Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Paolo Arcaini*, Angelo Gargantini*, Elvinia Riccobene®, Paolo Vavassori*
*Dipartimento di Ingegneria, Universita degli Studi di Bergamo, Italy
Email: {paolo.arcaini, angelo.gargantini, paolo.vavassori}@unibg.it
TDipartimento di Informatica, Universita degli Studi di Milano, Italy
Email: elvinia.riccobene @unimi.it

Abstract—In mutation analysis a mutant is said equivalent if it
leaves the semantics of the program or the model unchanged.
Equivalent mutants are usually seen as an inconvenience; for
example, in software testing they cannot be detected by a test
and, therefore, they fictitiously reduce the mutation score of
a test suite. In this paper, instead, equivalent mutants are
seen as an opportunity, since they can be used to find some
static anomalies of software artifacts, i.e., anomalies that can be
removed without affecting the artifact semantics. The proposal
is applicable to different kinds of software artifacts as source
code, Boolean expressions, and feature models.

1. Introduction

Mutation analysis has a long history and has been ap-
plied to several areas of software engineering [19], mainly
to mutation testing [28]. In mutation testing, faults are
artificially introduced in the code under test and test cases
are used to detect (or kill) those faults (mutants). Good tests
can kill all the injected faults in the program or at least most
of them: a test suite has a mutation score equal to the portion
of mutants it can kill. Other approaches can be used to kill
mutants, and mutation analysis can be applied also to other
artifacts, not only to program code. For instance, in [2] we
used mutation analysis in order to assess the quality of a
static quality process for specifications of the NuSMV model
checker. In all these cases, the main goal is to kill as many
mutants as possible. However, some mutants are impossible
to kill: a mutant is said equivalent if it leaves the semantics
of the program (or model) unchanged. Equivalent mutants
are seen as an inconvenience and the equivalent mutant
problem is considered one of the main causes why mutation
testing is seldom used in practice [32], [28]. For instance, in
software testing they cannot be detected by a test and thus
they reduce the quality index (mutation score) of a test suite
without a real justification. In test generation, equivalent
mutants pose a challenge: they consume resources without
producing any useful test. For these reasons, several attempts
try to eliminate them (e.g., by filtering), or to automatically
find and avoid them [24], [15].

. 2015 IEEE Eighth International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW)
10th International Workshop on Mutation Analysis (Mutation 2015)
978-1-4799-1885-0/15/$31.00 ©2015 IEEE

In this paper, we argue that mutation analysis can be ex-
tended in order to find other defects (anomalies) in software
artifacts. The approach we propose leads to a rehabilitation
of equivalent mutants, which are given a new ability to de-
tect several types of anomalies. Equivalent mutants are seen,
therefore, as an opportunity, and the long time experience in
finding them can be reused in order to discover anomalies.

We define a certain type of anomalies, that we call static,
in terms of equivalent mutants. We show that if, given an
artifact A and a quality of A (like readability, efficiency and,
so on), we are able to produce an equivalent mutant with
better quality than A, then A contains a static anomaly that
should be removed. We show that this concept applies to
several types of artifacts, for several families of anomalies,
and for several types of mutation operators.

Due to space limitation, we assume the reader to be
familiar with the concepts of mutation operator, mutation
analysis, and equivalent mutants [19].

Sect. 2 introduces the concept of static anomalies and
a technique, exploiting equivalent mutants, for discovering
them; we show that mutation operators can work as anomaly
detectors. Sect. 3 shows the application of the technique to
different software artifacts. Sect. 4 presents some threats to
the validity of our proposal, and outlines future research
directions. Sect. 5 concludes the paper.

2. Detecting Static Anomalies

Software anomalies are defined in the IEEE standard!
as follows:

Any condition that deviates from the expected based on
requirements specifications, design documents, user docu-
ments, standards, etc. or from someone’s perceptions or
experiences. Anomalies may be found during, but not limited
to, the review, test, analysis, compilation, or use of software
products or applicable documentation.

According to the standard, each artifact should have
some quality attributes (like readability, compactness, ef-
ficiency, correctness, etc.) and an anomaly is any deviation
in terms of the expected (quality) attributes. For example,
faults represent deviations w.r.t. the expected behavior; dead
code is a deviation w.r.t. compactness.

1. IEEE Standard Classification for Software Anomalies (1044-2009)

In this paper, we focus on static anomalies, i.e., anoma-
lies that can be removed without changing the “meaning”
of the artifact. Static anomalies regard the artifacts structure
and they relate to qualities that may be statically measured.

2.1. Using mutation to detect static anomalies

We first define the concept of static anomaly in terms of
equivalence and quality of artifacts.

We assume that one can define a quality ¢ over artifacts
and that ¢ induces a partial order (of better quality) >,
among all the artifacts, i.e., an artifact may be better than
another in terms of a certain quality g. Whenever possible,
we will define ¢ as a real-valued function over the consid-
ered artifacts, such that ¢ induces a total order.

Moreover, we assume that it is possible to check equiv-
alence among artifacts. Intuitively, two artifacts are equiva-
lent if they have the same meaning. The exact definition of
equivalence depends on the type of artifacts.

Given a certain quality g, an artifact may contain a static
anomaly in terms of ¢ if the following condition holds:

Definition 1 (Static anomaly). Given an artifact A and
its mutation A', if A" is equivalent to A but A" >, A,
then A contains a static anomaly. The static anomaly is the
difference between A’ and A.

Def. 1 gives the foundation of a methodology for defin-
ing, finding, and possibly removing static anomalies. Having
in mind a software quality, we argue that it is possible to find
a mutation operator that detects the static anomaly regarding
that quality. Normally the designer starts with a precise static
anomaly and the related quality ¢ in mind. Then, he/she tries
to find or define a suitable mutation operator. Moreover,
a way for checking equivalence between artifacts and for
comparing their quality must be devised. At this point, given
an artifact A, the designer can build a mutation A’, check
the equivalence, and compare the quality. If A is equivalent
to A’ and A’ is better than A in terms of ¢, then a static
anomaly has been found. Mutation operators are also able
to remove the found anomaly: the mutant A’ has no longer
the detected anomaly in it.

We propose to use mutation operators as anomaly detec-
tors. However, not all the mutation operators are anomaly
detectors: those that never produce an equivalent mutant
with better quality are not.

Some mutation operators always increase a given qual-
ity, but the produced mutant may be non-equivalent, and,
therefore, only the equivalence must be checked.

Example 1. Let us consider the Statement Deletion mu-
tation operator (SDL) [13], removing a statement in a pro-
gram, and the quality compactness, defined as 1/#statements.
Applying SDL to a program always increases the program
compactnesses. If the removal of a statement from a program
originates an equivalent program, then the original program
contains a static anomaly (a useless statement). However, if
the removed instruction is live code that affects the program
state, the mutant is non-equivalent.

Other mutation operators, instead, always produce equiv-
alent mutants, but they may decrease the quality under con-
sideration, and, therefore, only the quality must be checked.

Example 2. The rename refactoring renames vari-
ables/methods/classes/... names. Such refactoring always
produces equivalent mutants and, with respect to the read-
ability quality, may either increase or decrease the readabil-
ity of an artifact. If the readability increases, the original
artifact contains a static anomaly (low readability).

In the worst case, the mutation operator may both de-
crease the quality and produce a non-equivalent mutant,
and, therefore, both the equivalence and the quality must
be checked.

Example 3. Instruction reordering, i.e., swapping the order
of two instructions A and B, may produce an equivalent
mutant (if the two instructions are independent) and improve
the readability (if B refers to the code preceding A and
A does not) or the efficiency. If a swapping produces an
equivalent mutant with better readability, then the original
artifact contains a static anomaly (low readability).

3. Static anomalies in software artifacts

To argument our thesis that equivalent mutants may in-
dicate the presence of static anomalies, we provide different
classes of artifacts having specific quality measures and
mutation operators.

3.1. Source code

The first type of artifacts we consider are programs. We
report in this section several static anomalies for source code
using Java, although we believe that most of them can occur
in the majority of the programming languages.

Mutation operators. For our purposes, we consider ROR

(one of the five classical operators) and we introduce three

more operators:

ROR Relational Operator Replacement: It replaces a rela-
tional operator with a different one.

SDL Statement Deletion operator [13]: It removes an entire
statement from the program.

RNM Rename operator: It renames a variable/method.

ICM Inline Constant Mutator: It mutates inline constants.
An inline constant is a literal value assigned to a non-
final variable.

Equivalence. Equivalent mutants for source code leave the
program’s overall semantics unchanged [14]. Finding them
is particularly difficult, also because they cannot be caught
by any test suite and their number can be high. In [30],
the authors found that about 45% of all undetected mutants
turned out to be equivalent and being able to find them by
hand was very time consuming. There are several attempts
to automatize the solution of this problem. For instance,
in [25], the authors introduce a tool that uses constraint

final boolean bDebug = false; | | public int m(int b) {

public void method() { int a;
if (bDebug) { a=2;
// do something a=b;

} return a;

} }
Code 1: Unreachable code

Code 2: Useless code

solving for proving the equivalence. A similar approach is
presented in [27]. Other authors use program slicing for
solving the equivalent mutant problem [18] or data flow
analysis and compiler optimizations [26]. Another technique
to detect (non-)equivalent mutants, based on state infection
conditions, is presented in [20]. In [31], the authors show
that Bayesian Learning used in Artificial Intelligence can
help the tester to determine the equivalent mutants. In [22],
second order mutation is exploited for the same goal. For a
complete review of exiting techniques for detecting equiva-
lent mutants we remind to [23].

3.1.1. Source code static anomalies.

Dead code. One static anomaly that can be easily detected
is the dead code. Dead code is code that either is never
executed (unreachable code) or it is executed but its effects
are never used in any other computation (useless code).
Removing dead code improves the quality compactness of
the code (without changing the code behavior): it is more
compact, more easily maintainable and more suitable for
mobile applications. Indeed, in recent years there has been
an increasing trend toward the incorporation of computers
into a variety of devices where the amount of available
memory is limited. This makes desirable trying to reduce
the size of applications where possible [11]. The mutation
operator SDL can remove dead code: If the code without
a statement is equivalent, then it contains fewer lines of
code and, therefore, is more compact. Note that SDL. may
remove side-effect free statements, like logging; in this case,
the compactness quality would improve, but other qualities
like maintainability would decrease.

Codes 1 and 2 contain dead code: the code inside the
conditional statement of Code 1 is never executed, while the
first assignment in Code 2 has no visible effects. Applying
the SDL mutation operator to the first assignment of Code 2
removes the static anomaly, since it produces an equivalent
mutant which is more compact. We checked the previous
two codes with two static analysis tools, namely Find-
Bugs and PMD. FindBugs does not detect either anomalies,
whereas PMD is able to detect the anomaly in Code 2, clas-
sifying it as DD-Anomaly (i.e., a recently defined variable
is redefined). Note that code review would easily find both
anomalies, but it would require human effort.

Poor readability. Another quality aspect is code readability:
it measures how much a text is readable (by a human). The
readability of a program is important for its maintainability,

public int max(int[] val) {
intr =0;
for(int i = [0 | i < val.length; i++) // use 1 instead
if (val[i] val[r]) // use > instead
r=i;
return vall[r];

Code 3: Inefficient code

and is thus a key factor in overall software quality. Aggarwal
et al. claim that source code readability and documenta-
tion readability are both critical to the maintainability of
a project [1]. Other researchers have noted that the act of
reading code is the most time-consuming component of all
maintenance activities [12].

Refactoring mutation operators rename variables names,
introduce constants, identify a part of code and extract
a method or a sub-program for it, etc. They all produce
equivalent mutants (by definition) and, if properly used, they
can augment the code readability.

Inefficient code. Sometimes a code does not contain dead
code, but nevertheless it can be modified in order to improve
its efficiency (in terms of average number of executed state-
ments). For instance, Code 3 could be modified as shown
in the comments and the code would be equally functional
but more efficient. In this case, as mutation operators we
could use ROR and ICM. Note that both ROR and ICM may
produce non-equivalent mutants and weaken the efficiency.

3.2. Boolean expressions

Boolean expressions are those involving Boolean opera-
tors like AND, OR, and NOT (denoted by A, V, —). Boolean
expressions frequently occur in complex conditions under
which some program code is executed or a specification
action is performed. They are frequently used to provide
semantics to other formalisms (like feature models [7]).
Boolean inputs are explicitly found in models of digital
logic circuits: in these cases, the extraction of Boolean
expressions is rather straightforward. More often, Boolean
inputs derive from abstraction techniques that consist in
replacing complex formulae with Boolean predicates. These
techniques can be applied to high level specifications in
which complex conditions about the state are replaced with
atomic predicates. Similar abstraction techniques can be ap-
plied to source code, for instance, in order to obtain Boolean
programs [6]. We follow the definitions and notations used
in [21]: the symbols x1, x2, etc. are referred to as variables,
and an occurrence of a variable in a formula is referred to as
a condition. For example, the formula x; A z2 V 21 contains
two variables (z1 and z5) and three conditions (two x1’s
and one x3). Often there are some constraints among the
variables of a Boolean expression.

Mutation operators. There are 10 classical mutation oper-
ators (also known as fault classes) for Boolean expressions.
The hierarchy of these operators has been studied by [21]
and by [29], and was later corrected by [10]. For our
purposes, we only introduce two of them (and we use the
same Boolean expression ¢ : 1 V -y to explain them):

MVF Missing Variable Fault: An occurrence of a condition
is omitted in the expression. For example, (z; is an
MVF mutation of .

SAO0/SA1 Stuck-At-0/1 Fault: An occurrence of a condition
is replaced by false/true in the expression. For
example, z1V true is a SA1 mutation of .

Equivalence. Two Boolean expressions are equivalent if
they assume the same truth values for the same input values.
Given a boolean expression ¢ with the constraints I, a
mutation ¢’ is equivalent to ¢ if I' = ¢ > ¢'. Checking
equivalence of two Boolean expressions is straightforward
by using a SAT (or an SMT) solver.

3.2.1. Boolean expressions static anomalies.

Redundant condition. Some conditions (i.e., occurrences
of a variable) in a Boolean expression may be completely
redundant, with the effect of making the expression more
difficult to read and to solve. Redundant conditions are those
that can be removed without changing the semantics of
the expression. As quality, we consider the simplicity of
a Boolean expression, defined as 1/#-conditions. Redundant
conditions can be discovered and removed by the mutation
operator MVF. Applying the MVF operator always increases
the simplicity, but it may produce non-equivalent mutants.
Let us consider the expression ¢ : x < 10Ax < 5 where
x is an integer variable. ¢ can be abstracted in the Boolean
specification a A b where a stands for x < 10 and b stands
for x < 5. Between a and b there is the constraint b — a. If
we apply MVF to the condition x < 10 of ¢, we obtain the
equivalent expression ¢’ : x < 5 having a greater simplicity.

Fixed-value expression. A non-constant expression sup-
posedly changes its value by changing the value of the
inputs. A fixed-value (but not constant) expression is, on
the contrary, an expression that always takes a fixed value
(either true or false). As quality, we consider the coverability
that measures how it is difficult to cover the input space
of the expression under test. Coverability can roughly be
defined as 1/2" where n is the number of conditions. Fixed-
value expressions can be detected by the SAO/SA1 mutation
operators. The application of SAQ and SA1 requires to check
the equivalence but not the quality, since the coverability is
always increased by SAO/SAL.

Let us consider the following Java Boolean expression
x <= Integer.MAX_VALUE where x is an Integer variable.
Applying SA1 to the expression produces an equivalent
mutant with a better coverability (from 1/2! to 1/2°).

Optional Excludes

T T3

Alternative Root

T

Table 1: Feature models standard notation

Mandatory Requires

3.3. Feature models

In software product line (SPL) engineering, feature mod-
els (FMs) are a special type of information model represent-
ing all possible products of a SPL in terms of features and
relations among them. Specifically, a basic feature model is
a hierarchically arranged set of features, where each parent-
child relation between them is one of the following types
(each having a graphical notation as shown in Table 1):

e Or: At least one of the sub-features must be selected
if the parent is selected.

o Alternative (xor): Exactly one of the sub-features must
be selected whenever the parent feature is selected.

e And: If the relation between a feature and its sub-
features is neither an Or nor an Alternative, it is called
And. Each child of an And must be either:

— Mandatory: Child feature is required, i.e., it is se-

lected when its respective parent feature is selected.

— Optional: Child feature is optional, i.e., it may or

may not be selected if its parent feature is selected.

In addition to the parental relations, it is possible to add con-

straints, i.e., cross-tree relations that specify incompatibility
between features:

o A requires B: The selection of feature A in a product
implies the selection of feature B.

o A excludes B: A and B cannot be part of the same
product.

A configuration of a feature model M is a subset of the
features in M that must include the root. A configuration
is valid if it respects all the parental relations and the
constraints. A valid configuration is called a product, since
it represents a possible instance of the feature model.

Feature models semantics can be rather simply expressed
by using propositional logic [7], [8]. Every feature becomes
a propositional letter, and every relation among features
becomes a propositional formula modeling the constraints
about them. Given a feature model M, we identify with
BOF(M) its representation as propositional formula.

Mutation operators. Mutation analysis has been applied to

feature models in [16], [17]. In [4], we devised several fault

classes and corresponding mutation operators for feature

models. In this paper, those used to discover anomalies are:

OTM Optional To Mandatory: An optional relation is
changed to mandatory.

(a) Dead feature (b) Redundant constraint (c) False optional

Figure 1: Feature models anomalies (in gray)

MF Missing Feature: A feature f (except the root) is re-
moved and it is replaced by its sub-features which
inherit the same relation f had with its parent. f is
replaced by false in any constraint containing it.

MC Missing Constraint: A constraint is removed.

Equivalence. Two feature models are equivalent if they
describe the same set of products. A technique for equivalent
mutants detection that uses an SMT-solver is described
in [4]; it consists in representing a feature model M and
one of its mutants M’ as propositional formulae BOF(M)
and BOF(M’) and checking their equivalence.

3.3.1. FMs static anomalies.

Dead feature. A feature is dead if it is not present in any
product of the FM. As quality measure we adopt liveness,
defined as (#Fs—#DFs)/ups, where #DFs is the number
of dead features and #Fs is the number of features. The
higher the liveness, the fewer dead features are contained in
the FM. We can detect dead features by using the mutant
operator MF. Applying MF can diminish the liveness and
can produce a non-equivalent mutant when the removed
feature is not dead. However, if the removed feature is dead,
then the mutant is equivalent and it has a better liveness?. In
Fig. la, feature D is dead, because it can never be selected
in any program: removing it from the FM does not modify
the set of products but increases the liveness from 45 to 1.

Redundant constraint. A constraint is redundant when it
does not introduce any further restriction or information to
the FM. Redundant constraints make the FM more difficult
to understand and introduce useless relations between fea-
tures. We adopt cyclomatic simplicity as quality measure,
which can be defined as the inverse of the cyclomatic
complexity (CC) [5]. CC is the number of distinct cycles
and hence it is equivalent to the number of constraints.
We can detect redundant constraints using the mutation
operator MC; applying MC always increases the quality,
but it may produce non-equivalent mutants: removing one
constraint increases the cyclomatic simplicity and, if the
mutant is equivalent, the removed constraint is redundant.
In Fig. 1b, the requires constraint between D and C is
redundant because it is implied by the requires constraint
between B and C, and, therefore, it can be safely removed.

2. Even if we do not know the initial number of dead features # DF's,
we are sure that removing a dead feature increases the value of liveness
from (#Fs—#DFs)/yFs to (#Fs—#DFs)/(#Fs—1).

False optional. A feature is a false optional if it is marked
as optional but it is present in all the products of the FM
(i.e., it behaves like mandatory). As quality measure, we
adopt solvability, roughly estimated as #MANs/urs where
#MANs is the number of mandatory features. An FM with
high solvability can be easily solved, i.e., a product can be
easily found, since the condition to add a mandatory feature
F' in a product is simply the presence of Fs parent in the
product. Applying OTM always increases the solvability, but
it may produce non-equivalent mutants. In Fig. 1c, feature
D is a false optional because it is selected in all products;
turning D to mandatory produces an equivalent mutant with
better solvability. Note that removing the anomaly makes the
requires constraint between B and D redundant. Indeed, re-
moving a static anomaly may expose another static anomaly.
In this case, the introduced redundant constraint can be
removed as well, without introducing another anomaly.

4. Threats to validity

Our approach is subject to some threats to validity.

First, removing a static anomaly is not always the right
choice, since it may be due to a different anomaly. For
instance, a feature in an FM is dead because the model is
over-constrained: removing it may be not the right solution.
In this case, the mutation operator should be used only as
detector but not as remover.

Removing a static anomaly can introduce another static
anomaly, as in Sect. 3.3.1 for false optionals; in that case, the
introduced anomaly can be removed without reintroducing
the original anomaly. However, sometimes two qualities may
be in conflict, like readability and compactness. In this case,
the user should choose which quality is more important.

Equivalence checking may be hard to execute and it
may be not automatable. For instance, checking equivalence
of source code is in general an undecidable problem (but
also checking for an anomaly is undecidable) and, because
it is difficult to automate, a time-consuming activity [14].
However, in particular cases, incomplete techniques can be
devised (see Sect. 3.1): they do not guarantee to prove equiv-
alence, but they can be used in practice. They can be ex-
ploited to find anomalies without false positives. Moreover,
for some formal notations (like feature models), equivalence
checking is feasible by using tools like SAT/SMT solvers.

Finally, quality may be not formally defined and its
measurement may require some human intervention. For
instance, readability in general can be judged only by human
experts, although some proposals exist to automatize its
measurement [9]. Our approach is suitable when the quality
between two artifacts can be easily compared.

We cannot exclude that some static anomalies for some
artifacts may be not detectable or very difficult to detect by
the proposed technique. However, we have shown that our
proposal applies to several types of anomalies/qualities and
a wide variety of artifacts. We plan to investigate other types
of anomalies and artifacts and to see if our approach is still
viable. We have already performed some initial experiments
with other classes of artifacts. We have started to investigate

anomalies in the context of formal verification (e.g., anoma-
lies for specifications of the NuSMV model checker [2]),
and defects of combinatorial testing models [3].

5. Conclusions

Equivalent mutants are usually seen as a drawback in
mutation analysis. In this paper, we have shown that they
can also be seen as an opportunity, since they may be
used to discover static anomalies of software artifacts, i.e.,
anomalies that can be removed without affecting the artifact
semantics. We have shown that our proposal is applicable to
different kinds of software artifacts as, for example, source
code, Boolean expressions, and feature models.

References

[1] K. Aggarwal, Y. Singh, and J. Chhabra. An integrated measure of
software maintainability. In Reliability and Maintainability Sympo-
sium, 2002. Proceedings. Annual, pages 235-241, 2002.

[2] P. Arcaini, A. Gargantini, and E. Riccobene. Using mutation to
assess fault detection capability of model review. Software Testing,
Verification and Reliability, pages n/a—n/a, 2014.

[3] P. Arcaini, A. Gargantini, and P. Vavassori. Validation of models
and tests for constrained combinatorial interaction testing. In The
3rd International Workshop on Combinatorial Testing (IWCT 2014)
- ICST, pages 98-107, 2014.

[4] P. Arcaini, A. Gargantini, and P. Vavassori. Generating tests for
detecting faults in feature models. In International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 2015.

[S] E. Bagheri and D. Gasevic. Assessing the maintainability of software
product line feature models using structural metrics. Software Quality
Journal, 19(3):579-612, Sept. 2011.

[6] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and
Implementation, PLDI °01, pages 203-213, New York, NY, USA,
May 2001. ACM.

[71 D. Batory. Feature models, grammars, and propositional formulas. In
H. Obbink and K. Pohl, editors, Proceedings of the 9th International
Conference on Software Product Lines, volume 3714 of Lecture Notes
in Computer Science, pages 7-20. Springer-Verlag, 2005.

[8] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis
of feature models 20 years later: A literature review. Information
Systems, 35(6):615-636, 2010.

[9] R. Buse and W. Weimer. Learning a metric for code readability.
Software Engineering, IEEE Transactions on, 36(4):546-558, July
2010.

[10] Z. Chen, T. Y. Chen, and B. Xu. A revisit of fault class hierarchies in
general boolean specifications. ACM Trans. Softw. Eng. Methodol.,
20(3):13:1-13:11, Aug. 2011.

[11] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler
techniques for code compaction. ACM Trans. Program. Lang. Syst.,
22(2):378-415, Mar. 2000.

[12] L. E. Deimel, Jr. The uses of program reading. SIGCSE Bull.,
17(2):5-14, June 1985.

[13] L. Deng, J. Offutt, and N. Li. Empirical evaluation of the statement
deletion mutation operator. In Software Testing, Verification and
Validation (ICST), 2013 IEEE Sixth International Conference on,
pages 84-93. IEEE, 2013.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

B. J. Grun, D. Schuler, and A. Zeller. The impact of equivalent
mutants. In The 4th International Workshop on Mutation Analysis
(Mutation 2009) - ICST, pages 192-199. IEEE, 2009.

M. Harman, R. Hierons, and S. Danicic. Mutation testing for the
new century. chapter The Relationship Between Program Dependence
and Mutation Analysis, pages 5-13. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. le Traon.
Assessing software product line testing via model-based mutation:
An application to similarity testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2013 IEEE Sixth International
Conference on, pages 188-197, March 2013.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon.
Towards automated testing and fixing of re-engineered feature models.
In Proc. of the 2013 Int. Conf. on Software Engineering, ICSE *13,
pages 1245-1248, Piscataway, NJ, USA, 2013. IEEE Press.

R. Hierons, M. Harman, and S. Danicic. Using program slicing
to assist in the detection of equivalent mutants. Software Testing,
Verification and Reliability, 9(4):233-262, Dec. 1999.

Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649-678, Sept. 2011.

R. Just, M. D. Ernst, and G. Fraser. Efficient mutation analysis by
propagating and partitioning infected execution states. In Proc. of
the 2014 International Symposium on Software Testing and Analysis,
ISSTA 2014, pages 315-326, New York, NY, USA, 2014. ACM.

K. Kapoor and J. P. Bowen. Test conditions for fault classes in
Boolean specifications. ACM Transactions on Software Engineering
and Methodology, 16(3):10, 2007.

M. Kintis, M. Papadakis, and N. Malevris. Isolating first order
equivalent mutants via second order mutation. In Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International
Conference on, pages 701-710, April 2012.

L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala. Overcoming
the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation. Software Engi-
neering, IEEE Transactions on, 40(1):23-42, Jan 2014.

E. S. Mresa and L. Bottaci. Efficiency of mutation operators and
selective mutation strategies: an empirical study. Software Testing,
Verification and Reliability, 9(4):205-232, 1999.

S. Nica and F. Wotawa. Using constraints for equivalent mutant
detection. Electronic Proceedings in Theoretical Computer Science,
86:1-8, July 2012.

A. J. Offutt and W. M. Craft. Using compiler optimization techniques
to detect equivalent mutants. Software Testing, Verification and
Reliability, 4(3):131-154, 1994.

A. J. Offutt and J. Pan. Automatically detecting equivalent mutants
and infeasible paths. Software Testing, Verification and Reliability,
7(3):165-192, 1997.

A. J. Offutt and R. H. Untch. Mutation testing for the new century.
chapter Mutation 2000: Uniting the Orthogonal, pages 34—44. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

V. Okun, P. E. Black, and Y. Yesha. Comparison of fault classes
in specification-based testing. Information and Software Technology,
46(8):525-533, 2004.

D. Schuler and A. Zeller. Covering and uncovering equivalent
mutants. Software Testing, Verification and Reliability, 23(5):353—
374, 2013.

A. M. R. Vincenzi, E. Y. Nakagawa, J. C. Maldonado, M. E. De-
lamaro, and R. A. F. Romero. Bayesian-learning based guidelines
to determine equivalent mutants. International Journal of Software
Engineering and Knowledge Engineering, 12(6):675-689, 2002.

X. Yao, M. Harman, and Y. Jia. A study of equivalent and stubborn
mutation operators using human analysis of equivalence. In Proceed-

ings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 919-930, New York, NY, USA, 2014. ACM.

	Introduction
	Detecting Static Anomalies
	Using mutation to detect static anomalies

	Static anomalies in software artifacts
	Source code
	Source code static anomalies

	Boolean expressions
	Boolean expressions static anomalies

	Feature models
	FMs static anomalies

	Threats to validity
	Conclusions
	References

