
epop: An Eclipse-based Extensible
Research Evaluator

Paolo Arcaini1, Angelo Gargantini2, and Elvinia Riccobene1

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
{paolo.arcaini,elvinia.riccobene}@unimi.it

2 Dip. di Ing. dell’Informazione e Metodi Matematici, Università di Bergamo, Italy
angelo.gargantini@unibg.it

Abstract. The research evaluation process is becoming nowadays of
critical importance since public and private institutions use results of
this process to decide research funds allocations, promotions, and hiring
positions. For this purpose, several data sources are available with dif-
ferent features, and different degree of openness, accuracy, completeness,
and cost. It would be desirable having a tool able to integrate these data
sources for comparison and measurement, possibly based on a rich and
extensible set of research evaluation indexes.
In this paper, we present epop, an Eclipse based tool for research evalu-
ation, developed by exploiting the Rich Client Platform. epop is a multi-
platform, open and free software. It can access multiple data sources,
and it provides different research evaluation metrics. epop can be easily
extended by exploiting the plugin feature of the Eclipse platform in order
to integrate new data sources and new research evaluation indexes.

1 Introduction

Public and private universities are lately undergoing to a thorough evaluation
process of their research results. National agencies and bodies, like the Agenzia
Nazionale di Valutazione del sistema Universitario e della Ricerca (ANVUR) [1]
in Italy, the Research Assessment Exercise (RAE) [4] in UK, the Performance
Based Research Funding (PBRF) program [3] in New Zealand are invested with
increasing responsibilities in deciding funds allocations and grants to projects
and individual researchers.

Because of the importance of the evaluation process, these agencies tend to
collect as most data as possible and, while peer reviews are still considered the
most accurate means of evaluation, they lean toward performing (part of) the
evaluation in an automatic way, meanly for cost and time constraints. For this
reason, there is an increasing demand of automatic tools and data repositories
that should make the process outcome predictable, verifiable, accurate, repeat-
able, and as objective as possible.

This tendency rises several issues: how to select and rate data sources, how to
aggregate the information coming from multiple sources and how to measure the
quality of the research. Moreover, a parallel goal of this activity is to provide the



researchers with tools for the auto-evaluation of their activity in order to better
address their research efforts and to permit a pre-evaluation of their curricula.

During these years, several data sources have become available with different
degrees of openness, accuracy, completeness, and cost. For instance, it is well
known that Google Scholar [2], a free service provided by Google, provides an
avenue for more transparency in tenure reviews, funding and other science policy
issues, as it allows citation counts, and analyses based thereon, to be performed
and duplicated by anyone [9]. However, other services, like the Web of Science
provided by Thomson ISI [6], which is only available to selected and paying
academic institutions, may provide more accurate and reviewed information.

Similarly, metrics and measures used in the evaluation process are continu-
ously devised by researchers in order to increase the accuracy and precision of
the evaluation process. For instance, while the number of publications gives an
immediate easily understandable measure, most researchers retain more accurate
the h-index [10] since it provides a measure of how the work of the researcher
is considered in the research community. More complex measures can take into
consideration also the period of time during which a researcher has published
his/her papers. Moreover, many data providers and research indexes are tailored
to specific research fields.

For these reasons, a tool that permits to search over several data sources at
the same time, to compute several research indexes, and to compare the obtained
results would be useful.

In this paper, we present an Extensible Publish or Perish tool – epop. It
is based on Eclipse technologies and exploits the Rich Client Platform (RCP).
epop is a multi-platform, open and free software. It can access several data
sources, and it provides different research evaluation indexes. epop can be easily
extended by exploiting the plugin feature of the Eclipse platform in order to
integrate new data sources and new research evaluation indexes.

Although epop in its current stage is the result of the author efforts, it could
become a project of the Italian eclipse community where professors and students
(e.g. those participating to the ETC project) contribute to add new plugins, new
features, and fix the bugs.

In Sect. 2, the paper presents a list of desired features epop has to have.
Sect. 3 describes epop as an Eclipse RCP platform, and introduces the suitable
extension points, together with their implementation. Sect. 4 presents the overall
epop architecture and discusses the testing activity. How to use epop is described
in Sect. 5. Sect. 6 presents some related work. Sect. 7 concludes the papers
outlining some future improvement of the platform.

2 epop Goals

The main goal of epop is to provide researchers and academic institutions with
a flexible tool for research evaluation. We have identified the following desired
features. epop wants to be:

2



free: at zero cost for users who do not have to pay for its usage and who are
not restricted from giving it away to anyone else.

open: distributed under an open source license. Indeed, it is distributed under
the EPL licence. The user can read the code and check how queries are per-
formed and data processed. This is particularly important, since malicious
programmers could modify the data about themselves and provide false in-
formation about others.

multi platform: running on any operative system. Indeed, it is written in Java
and it is based on Eclipse. It can run on any machine OS with a JRE and the
SWT graphical widgets. Currently it works on Windows, Mac, and Linux.

multi sources: accessing several research data sources. Indeed, every data source
is a plugin. New data sources can be easily included by using the extension
mechanism of Eclipse RCP. This fosters data completeness and accuracy.
There are many bibliographic databases3 with different degrees of complete-
ness and precision. For instance, Google scholar is widely used, easily acces-
sible, and rich of information, but it is not very accurate.

multi metrics: different evaluation indexes have to be available for use and
comparison. Basic metrics are already included in epop, but researchers may
introduce new ones. Indeed, in epop, a metric is just a plugin (extension in
the terms of RCP).

easily extensible: new data sources and new evaluation metrics have to be
easily added to the framework. This is possible in epop thanks to the plugin
extension mechanism supported in Eclipse.

client-based: information have to be directly retrieved from the data sources
without any intermediate server. Although web server-based applications
(like QuadSearch4 and ResEval5) seem more usable, since they can be ac-
cessed from any web client (mobile, tablet, and so on), and more easily
maintainable, since no updates of clients are necessary, building a server
that collects the data from bibliographic servers and re-exports them may
be against the license of use of the bibliographic server6. For instance, the
web server may expose data that a user has no rights to access. A client-
based application, instead, gets the right from its users, and for copyright
purposes it is not different from a normal web client. epop has been designed
as a client-based application in this sense.

easily updatable: updating the application (or part of it) upon improvements
or extensions of data sources and/or evaluation indexes should be possible
in an automatic way via Internet. In the present version, epop lacks of this
feature that is currently left as future improvement.

3 See http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_
engines

4 http://quadsearch.csd.auth.gr/index.php?s=2
5 http://project.liquidpub.org/reseval/
6 Google scholar term of service prohibits automatic searches like those coming from
other servers

3

http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines
http://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines
http://quadsearch.csd.auth.gr/index.php?s=2
http://project.liquidpub.org/reseval/


Fig. 1. Extensions of RCP extension points

3 epop as an eclipse RCP Application

The Eclipse platform, that is essentially a set of plugins, has been designed in a
way that permits to build any client application (not necessarily an IDE) simply
reusing its components. The Rich Client Platform (RCP) is the minimal set of
plugins that is needed to build a rich client application: only two plugins are
required, org.eclipse.ui and org.eclipse.core.runtime. In addition to the
two core plugins, other plugins can be used to add several functionalities to the
application (e.g., Help UI, Update Manager, etc.).

3.1 Reusing eclipse graphical widgets and RCP extension points

In order to build epop we have implemented some extensions of several classical
extension points of RCP (see Figure 1). The extension of org.eclipse.core.-
runtime.applications is used to identify the entry point of the application.
The extension of org.eclipse.ui.perspective, instead, is used to define the
layout of the application. The extension of other extension points permits to
define menus, views, and so on.

3.2 Definition of extension points

The extension point mechanism of Eclipse permits to build applications in which
components are loosely coupled, making it easy to add/remove/replace them.

A plugin declares what are the portions of its functionality that can be ex-
tended (or customized) by defining some extension points. An extension point

4



Fig. 2. Extension point mechanism

declares a contract (a combination of XML and Java interfaces) that the plugins
that want to extend it must satisfy in their extensions. One can think of an
extension point as a port – an entry point for other plugins to offer services. An
extension is a plug that connects to the right port. An extension point defines a
contract between the application and the service provider introduced as plugin.
The extension implementation is the actual service which will be added to the
application by using the plugin mechanism of eclipse.

There are several benefits from this architecture. New plugins can be dy-
namically added and removed from the application without recompiling them.
Third-party tools can be easily added to the application by registering them as
extensions. A plugin includes some descriptive information and the application
extension point can decide how to use it. For instance, a plugin can declare
to support a feature and the application can decide if it is worth loading the
extension or not. The development of a plugin is strongly decoupled with the
development of the application, making easy for third-parties to contribute to
the framework.

Very often an extension point introduces a Java interface (or abstract class)
which must be implemented by the extensions. Figure 2 shows the structure
of the extension point DataProvider defined in epop. It defines the abstract
class DataProvider declaring the methods necessary for any data provider. A
plugin (X in Fig. 2) must define a class (XDataProvider) implementing the
required interface in order to extend the application with a new data provider.
The application will become aware of the new provider and will be able to create
and call instances of that class when needed.

This mechanism permits to build applications that can be extended after
their deployment, also by individuals/companies different by the developer who
defined the extension point.

In epop we have declared two extension points:

– org.epop.dataprovider permits to add new data sources where to retrieve
information about the researcher; actually we have extended it with exten-

5



Fig. 3. epop – Extension points definition

sions for the data sources Google Scholar, Microsoft Academic Search and
Scopus, as described in Section 3.3.

– org.epop.measure permits to add new metrics for the evaluation of the
researcher; actually we have provided extensions for all the metrics described
in Section 3.3.

Figure 3 shows the definition of the extension points.

3.3 Implementation of epop extensions

Data providers. epop can currently gather data from the following data
providers:

Google Scholar It is a free search engine developed by Google. It indexes schol-
arly literature of different disciplines and published in different formats (both
online and offline documents are indexed). It indexes journal articles, tech-
nical reports, preprints, theses, books, and other documents, including web
pages that are deemed to be scholarly. It ranks the results using a ranking
algorithm that weighs the full text of each article, the author, the publication
in which the article appears, and how often the piece has been cited in other
scholarly literature7.

Microsoft Academic Search It is a free search engine developed by Microsoft
Research. It covers different disciplines, around 38 million publications and
19 million authors. The order of results is based on the number of citations.

Scopus It is a bibliographic database containing abstracts and citations for
academic journal articles. It is owned by Elsevier, an international publisher
of scientific journals, and is available by subscription. Searches in Scopus
incorporate searches of scientific web pages through Scirus, another Elsevier
product, as well as patent databases.

7 http://scholar.google.com/scholar/about.html

6

http://scholar.google.com/scholar/about.html


Metrics. epop implements the following common measures:

Number of publications It is the total number of documents retrieved for
the specified author.

Overall citations count It is the sum of the citations received by each docu-
ment written by the searched author.

Average number of citations per publication It is the ratio between the
overall citations count and the number of publications.

h-index It is the Hirsch index, described in [10]. Basically, a scholar with an
index of h has published h papers each of which has been cited by others at
least h times.

g-index It was introduced by Leo Egghe in [7]. Given a set of articles ranked in
decreasing order of the number of citations that they received, the g-index is
the (unique) largest number such that the top g articles received (together)
at least g2 citations.

Signal to noise ratio It is the ratio between the number of publications that
contributes to the computation of h-index and g-index (i.e., those that have
received at least one citation), and the total number of publications. The aim
of this metric is to somehow estimate the quality of the work of a researcher
compared to the number of publications he/she wrote.

Moreover, the following new measures have been introduced:

Academic age Such indicator is sometimes used in combination with the pre-
vious indicators to take into consideration also the period of time during
which the researcher has written the papers under consideration. Different
interpretations exist for this indicator. The first interpretation considers the
academic age as the time between the first and the last publication (active
academic range). The second interpretation, instead, considers it as the time
between the first publication and the current year (simple academic age).
The first interpretation should be used for considering the career of a retired
researcher, so to not invalidate the results because of the years after his/her
retirement during which he/her has not published anymore. The second in-
terpretation, instead, should be used to evaluate active researchers.

m-index It is the h-index divided by the academic age [10]. It is also called
m-quotient.

Optimal m-index It is a pair of indexes (x, y) where x is the maximum m-index
considering only the publications of the last y years. This is useful when one
wants to maximize his/her m-index by limiting the pasts years for which
he/she considers the publications.

hc-index The Contemporary h-index was proposed by Antonis Sidiropoulos, et
al. [12]. It weights each cited article, giving less weight to older articles.

NPapers 10y The number of papers published in the last 10 years.
Citation rate It is the number of citations divided by the academic age.

Figure 4 shows the definition of the extensions to the extension point org.-
epop.measure.

7



Fig. 4. Extension points definition

4 Overall architecture

Fig. 5 shows the architecture of epop. We have organized the application as a set
of plugins, each defined in its own eclipse project, depicted with boxes in the Fig-
ure. The epop.core is the core plugin in which the extension points are defined. It
also contains the definition of the classes used by all the others plugins (like the
classes for Paper, List of papers, Measure, and so on). The core has no dependen-
cies with other plugins, except the eclipse runtime component. The basic research
indexes introduced by epop are defined in the epop.meausure plugin. The plugins
that extend the data provider extension point, for the three main data sources
defined in epop, are epop.googlescholar, epop.msacademic, and epop.scopus. In
order to retrieve and properly parse data from the their sources, they use two
auxiliary libraries, namely the apache.httpclient and jerico.htmlparser, which are
organized as plugins as well. The top plugin, epop.application, defines the ap-
plication with the menus, views, and dialogs. It depends, besides all the other
plugins, on org.eclipse.ui.

8



Fig. 5. epop Plugins and architecture

4.1 Testing epop

Since we are building a software that extracts sensitive information, it is impor-
tant to test it deeply. We provide a set of tests that give us enough confidence
that the written application is correct. We can not write tests checking the exact
values of some metrics, since these values can change over time; however we can
check that the returned values are in a given range.

Since the inputs used in the tests are names of researchers and the expected
outputs are values related to authors’ research (e.g., number of publications,
h-index, . . . ), we do not want to add the inputs in clear text, since it could be
awkward for them. So, we add the inputs in ciphertext, so that crawlers and/or
users can not extract sensitive information simply browsing the code.

However, since we want to show that we do cheat about the test results, we
have added the password used to encrypt the inputs directly in the code. In this
way, anyone can download the code, decrypt the inputs and verify that we are
not faking the results.

Code 1 shows a fragment of a JUnit test code in which we check that the
number of papers written by one the authors of this paper is greater than 100.

5 Using epop

epop can be downloaded from the Download section at http://code.google.
com/a/eclipselabs.org/p/epop/. epop does not need to be installed. You just
have to download the compressed file for your target platform, unzip it wherever
you want in your filesystem, and run the epop executable.

The starting screen of the epop application is shown in Fig. 6. The user can
specify an author name in a proper text field and select the data sources he/she
wants to use.

The output of the search is shown in different tabs, one for each data source,
displaying the title of the paper, the year, where it has been published, and
the number of citations. Moreover, a further tab shows a summary of all the
results obtained from the different data sources: some papers, indeed, could be
provided only by some providers, and it is possible that, for a particular paper,

9

http://code.google.com/a/eclipselabs.org/p/epop/
http://code.google.com/a/eclipselabs.org/p/epop/


package org.epop.dataprovider.googlescholar;

import org.junit.Test;
...

public class GoogleScholarProviderTest {

@Test
public void testRunQuery() throws Exception {

getListPapers("ppGDSF/2cu7+/mZxO8+aPwoO7En2RqZhGH4jXUi0Aq0=", 100);
}

private void getListPapers(String authorNameCrypted, int numPapers) throws Exception {
Query q = new Query(StringCipher.decrypt(authorNameCrypted));
GoogleScholarProvider gs = new GoogleScholarProvider();
List<Paper> res = gs.runQuery(q);

// actual test: it checks that there are at least numPapers and
// that, for each paper, all the necessary information are provided
GetHTMLUtils.checkPapers(numPapers, res);

}
}

Code 1. Test case with ciphered input

some fields provided by a provider are more accurate than those provided by
another provider. An example of search result is shown in Fig. 7.

6 Related work

The tool that inspired the current work is Publish or Perish [8], a program that
retrieves data from Google Scholar. The tool has several disadvantages: a) it
uses only Google Scholar as data provider, without providing a way to add new
data sources; b) it is closed source, so it is not possible to inspect the code to
check that it does not fake the results; c) it is not easily portable (e.g., in order
to be used in Linux it requires Wine, a tool that permits to execute Windows
programs in Linux).

Scholarometer [5] is a plugin for Firefox and Google Chrome that permits
to easily query Google Scholar. Since such browsers are available for any OS,
it is more portable than Publish or Perish. Scholarometer requires to tag each
query with one or more discipline names so that the developers of Scholarometer
can collect data about the various disciplines: these collected data will be made
publicly available. The process of tagging is quite annoying for the user who has
to look for a proper tag among a set of predefined tags or define a new one. The
data gathered from Google Scholar upon a user query are previously parsed on
the servers of Scholarometer and then shown to the user. Since the code running
on the servers is not available (just the code of the plugin is available), there is
still the problem of how to guarantee that the data are not modified in malicious
ways.

ResEval [11] is a web application having similar goals of epop. It permits
to evaluate individual researchers and groups (Group Comparison Tool). Like

10



Fig. 6. epop: Welcome screen

our tool, it relies on several sources, and provides an easy way for defining
and computing custom metrics. However, neither the web tool nor the code
are currently accessible.

7 Summary and Plans

We here present epop, an Eclipse based tool developed to address the current
request of tools able to support the research evaluation process in a flexible,
complete and more accurate way w.r.t. those provided by the existing applica-
tions.

epop has been developed by exploiting the Rich Client Platform, and it has
been designed as a multi-platform, open and free software. It can access multiple
data sources, and it provides different research evaluation metrics for research
results comparison. epop can be easily extended, either as data sources and as
evaluation indexes, thanks to the the plugin feature of the Eclipse platform.

The major weakness of epop is that, in order to retrieve information from
the data sources, we must parse html files that could sometimes be not well
structured or change their format without notice. Moreover, some sources could
provide only partial information: Google Scholar, for example, shows only a
portion of the venue where the paper has been published if this is too long (just
if the author does not have a google scholar account).

epop can be improved in several directions that we here shortly describe and
that are left as future work.

11



Fig. 7. epop: Results view

A first improvement is to make epop easily and automatically updatable,
according to the feature described in Sect. 2.

A further plan is to add to epop the possibility to summarize the co-authors
of a searched author. For each co-author c we would like to provide different
indicators: (1) the number/percentage of papers written in collaboration with
c; (2) the average number of citations obtained considering only the papers in
which c is a co-author; (3) the h-index/g-index obtained considering only the
papers in which c is a co-author.

Moreover, we would like to provide a visual representation of some indexes
(e.g., an histogram showing the number of paper per year) to improve the us-
ability of the tool.

epop could be useful also for publishing planning: an author could decide
what to cite and in which journal to submit a paper depending on the impact
over her/his publication measures.

References

1. Agenzia Nazionale di Valutazione del sistema Universitario e della Ricerca (AN-
VUR). http://www.anvur.org/.

2. Google Scholar. http://scholar.google.com/.
3. Performance Based Research Funding (PBRF). http://www.tec.govt.nz/

Funding/Fund-finder/Performance-Based-Research-Fund-PBRF-/.

12

http://www.anvur.org/
http://scholar.google.com/
http://www.tec.govt.nz/Funding/Fund-finder/Performance-Based-Research-Fund-PBRF-/
http://www.tec.govt.nz/Funding/Fund-finder/Performance-Based-Research-Fund-PBRF-/


4. Research Assessment Exercise (RAE). http://www.rae.ac.uk/.
5. Scholarometer. http://scholarometer.indiana.edu/.
6. Web of Science. http://thomsonreuters.com/products_services/science/

science_products/a-z/web_of_science/.
7. L. Egghe. Theory and practise of the g-index. Scientometrics, 69(1):131–152, 2006.
8. Anne-wil Harzing. Publish or Perish. http://www.harzing.com/pop.htm.
9. Anne-wil Harzing and Ron V. Wal. Google Scholar: the democratization of citation

analysis? Ethics in Science and Environmental Politics, pages 1–27, 2007.
10. J. E. Hirsch. An index to quantify an individual’s scientific research output. Pro-

ceedings of the National Academy of Sciences, 102(46):16569–16572, October 2005.
11. Muhammad Imran, Maurizio Marchese, Azzurra Ragone, Aliaksandr Birukou,

Fabio Casati, and Juan Jose Jara Laconich. ResEval: An open and resource-
oriented research impact evaluation tool. TR DISI-10-016, Department of Infor-
mation Engineering and Computer Science. University of Trento, 2010.

12. Antonis Sidiropoulos, Dimitrios Katsaros, and Yannis Manolopoulos. Generalized
h-index for disclosing latent facts in citation networks. CoRR, abs/cs/0607066,
2006.

13

http://www.rae.ac.uk/
http://scholarometer.indiana.edu/
http://thomsonreuters.com/products_services/science/science_products/a-z/web_of_science/
http://thomsonreuters.com/products_services/science/science_products/a-z/web_of_science/
http://www.harzing.com/pop.htm

	epop: An Eclipse-based Extensible Research Evaluator

