
.

Providing Automated Support

to Deductive Analysis of Time Critical Systems

Andrea Alborghetti, Angelo Gargantini, Angelo Motzenti
Politecnico di Milano, Dipartimento di Elettronica e Informatione

email: [garganti. morzenti]@elet.poIimi.it

Abstract
We report on our experience in using a general purpose theorem prover to provide
mechanical support to deductive analysis of specifications written in the TRIO temporal
logic, and on applying the resulting tool to a widely known case study in the field of time-
and safety-critical systems, First, we illustrate the required features for a general purpose
theorem prover to satisfy our needs, we provide a rationale for our choice, and we briefly
illustrate how TRIO was encoded into the prover’s logic. Then we present the case study
used to validate the obtained TRIO prover and to assess the overall approach. Finally we
discuss the encouraging results of our experiment and provide some technical and
methodological suggestions to researchers and practitioners willing to use our tool to
analyze TRIO specifications, or aiming at customizing a general purpose theorem prover
on any other formal language, especially if based on temporal logics.
Keywords: specification, validation, verification, time- and safety-critical systems,

formal methods, temporal logic, automated theorem proving, case study,
experience report.

1. Introduction

The importance of effective procedures for specification, validation, and verification in
the development of correct and reliable computer-based systems can hardly be over-
emphasized, especially in the case of time- and safety-critical systems. Validation and
verification are most (cost) effective when performed in the initial phases of system
development, before the costly phases of design and coding take place [Kem85]. This
emphasizes the importance of the notation adopted for carrying out the specification
phase, which must support the unambiguous description of the system requirements
and at the same time allow for the (possibly automated) analysis of such
specifications.
Formal methods (i.e., notations, and associated tools, having a strong mathematical
foundation) have since long been considered a promising approach to address the
above demands, but at the same time they where the target of many criticisms,
especially coming from practitioners who were not convinced of their effectiveness in
improving the quality of the developed products and of their overall convenience,
notably from an economic viewpoint. In the recent past, however, some sensational
failures in computer-based systems occurred (such as the Therac-25 accident, the
Pentium bug, or the Arianne rocket fiasco), soon demonstrated to derive from
miscarried specification and verification. They provided evidence that the high price of
applying formal methods is certainly worth while for the most critical applications.

,

3 ‘.
5

.I

i l .�
_ , .). �

c 7
’ ,,.; I

.

.

;* ‘I

;:

212

In the past years a host of formal languages and methods were introduced for the
specification and analysis of critical systems, based on mathematical logic, state-
transition systems, (process) algebras, etc. [H&M961 but no single language, method,
or tool has gained universal acceptance nor has proved to tackle all problems in all
application areas. It is now a widespread opinion that every individual notation has its
own strong and weak points, and that there exist trade-offs among them.
TRIO, a language and tool set based on temporal logic, was defined and developed at
Politecnico di Milan0 to support the specification, simulation, analysis and
verification [MMG92, F&M94, FMM94] of time-critical systems. In particular, in
[FMM94] we introduced an axiomatization of the logic that allows the specifier to
formally derive properties of real-time systems from their specification in TRIO, We
experienced however that formal verification can become difficult and error-prone
when performed by hand: the likelihood of introducing errors in proofs, because of
overlooked details or implicit, incorrect assumptions, can grow to the point of
balancing the benefits of formal proofs. Therefore a strong need arises to provide an
automated support to formal derivation. On the other hand, automated theorem
proving is a highly specialized research field where very sophisticated techniques are
need to obtain that particular combination of power, generality, simplicity, and
flexibility needed in practical applications. For these reasons we did not consider
undertaking the development from scratch of a new theorem prover for TRIO; rather,
we looked for existing tools that could be employed for that purpose.
The present paper reports on our experience in using a general purpose theorem prover
to provide a mechanical support to deductive analysis of TRIO specifications, and on
applying the resulting tool to a widely known case study in the field of time- and
safety-critical systems. In Section 2 we report a brief summary of TRIO, In
Section 3 we illustrate the required features for a general purpose theorem prover to
satisfy our needs, we provide a rationale for our choice of the PVS proof checker
[SOR93], and we briefly illustrate how TRIO was encoded into the prover’s logic.
Section 4 presents the case study that we used to validate the obtained TRIO prover
and to assess the overall approach. The results of our experience, discussed in
Sections 5 and 6, are encouraging: proofs can be conducted almost at the same level
of abstraction as in informal manual derivation, but now they are “certified” by the
tool. On the contrary, one cannot expect, especially for complex proofs, that the
prover “does it all by itself”: our tool is in fact a proof checker, and the overall line of
reasoning in a derivation (which, significantly, constitutes the most creative part)
must still be provided by the user.
Altogether, we believe that our work provides evidence of the feasibility of the
approach; in the present paper we supply technical and methodological information to
researchers and practitioners willing to use our tool to analyze TRIO specifications, or
aiming at customizing a general purpose theorem prover on any other formal
language, especially if based on temporal logics.

2. TRIO: a Shortest Language Overview

TRIO is a first order logic augmented with temporal operators that allow to express
properties whose truth value may change over time. The meaning of a TRIO formula

213

is not absolute, but is given with respect to a current time instant which is left
implicit, The basic temporal operator is called Dist: for a given formula W, Dist(W,
t) means that W is true at a time instant whose distance is exactly t time units from
the current instant, i.e., the instant when the sentence is claimed.
Many other temporal operators can be derived from Dist. In this paper we use the
following ones.

Futr(F, d) dEf d20 A Dist(F, d) future

Past(F, d) dzf d20 A Dist(F, -d) Past
Lasts(F, d) def Vd’(O<d’<d + Dist(F, d’)) F holds over a period of length d

Lasted(F, d) dif Vd’(O<d’<d + Dist(F, 4’)) F held over a period of length d

Until (Al, AZ) dLf 3 (t > 0 A Futr (AZ, t) A Lasts (Al, t))
Al holds until A2 becomes true

Al w(F) def Vd Dist(F, d)

AlwF(F) dif Vd (d>O + Dist(F, d))

F always holds
F will always hold in the future

AlwP(F) dEf Vd (de0 + Dist(F, d)) F always held in the past

SomP (A) dLf 3d(dcO A Dist(F, d)) F held sometimes in the past

Som (A) dzf 3d Dist(F, d) Sometimes F held or will hold

UpToNow (F) dEf 36 (S > 0 A Past (F, S) A Lasted (F, 6))
F held for a nonzero time interval that ended at the current instant

Becomes (F) d;f F A UpToNow (-,F) F holds at the current instant but

it did not hold for a nonzero interval that preceded the current instant
LastTime (F,t) d$f Past (F, t) A (Lasted (-I F, t))

F occurred for the last time t units ago

Notice that, for the operators expressing a duration over a time interval (for example
Lasts), we gave definitions where the extremes of the specified time interval are
excluded, i.e. the interval is open. Operators including either one or both of the
extremes can be easily derived from the basic ones we listed above. For notational
convenience, we indicate inclusion or exclusion of extremes of the interval by
appending to the operator’s name suitable subscripts, ‘i’ or ‘e’, respectively. A few
examples regarding the operators Lasts, Lasted, Until, AlwF and SomP follow.

Lastsie (A, d) def

d:f
Vd’(O<d’cd + Dist(F, d’))

Lastedii (Al, d) = Vd’(OQi’sd + Dist(F, - d’))

Untilie (Al, AZ) dzf 3t (t > 0 A Futr (AZ, t) A Lastsie (Al, t))

AlwFi(F) dzf Vd (d20 + Dist(F, d))

SomPi (A) dzf 3d(d<O A Dist(F, d))

L

.

T

.

E

.I \
z

G

214

3. Encoding TRIO into the Prover’s Logic

The first choice we had to take in providing automatic support to proofs in TRIO was
that of a convenient formal theory: an encoding of TRIO formulas and the desired
reasoning mechanisms (inference rules) in the language of the automatic tool, In
[FMM94] we introduced a Hilbert-like proof system, based on the use of no~/~llts
potzens as the only inference rule, which is known to be well suited for studying the
properties of a logic, but not for constructing readable proofs or for automatic
theorem proving.
To the purpose of automation, two principal kinds of proof system are used in
practice: clausal form coupled with the resolution rule [Wos84], and Gentzen-like
systems [pra65].
Resolution-based procedures find a proof by contradiction, deriving from the premises
and the negation of the goal a huge number of consequences, until a contradiction is
found. To improve efficiency, formulas are expressed in a very simple and rigid way,
as clauses. This reduces the readability, and prevents the user from understanding the
proofs or the reasons of their failure. We believe that this way it is not adequate to
support validation and verification, where interaction with the user is fundamental,
Gentzcn systems, instead, favor the combination of a simple interaction with the
prover (to direct the proof in the more complex cases) with automated solving of
simpler subgoals by means of decision procedures. Gentzen systems include a set of
inference rules that naturally correspond to the meaning of every operator. For
instance, the sequent

A I-r, A Al-r, B
Al-r, AAB

(where A and B are formulas, A and rare set of formulas and A I- r means that r is
deducible from A) means that the formula AAB is deducible from a set of hypothesis,
if and only if so are both A and B.
This presentation is easily understandable, which helps significantly in designing and
examining proofs. Besides, these inference rules can be easily used by a prover to
decompose a proof into a tree of subgoals. For instance, the rule above can be used to
reduce the deduction of AAB to those of A and B. Furthermore, if a subgoal fails
because a counterexample can be found for it, the same counterexample falsifies also
the original goal.
For the above reasons, we chose a Gentzen-like axiomatization, augmenting the set
of rules for the predicate calculus with those necessary for dealing with temporal
aspects. We introduced some basic inference rules for modeling some basic properties
of the Dist operator (a brief summary of TRIO is reported in the appendix) such as:

A I- Dist(A,O)_ A I- Dist(A,d) A I- Dist(B,dl
A I- A A I- Dist(AAB,d)

and the Temporal Translation rule (TT):

Dist(A,d) I- Dist(r,dl
A I- r

215

whose intuitive meaning is that a deduction is still valid if looked from a different
time instant.
For apparent reasons of cost and reliability, we aimed at encoding TRIO into a logic
for which a prover already existed, and at including its proof system in the language
of that prover. There exist some well known encoding methods, classified as either
sytttactic or semantic.
In the syntactic approach, the source fogic is encoded into a base logic, the latter
being used as a logical metalanguage to represent the formulas of the former, together
with its inference rules, expressed through proper axioms. This approach is
particularly powerful, allowing for the representation of every kind of rule, including
the ‘IT rule.
However, it complicates even the simplest proofs, for it forces the user to prove in
the base logic that a sequence of steps forms a valid proof of the source logic, so that
it is almost unfeasible, unless the prover itself is equipped with some mechanism that
facilitates this kind of encoding. There is a wide variety of provers and logical
environments, such as Isabelle pau90], ICLE [Daw92], Mollusc [Ric93] and others,
which provide a facility of this kind, and have been used successfully for encoding in
their language several first-order or higher-order logics.
Unfortunately, all these provers lack powerful decision procedures for arithmetic,
which are essential when dealing with TRIO, since time is numeric in nature. The
only prover we found that uses a Gentzen-like deductive system and applies powerful
decision procedures for Presburger arithmetic and other decidable theories is PVS
[SOR93], which we adopted for our experiment. Unfortunately, PVS provides no
facility for syntactic encoding, so we looked for alternative encoding methods.
In the setnatltic approach the meaning of a formula is expressed in the base logic; this
can make the proof of the encoded formula in the base logic very different from that in
the source logic. In this way Hoare Logic and RTTL have been encoded within the
HOL system [Gor89, CHH93], the Unity logic into the Boyer-Moore prover [Go1901
and the Duration Calculus (DC) within PVS [SS94].
A first choice of a semantic encoding of TRIO in PVS is representing TRIO formulas
as functions from a temporal domain to booleans [Jef96]. This would make explicit
the current time instant and we experienced that this encoding seriously jeopardizes
the readability of proofs. So we looked for a suitable interface to hide the details of
the encoding, as in the case of DC [SS94]. Unfortunately, the lack of the necessary
documentation on the PVS prover made it difficult for us to build an interface similar
to the one available for DC (one of whose constructors was also in the team of PVS
developers) md, most important, prevented us from providing reliable estimates of the
feasibility 0” the approach, especially concerning the de-coding from a formula in the
internal 1og.c back to TRIO.
For this reason we avoided rhe construction of an interface by using a suppressed state
encoding, tnat considers TFJO formulas as an uninterpreted type. To provide the usual
interpretation to TRIO formulas, we introduce the function now from the type TRIO
formula to booleans. This Function applied to a TRIO formula A has value true iff A
is true now. This makes the overall system (PVS prover + axioms that realize the

1
,,.$ I

L

:.

. I

0

. .

,- ---~

216

encoding) behave exactly as a TRIO prover that applies our proof system as we
described above.
To represent the desired inference rules, we introduced axioms that intuitively explain
the meaning of the various operators, stating for example that norv(A~B) =
now(A)~low(B). Using these axioms and the inference rules of PVS, it was not
difficult to implement the desired inference rules for TRIO, through the definition of
suitable strategies, i.e. rules of the following kind:

A I-r, now(Dist(A,d)) A I-l?, now(Dist(B,d))
A I-r, now(Dist(AAB,d))

These rules also allowed us to encode indirectly the TT rule, which does not seem to
be representable directly in PVS, as the system does not provide means to add an
external Dist operator to all formulas of a sequent, as required by the TT rule, in a
single derivation step.

4. The Case Study

We validated our approach on the GRC (General Railroad Crossing) problem, which
was recently used as a benchmark for languages and tools for critical systems analysis
(for a statement of the problem, see the preface of [H&M96]). In the GRC problem
several trains travel on railway tracks; a road intersects the tracks, with a bar at the
crossing blocking vehicle traffic during train passage. For the sake of simplicity every
train travels in the same direction: the case of trains traveling in both directions can
be dealt with by symmetry. Two regions R and I, surrounding the crossing, an:
defined as depicted below.

train direction I
b I(I I I I I

‘< >I
I R I I

Fig. 1 The topology of the railroad crossing

Any finite number of trains can enter or leave any region during any finite time
interval. The system must simultaneously ensure that the bar be closed whenever a
train is inside region I (safety property), and that the bar is down only when strictly
necessary (utility property).
It takes the train a minimum time dm and a maximum time dM to go from the
beginning of R to the beginning of I; from hm to hM to go from beginning of I to
its end (dM 2 dm > 0 and hM 2 hm > 0). The bar can be in two stationary positions,
open or closed, or it can be moving up or moving down and is operated through
commands goUp and goDown.
The following predicates formalize train movements.

--- -- -__--_--.- .- --

.:

I

217

W) the k-th train is entering R
W the k-th train is entering I
1wo the k-th train is leaving I (and therefore R)

They denote unique events, i.e., they must satisfy the following axioms (expressed
for event E):

Vk(E(k) + (AlwP(yE(k)) A AlwF(TE(k))))

Le. E(k) is true at most in a single time instant

Vk(E(k) A k > 1+ SomPi (E(k - 1)))

i.e. (weak) time monotonicity of parameter k

Alw(~E(0)) by convention E(0) never occurs

Informally, RI and IO represent the only input events detected by sensors; the
occurrence of output events is deduced from the occurrence of the input ones.
Time dependent variables, CRI, CII, and CIO, count the occurrences of the
corresponding events RI, II, and IO. These variables are counters, a counter is a time
dependent variable, that increases for every occurrence of a given event, starting from
a null initial value.

(Al) Counter(C,E) dLf

i

Alw(Vk(kZl+ (Cc k ~SomPi(E(k))*-SomPi(E(k+l)))))

A

Som(C = 0 A AlwP(C = 0))
I

i.e., C is a counter for event E if C is always the value of the highest k for which
E(k) has occurred,

(A2) Counter(CR1, RI) A Counter(CII, II) A Counter (CIO, IO)

i.e., CRI, CII, and CIO are the counter for events RI, II, and IO, respectively.
The geometry of the region R and the behavior of the trains are formalized below.

Vk(RI(kJ + 3t(d ,,, < t 5 dM A Futr(II(k), t)))

if the k-th train enters R now, then the k-th train will enter I between dm and dM
time units in the future

Vk(II(k) + 3t(d ,,, I t I dM /\ Past@(k), t)))

if the k-th train enters I now, it entered R between dm and dM time units in the past

Vk(II(k) + 3t(h ,,, 5 t 5 hM A Futr(IO(k), t)))

if the k-th train enters I, then it will exit R between hm and hM time units in the
future

b
s 0

a?*

e

7
,

’ /;L
I .

L

t

L

i

. .,
i _’

_..

_.

0
I 4 ,*<w -;

.

218

Vk(IO(k) + 3t(h, I t I hM A Past@(k), t)))

if the k-th train exits R, then it entered I between dm and dM time units in the past
We assume that the bar, after a goDown or a goUp command (the two commands are
mutually exclusive) reaches the final position in y time units (y<dm and velocity of
motion is equal in the two directions). When the bar is moving upwards an opposite
command goDown may be issued, causing an immediate change in movement
direction.
When the bar in the closed state receives a goUp command, it will move upwards for
y time units or until a goDown is issued.

(Ml) UpToNow(closed) A goUp + Untili,(mvUp, goDown v Past(goUp, y))

A bar in the up position that receives a goDown command moves for y and then
remains closed until the next goUp command.

042)
UpToNow(up) A goDown + LastsiJmvDown, y) A Futr(Untili,(closed, goUp), 7)

When the bar moving up receives a goDown command it inverts its motion, at the
same speed reaches again the closed position, and stays there until the next goUp,

rn3) [~z2@;)-+ (Lastsi,(mvDown* t)h
Futr(Untrli,(closed, goUp), t)

)

After moving up for y time units, if there is no goDown command the bar stays open
until the next goDown command.

W4) Lastedi,(mvUp, y)A-~goDown + Untill,(open, goDown)

Initially, i.e., before any operation takes place, the bar is open (the bar is installed
before any train arrives).

WY AlWPi (7goDown) + open

The bar control strategy computes the number of trains that are possibly in I:
whenever it becomes positive a goDown command is issued, while whenever it
becomes 0 a goUp command is issued. Formally, the above train number is CTPI
=defpaSt(c~, dm) - CR0 (dm in the past operator models maximum speed of trains
moving from region R to region I). Let CTPIy =def past(CRI, dm-$ - CRO: CTPIy
account for a forward time shift of y in issuing the command goDown to the bar due
to the duration of the bar movement.
The commands issued to the bar are then defined as follows.

(Cl) goDown H Becomes(CTPIy>O)

m goUp ti Becomes(CTPI=O)

These axioms must ensure then safety and utility properties, formalized as follows:’

--

219

Safety: (CII > CRO) + closed

i.e., if the number of trains entered in region I is greater than those who left it, the
bar is down.

Utility: Lastedit(CII=CIO, y)~Lastsii(CII=CI0, y+dM -d,)-+open

i.e., if the number of trains entered in region I is equal to those who left it, the bar is
up (the constants y and dM-dm+y in the Utility property derive from the delay in bar
rising upon train exit and from the conservative advance in bar lowering upon train
enter).

5. Analysis of the Case Study

The first verification step consisted of deriving the desired Safety and Utility
properties. Even with the assistance of the prover, the derivation required a great
effort; moreover, to facilitate proofs, it was necessary to modify part of the
specification, as it often happens in a verification activity.
As an important by-product of verification, we discovered that the strategy for
governing the bar was incorrect: it allowed for the passage of a train through the
crossing with the bar not closed, thus violating the Safety property. This constitutes
a typical combination of verification and validation, whereby the requirements ate
assessed or found inadequate by the process of proving interesting system properties.

5.1 System Validation and Verification

The original control policy was based on the idea that any transition of CTPI from
zero to a positive value should be anticipated by a similar transition of CTPIy taking
place y time units before. Therefore, by axiom Cl, when a train is inside region I the
bar would be closed and Safefy guaranteed.
We used the prover to check rigorously this idea, by formalizing the reasoning above
through a sequence of lemmas and trying to prove each of them. We then discovered
an error, caused by a misunderstanding of the system behavior, when we failed
proving the following lemma (L7).

Alw(Becomes(CTPIy>O)H Futr(Becomes(CTPIy > 0,~))

The proof attempt decomposed the original goal into four separate subgoals, some of
which were derived from the specification. However we could not derive the following
subgoal:

Dist(UpToNow(CTP1 = 0), r) I - UpToNow(CTPIy = O), Dist(CTP1 = 0. r)

Then we tried to falsify it, starting from a partial model that verified the antecedent
and falsified all the consequent% and then trying to complete it respecting the various
specification’s axioms. This activity led to a counterexample, showed in Fig. 2, that
falsified lemma L7 and hence the Safety property.

E

.1 \
ci

,

_. L

220

.
+ dm-

Bar Position train in I
y barup 7

Fig. 2 A counterexample for L7 and Safety

We note that the time spent on the unfeasible proof was very short, since we quickly
found the mentioned counterexample. Even more important, both the search of a
proof and of a counterexample could be seen as parts of a single process, because
every step of the failed proof is, at the same time, a step in the construction of the
counterexample. In fact the backward application of an inference rule can be mad both
as: “To prove the goal I must prove all the subgoals” or “To falsify the goal I can
falsify one of the subgoals”.
This fact provides important methodological suggestions, for it shows that there
exists a systematic way to extract useful indications from the failure of a proof,
through the construction of a counterexample.
In our case, the counterexample showed clearly that the problem was originated by the
fact that the increment’of CTPIy (used for sending a goDown command to the bar)
was not necessarily from zero to a positive value, for CTPIy could have been already
positive.
The counterexample suggested also that the problem could simply be avoided by
issuing the goUp command when CTPIy, rather than CTPI, becomes zero. Therefore
axiom C2 was modified into

G3 goUp TV Becomes(CTPIy = 0)

which indeed allowed us to prove both Safety and Utility.

r. .

/
t -__ -- -.-- _ ---

:

221

5.2 Systematic Specifications Support Easy Proofs

Another interesting methodological issue concerns the specification of the bar. One of
the key steps in proving the Sufefy property consisted of deriving the following
lemma (L6):

goDown A Lastsit (TgoUp, t) A t 2 y + Futr(Lastsii(closed, t - r), r)

Unfortunately this property, apparently depending only on the behavior of the bar,
was not deducible exclusively from its specification. A simple counterexample can be
constructed by considering a situation where the bar is always in the mvDown state
and the goDown command has been issued periodically an infinite number of times in
the past.
In practice this counterexample can be excluded based on the control policy and the
definition of the counters by showing that there must be a first goDown. Nevertheless
it showed that the specification was not well modularized. When analyzing properties
of a non trivial system, modularity is a key issue for mastering complexity, and
therefore, considering that the extra effort required by this deficiency could not be
justified, we changed the specification of the bar, to make it more self-contained.
The need for modularity was not the only reason for changing the specification: even
if we uncovered all the assumptions adopted in the first version and derived them from
the specification of other system components, the particular expression of the axioms
Ml+M5 would still hinder the proofs.
In fact, one of the most natural ways to conduct a proof is by analyzing the various
possible cases, Of course, the case analysis must be exhaustive: in our example case,
we would consider, as the various cases, the possible current system states, using an
axiom like Alw(open v closed v mvUp v mvDown) to guarantee the exhaustiveness
of the analysis, Unfortunately, from the fact that the bar is in a given state, say open,
the axioms do not allow one to draw directly any conclusion on other states. For
instance, axiom Ml tells what happens if the bar is closed and a goUp is issued, but
the case when the bar is closed and no goUp is issued is not considered explicitly.
Similar argument show how difficult it would be to prove the completeness of the
specification, i.e., that the desired behavior is specified for every bar state and for
every issued command.
To overcome these difficulties we adopted a stare-based specification of the bar: for
each bar state we introduced an axiom describing its starting and ending conditions.
For instance, the following axiom is relative to the open state (notice that it is
structured as a set of nested implications with mutually exclusive premises).

.

t

E

<I \
c

< .

I

.’

/ /

/

Alw open +

\ \\

222

(- AlwP(-goDown) + SomF
AlwP(open A -goDown)
A goDown A mvDown

h

/ d2>dlA .
UpToNow(mvUp)

A
~A’wP(YgoDown)~ SdLd2 Past Lastsl,(open hygoDown,d2)

Futr(goDown?mvDown,d2)

dl

This new version of the axioms facilitated the proof of desired properties, and
increased the confidence in the completeness of the specification. We do not think,
however, that it would be a generally adequate solution, since it is not sufficiently
readable, nor it is easy to write; moreover, it does not prevent the introduction of
inconsistencies.
We then feel that a further step is needed, from purely state-based specifications to
tabular specifications, as advocated by [HpSK78] and [HM83]. Applying this idea to
the description of the bar, we would obtain a table with a row and a column for each
state; a cell contains the condition under which the system moves from the state
corresponding to its row to the state of its column. For instance, the row for the qerr
state would the following,

open
open
TgoDown

closed mvUp mvDown
goDown

stating that if the bar is in the open state and a goDown is issued, it goes into the
mvDown state; otherwise it remains in the open state. This presentation is easy to
read and write; moreover, completeness and consistency can be easily guaranteed by
simple table inspections. In practice, the conditions that appear in the table can be
arbitrarily complex TRIO formulas referring to the past history of the system, which
gives enough power to represent more complicated behaviors, as in the case of time-
outs
By means of suitable translation rules a set of TRIO axioms could be generated from
the tables, to be used in proofs. In general, this could be done in a simple and
convenient way in the case of discrete time domains, but not so easily when time was
modeled by the set of real numbers.

I’
5.3 Discrete vs. Dense Time Domain

This is only one of the difficulties arising from adopting the set of reals as the
temporal domain. For instance we found that, in an informal proof, it was very
frequent to use expressions like: “the last time in which A happened” or “the next
time in which A will happen”. When formalizing these concepts in PVS, it was
necessary to prove, for instance, that there really existed a “last” or “next time” in
which A happened. To this end, it would have been necessary, first of all, to exclude
(or severely limit) the possibility of accumulation points of events, introducing a
considerable amount of extra work.

- --- - --- - -- ---~.

.:- ,’ _-
- ‘.. ; \, .,--

.’ .

223

As an example of this kind of complication, to prove the Safety property it was
necessary to prove the following lemma, called Becomes-CTPIy.

Alw(4TPIy = 0 + 3t(Past(B ecomes(4YI’PIy = 0), t) A Lastedii (4ZTPIy = 0, t)))

This lemma states that, if CTPIy is positive, there must be a last time in which it
became positive (being previously zero), and its correctness should be evident to the
reader. Despite this, its proof required the introduction of many other lemmas,
requiring almost a third of the total effort necessary to prove the Safety property.
With a discrete temporal domain, instead, the proof of this lemma would have been
straightforward.
Although many of the required lemmas could be exploited also in future proofs, this
shows that the higher detail and precision in specifications allowed by modeling time
as a continuous set does not come for free, having a negative impact on the
complexity of proving even trivial facts. Therefore, one could use a discrete time
model as a useful approximation for single-clock systems, keeping the full generality
of real-valued time for asynchronous systems where events occur arbitrarily close in
time.

5.4 Figures of Total Effort

Concerning the cost of our activity, the proof of the two properties required the
introduction of 53 intermediate lemmas, reported in about 1000 pages of proof,
generated by the prover (every step is the result of an interaction with the user:
intermediate steps done by the prover are not reported), distributed among the various
theorems and lemmas.
It is interesting to notice that lemmas concerned with properties of Counters and
Events, for a total of 258 pages, are completely reusable without modifications. The
percentage of possible reuse could be increased from 26% to 38%, by generalizing
some lemmas to cover a broader range of cases.
The total time required for analysis was slightly more than 3 personmonths, from the
first serious reading of the original specification to the writing of the last page of
documentation. The documentation activity took about 3 weeks and produced a 100
pages summary of the proofs.
The rest of the time was spent (i) trying to reach a sufficient understanding of the
system behavior, (ii) searching for a way to formalize our reasoning, and (iii) deriving
the actual proofs. After a training phase, during which we could hardly produce more
than 20 pages of proofs in a day, our productivity increased significantly, reaching a
rate of about 100 pages in a day in the last proofs. All the hard work was concentrated
in the first two steps, witnessing the adequacy of the tool and of our encoding.
The effort required for the second phase derived mainly from the adoption of real-
valued time and from the original description of the bar. In particular, we spent about
a week analyzing the specification of the bar and providing an alternative
formalization; then, when the alternative was found, half a day sufficed to complete
the related proofs. Therefore, we are quite confident that, for adequately trained
engineers, the effort should be required mainly by the first phase: understanding the

. _I

’ /;L . .

.

c

.I \
c

.,
: II

. . 1

”

.

I* -. . -i
,
/

I

224

system. This does not mean that proofs would become easy and cheap: it only means
that time would be spent more proficiently.

6. Conclusions and Future Developments

We summarize here a few final remarks on the experiment described in the present
paper and the lessons we learned from it. Regarding the choice of a formal theory for
our logic, we found that Gentzen-like systems favor human reasoning on the proofs;
then we chose PVS as a tool for interactive construction of proofs, despite its lack of
support to a syntactic encoding, mainly because of its powerful decision procedures,
Overall, our experience can certainly be considered successful. Indeed, the encoding
and the theory could be effectively employed, in our case study, to prove system
properties and to disprove false conjectures. Moreover, unsuccessful attempts to derive
putative theorems led to the construction of counterexamples providing useful
indications for the correction of incomplete or inconsistent specifications. This
alternation between system specification, validation, and verification constitutes a
very useful and effective combination of verification and simulation [M&396].
During the analysis activity we realized that modeling time as a continuous set leads
to significant increase of the complexity of proofs; this however cannon be avoided
when modeling asynchronous systems.
On the other hand, the figures presented in the preceding Section 5 show that the
definition and utilization of this novel approach to system analysis required a
significant effort, in terms of both human and computing resources. Therefore the
question arises, as it is often the case with applications of formal methods, whether
the obtained results were really worth the required effort, and if this method can
usefully be employed in practical, industrially-sized applications.
An impartial judgment on this crucial aspect should consider that a significant part of
the effort spent in the investigation of the GRC case study derived from
(self)instruction on the PVS tools (that we had never used extensively before) and
from gaining experience in the use of the TRIO axiomatization and encoding for
deriving system properties. In fact, even if the figures reported in Section 5 on the
case study do not include the work to define the encoding of TRIO in PVS, this could
be effectively validated only when applied systematically to a realistic example.
We therefore expect significant cost reductions in future applications of the proposed
method, deriving from: increased knowledge of both the formal and mathematical
aspects of PVS as well as of its most mundane features of,the tool, which have a
strong impact on its practical usability. Besides, from the development of our case
study, we were able to extract some generally useful methodological guidelines. They
should lead to the definition and construction of libraries of generic reusable
components (PVS parametric theories) supporting the definition of high-level notions
(such as states, events, counters, etc.), whose relevant features and properties would
be pre-defined and proved in advance.
Even when assuming that all these improvements will be effectively realized and
applied, we maintain that the analysis of complex, (time) critical systems, especially
when performed by means of formal correctness proofs, is a difftcult, costly activity
that requires skilled, well trained personnel. In our opinion these methods can

225

therefore be applied with tangible advantages only to the most critical, non-standard
kernel components of the developed systems. Recent advances in the technology of
theorem provers, proof checkers, model checkers, and simulators, have improved the
state of the art and widened their application area, but have not produced, in our view,
any dramatic breakthrough.
We intend to pursue the present approach to the specification, validation, and
verification of time critical systems along the following lines.
. Development of other case studies of similar size and complexity, to verify

our above-reported hypothesis on diminishing costs in successive
applications;

. Investigation of alternative, promising approaches to the encoding of TRIO,
such as the adoption of a semantic encoding coupled with the construction of
a front-end acting as a parser/unparser of the language [SS94];

. Construction of libraries of predefined theories to support reusability,
modularization, and bottom-up construction of specifications and proofs;

. Integration of different, complementary tools and methods, in the same line
as [Rus96], combining theorem-provers not only with model-checkers, but
also with simulators/history-checkers, as advocated by p&M94, M&396].

t Acknowledgments
We thank Ralph Jeffords for useful suggestions on the encoding of TRIO in PVS, and
Dino Mandrioli for his advice on the focus and presentation of this paper.

7. References

[CHH93] R. Cardell-Oliver R. Hale and J. Herbert. “An embedding of Timed
Transition Systems in HOL”. Formal Methods in System Design, August
1993.

[Daw92] Mark Dawson, “The Imperial College Logic Environment”. Technical
report, imperial College of Science, Technology and Medicine, 1992.

[F&M941 M.Felder, A.Morzenti, “Validating real-time systems by history-checking
TRIO specifications”, ACM TOSEM-Transactions On Software
Engineering and Methodologies, ~01.3, n.4, October 1994.

[FMM94] M.Felder, D.Mandrioli, A.Morzenti, ‘Proving properties of real-time
systems through logical specifications and Petri net models”, IEEE TSE-
Transactions of Software Engineering, ~01.20, no.2, Feb.1994, pp.127-
141.

[Go1901 D. Goldshlag, “Mechanizing Unity”. In M. Broy and C.B. Jones, editors,
Progrmrning Concepts and Metho&, North Holland, 1990.

[Gor89] M.C.J. Gordon, “Mechanizing programming logics in higher-order logic”.
In G. Birtwistle and P.A. Subrahmanyam, editors, Current Trend in
Hardware ver$cation and Theorem Proving, Springer-Verlag, New York,
1989.

[H&M961 Heitmeyer C., Mandrioli D. (editors) “Formal Methods for Real-Time
Computing”, John Wiley & Sons, Series Trends in Software vol. 5, 1996.

b
0

i

* ’ 1
I ‘.

.
; ”

.

,
(r . :_.

_-

*,-_.,,. ’

*._

., . . (-.

I i
i ,

‘.._

z. :

‘r
.

,(, -. ;‘+

‘.

. . :’

,L.,

..“,

-‘,
., -,

:‘ .:

I.

--,
; t ,I.

‘:
-,

4

226

@M83] Heitmeyer C., McLean J., Abstract requirements specifications: A new
approach and its application. IEEE TSE-Transactions of Softwnrc
Engineering, SE-g, 5, Sept.1983, pp.580-589

[HPSK78]Heninger K., Pamas D.L., Shore J.E., Kallander J.W., Software
requirements for the A-7E aircraft. Tech. Rep. 3876, Naval Research Lab,,
Wash., DC, 1978

[Jef96] R.D.Jeffords, “Encoding the Real-Time Logic TRIO in PVS”, Naval
Research Laboratory Research Report, May 1996.

[Kern851 R.A. Kemmerer, “Testing formal specifications to detect design errors,”
IEEE Transactions on Sofhvare Engineering, vol. 11, no. 1, pp. 32-43,
January 1985.

[M&S961 A.K.Mok and D.Stuart, “Simulation vs. Verification: Getting the Best of
Both Worlds”, Proc. of COMPASS, 11th Annual Conference on
Computer Assurance, June 1996, Gaitersburg, MA.

@lMG92] A.Morzenti, D.Mandrioli, C.Ghezzi, “A Model-Parametric Real-Time
Logic”, ACM TOPLAS-Transactions on Programming Languages and
Systems, Vo1.14, n.4, October 1992 pp.521-573.

[pau90] L. Paulson, “The next 700 theorem provers”. In P. Odifieddi, editor, Logic
and Computer Science, Academic Press, New York, 1990.

pra65] D.Prawitz, “Natural Deduction. A Proof Theoretical Study”, Almqvist &
Wiksell, Stockholm, 1965.

[Ric93] B.L. Richards, “Mollusc User’s Guide”. Technical report, University of
Edinburgh, 1993.

[Rus96] J.Rushby, “Automated Deduction and Formal Methods”, Proc. of CAV
‘96, Springer Verlag LNCS 1102, pp.169-183, July 1996.

[SOR93] N. Shankar S. Owre and J.M. Rushby. “User guide for the PVS
Specification and verification system, language and proof checker (beta
release)“. Computer Science Laboratory, SRI International, Menlo Park,
CA 94025, USA, February 1993.

[SS94] J.U. Skakkebzk and N. Shankar, “Toward a Duration Calculus assistant in
PVS”, in Willem-Paul de Roever Hans Laangmaack and Jan Vytopil,
editors, Proc. 3rd Int’l Symp. on Formal Techniques in Real-Time atui
Fault-Tolerant Systems. Springer-Verlag, 1994.

wos84] Larry Wos, Ross Overbeek, Ezing Lusk and Jim Boyle, “Automated
reasoning: introduction and applications”, Prentice Hall inc., 1984.

