequences.
While both groups present guidelines for constructing test sequences, unlike us,
they do not describe a concrete method for automatically generating the test
sequences.

Recently, three other groups have used a model checker to generate test
cases complete with output values [5,8,1]. Callahan and his colleagues use a
process representing the specification to examine traces generated by a process
simulating the program. In this manner, they detect and analyze discrepancies
between a software implementation and the specification (a set of properties).
They use Spin as an oracle to compute the system outputs from the process
representing the specification. Engels et al. also describe the use of Spin to
generate test sequences [8]. They assume the designer has defined the “testing
purpose,” analogous to our trap properties. A major weakness is the reliance of
their method on a manual translation of the specification to Spin, which requires
some skill and ingenuity. Because both methods use properties to construct the
test sequences, they suffer the weaknesses of property-based methods described
in Section 4.1. Ammann, Black, and Majurski have proposed a novel approach
based on mutations, which uses SMV to generate test sequences [1]. By applying
mutations to both the specification and the properties, they obtain a large set
of test sequences, some of which describe correct system executions and others
describing incorrect system executions. Using this method, a correct software
implementation should pass tests that describe correct executions and fail tests
for incorrect executions. However, this method lacks the systematic treatment
of the no-change cases provided by our method.

Blackburn et al. [4] describe a different method for generating test sequences
from SCR specifications, which does not use a model checker. In their method,
a tool called T-VEC derives a set of test vectors from SCR specifications. In
this vector-oriented approach, each test sequence is simply a prestate/poststate
pair of system inputs and outputs. Although this method has proven useful for
testing software modules, its use in black-box software testing is problematic,
because it does not provide a valid sequence of inputs leading to each pair of
state vectors.

7 Summary and Plans
This paper has described an original method for automatic generation of test
sequences from an operational requirements specification using a model checker.
The method has several desirable features:

– It uses an operational requirements specification both to construct a valid
sequence of system inputs and to compute the expected system outputs from
the input sequence.

– It generates a suite of test sequences that cover the state transitions by
generating test sequences from cases explicitly described in the specification
and from cases that are implicit in the specification (the “no-change” cases).
These sequences test the most critical input sequences, those that should
change the system state (as specified in the event tables) and those that

Using Model Checking to Generate Tests from Requirements Specifications 161

should not change the system state. Every condition in a condition table is
also tested.

– It may be applied using either the explicit state model checker Spin or the
symbolic model checker SMV.

To illustrate the utility of our approach, we showed how a tool that implements
our method can generate test sequences for some small examples and for a large
component of a contractor specification of a real-world system. These early re-
sults demonstrate both the method’s potential efficiency and its practical utility.

A number of other important issues remain. First, we plan to experiment
with abstraction to address both the state explosion problem encountered with
SMV and the long input sequences produced by Spin. Given the effectiveness of
combining mathematically sound, automated abstraction methods with model
checking for detecting specification errors [12], we are optimistic that abstraction
can also prove effective in making automatic test sequence generation from large
specifications practical. Second, we will study alternative methods for selecting
test sequences for a given branch. Our current method usually constructs a single
test sequence for each branch of a function definition. An important question
is how to select a collection of test sequences that are adequate for testing the
behavior specified by that branch. One alternative which could prove useful when
a large number of variable values exist (e.g., large ranges of numerical values)
is to use a statistical method to select test sequences. Another alternative is
to select test sequences systematically by further case splitting. To determine
which particular test sequences to select, a method like that of Weyuker and her
colleagues [24] may be useful. Finally, we plan to use the suite of test sequences
that our tool generates from a given SCR requirements specification to test a
real software implementation.

Acknowledgments

We are grateful to M. Archer, R. Jeffords, D. Mandrioli, and the anonymous
referees for their constructive comments on earlier versions of this paper.

References

1. P. Ammann, P. Black, and W. Majurski. Using model checking to generate tests
from specifications. In Proc. 2nd IEEE Intern. Conf. on Formal Engineering Meth-
ods (ICFEM’98), Brisbane, Australia, December 1998.

2. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1983.
3. R. Bharadwaj and C. Heitmeyer. Model checking complete requirements specifi-

cations using abstraction. Automated Software Eng. J., 6(1), January 1999.
4. M. R. Blackburn, R. D. Busser, and J. S. Fontaine. Automatic generation of test

vectors for SCR-style specifications. In Proc. 12th Annual Conf. on Computer
Assurance (COMPASS ’97), Gaithersburg, MD, June 1997.

5. J. Callahan, F. Schneider, and S. Easterbrook. Specification-based testing using
model checking. In Proc. SPIN Workshop, Rutgers University, August 1996. Tech.
Report NASA-IVV-96-022.

6. P.-J. Courtois and David L. Parnas. Documentation for safety critical software. In
Proc. 15th Int’l Conf. on Softw. Eng. (ICSE ’93), Baltimore, MD, 1993.

162 A. Gargantini and C. Heitmeyer

7. S. Easterbrook and J. Callahan. Formal methods for verification and validation of
partial specifications: A case study. Journal of Systems and Software, 1997.

8. A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent networks
using model checking. In Proc. TACAS’97, pages 384–398. Springer, 1997. in E.
Brinksma, editor, LNCS 1217.

9. S. R. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, and J. Sutton. Experience applying
the CoRE method to the Lockheed C-130J. In Proc. 9th Annual Conf. on Computer
Assurance (COMPASS ’94), Gaithersburg, MD, June 1994.

10. S. Fujiwara, G. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Trans. on Softw. Eng., 17(6), June
1991.

11. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In Proc. Formal Methods Europe (FME’96), pages 662–
681. Springer-Verlag, March 1996. LNCS 1051.

12. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction
and model checking to detect safety violations in requirements specifications. IEEE
Trans. on Softw. Eng., 24(11), November 1998.

13. C. Heitmeyer, J. Kirby, Jr., and B. Labaw. Tools for formal specification, verifi-
cation, and validation of requirements. In Proc. 12th Annual Conf. on Computer
Assurance (COMPASS ’97), Gaithersburg, MD, June 1997.

14. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking
of requirements specifications. ACM Trans. on Software Eng. and Methodology,
5(3):231–261, April–June 1996.

15. K. Heninger, D. Parnas, J. Shore, and J. Kallander. Software requirements for the
A-7E aircraft. Technical Report 3876, Naval Research Lab., Wash., DC, 1978.

16. G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997.

17. W. E. Howden. A functional approach to program testing and analysis. IEEE
Trans. on Softw. Eng., 15:997–1005, October 1986.

18. R. Jeffords and C. Heitmeyer. Automatic generation of state invariants from re-
quirements specifications. In Proc. Sixth ACM SIGSOFT Symp. on Foundations
of Software Engineering, November 1998.

19. D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real-time
systems from logic specifications. ACM Trans. on Computer Systems, 13(4):365–
398, 1995.

20. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Engle-
wood Cliffs, NJ, 1993.

21. S. P. Miller. Specifying the mode logic of a flight guidance system in CoRE
and SCR. In Proc. 2nd ACM Workshop on Formal Methods in Software Prac-
tice (FMSP’98), 1998.

22. D. J. Richardson, S. L. Aha, and T. O’Malley. Specification-based test oracles for
reactive systems. In Proc. 14th Intern. Conf. on Software Eng., pages 105–118.
Springer, May 1992.

23. P. Stocks and D. Carrington. A framework for specification-based testing. IEEE
Trans. on Softw. Eng., 22(11):777–793, November 1996.

24. E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from
a boolean specification. IEEE Trans. on Softw. Eng., 20:353–363, May 1994.

	Introduction
	Background: The SCR Requirements Method
	Attributes of an {em Effective} Suite of Test Sequences
	Generating Test Sequences with a Model Checker
	Generating Test Sequences from Properties
	Generating Test Sequences from an Operational Specification
	Branch Coverage

	A Tool for Automatically Generating Test Sequences
	Experimental Results
	Spin vs. SMV
	``Unreachable" States
	Role of Abstraction
	Effective Use of Model Checking

	Related Work
	Summary and Plans

