
On the downscaling of the Jazz platform

Experimenting the Jazz RTC platform in a teaching course

Angelo Gargantini1 and Guido Salvaneschi2 Patrizia Scandurra1

1 Università degli studi di Bergamo,
2 Politecnico di Milano

Abstract. We believe that students should use collaborative and project
management tools similar to those they will encounter in their profes-
sional life. Moreover, we believe that Universities could promote and
encourage the use of best practices supported by efficient tools by teach-
ing students their use. IBM Rational Team Concert (RTC) is a good
candidate to be used as industrial tool in University courses, since it
supports many best practices in a complete collaborative development
environment providing planning, source code management, work item
management, and build management and it has been already success-
fully used in industries and software houses. However, we experienced
that RTC is too rich in the features it offers and this makes its adoption
very expensive in terms of students and teachers time and effort. For
this reason we have studied and present in this paper a simplified use of
RTC which consists in reducing the concepts (at ontological level) and
the features were offered to the students (at practical level).

1 Introduction

In the first courses of computer science faculties students are widely exposed to
the use of programming languages such as C/C++, Java or Python. In many
cases the following courses give them a higher level approach through the study
of design patterns, software architectures and processes and the other common
topics of the software engineering field.

The abstractions taught in these courses are fundamental for the ability of
students of analyzing problems and be able to project suitable solutions. While
these are the conceptual tools that probably will make the difference in their
professional career, many of the tools which are widely used in the industrial
production of software are usually neglected in graduate courses. This is the case
of tools that support project planning and monitoring, task assignment and team
collaboration, and process adoption enforcement. Sometimes even configuration
management systems are presented only in a theoretical lesson and their use
is not subsequently imposed as a standard practice in software development in
university projects.

On the other hand, we found that also many software companies, especially
small enterprises like those operating near our University, are reluctant to adopt



2

best practices (like configuration management and structured collaborative envi-
ronment) because they estimate that the cost of their adoption, even if supported
by tools, will not compensate the gained efficiency. In this scenario, the Universi-
ties can promote the adoption of these best practices by teaching to the students
the concepts at conceptual level and the use of tools at practical level, and in
this way, lower the cost of their use.

We believe that the adoption of a collaborative development environment
can be an effective way of teaching source code management in parallel with
planning and process monitoring topics. One of the issues of introducing these
type of tools in a course is that they are usually dimensioned for industrial-size
applications. Being conceived for the software development related to an entire
product line, they allow for the management of several teams, multiple time
lines and different releases. This complexity constitutes a barrier for students
who have to deal with a slow learning curve in order to reach a point in which
they can effectively take advantage of the tool.

We have experimented the use of Jazz Rational Team Concert (RTC) [2,
6, 5] in a graduate project course which integrates some frontal lessons of ad-
vanced programming and software engineering topics. We spent a decisive effort
in reducing the complexity of the tool by simplifying the ontological model of
the entities to which the students are initially exposed. In our opinion this is
essential to reduce the barrier to entry and make a tool like this suitable for an
introductory course. While this process by no means made Jazz usage trivial,
we succeeded in the goal of achieving a good familiarity of the students with
the tool. This was mostly due to Jazz flexibility which allows for its adoption in
huge projects but makes it usable with some care also for very small works.

This paper is organized as follows. Section 2 provides a brief overview of RTC
and its features. Section 3 presents the conceptual model of the RTC features and
their simplifications we adopted. Finally, Section 4 reports some related work,
while Section 5 presents some conclusions and describes our future directions.

2 Elements of collaboration in the Jazz RTC environment

RTC is a collaborative development environment which provides support for
project planning, source code and build management, task assignment, project
health monitoring and reporting. The tool also integrates a process support.

RTC is part of a suite of IBM tools for team collaboration such as Ratio-
nal Quality Manager which is a test management environment for test planning,
workflow control, tracking and reporting, and Rational Requirements Composer,
an environment for requirements elicitation and definition. RTC is released ei-
ther as a server-side repository with a web interface, a build system engine and
as a development environment integrated with the Eclipse IDE [1] or as a Visu-
alStudio [3] plugin.

An RTC repository allows us to define different Project Areas to which
users who collaborate to the same project subscribe. It is also possible to organize
developers in separate teams assigning a Team Area to each of them. Tasks



3

(development activities or bug fixes, etc) are assigned to the users identifying
Work Items. The overall project evolution is monitored through time lines which
establish milestones and releases.

In addition to the support for project management, RTC offers all the tradi-
tional functionalities of a configuration management system, such as versioning,
patch application, conflict resolution and code locks. It is possible to config-
ure a separated server for long-running builds, fully integrated with the RTC
environment.

As a general consideration, we observe that many aspects of RTC are thought
for very large scale projects. For example, the support of many collaborat-
ing teams with different time lines for the same project is commonly used for
parallel development, such as, for example, in activities where some develop-
ers are working on implementing the features of the next release of a product
while other teams are involved in the fixing of bugs of the current product re-
lease. Another example of this large scale approach is given by the assignment
of tasks: a developer retrieves its tasks by querying the system through a set
of selection conditions. This schema applies well in an environment with a huge
number of tasks and an analyst in charge of the project planning that assigns
the different tasks to the developers and whose role is in principle different from
that of the developers.

3 Downscaling the Jazz RTC environment

In this section, we expose the choices that we made for adopting Jazz as a
collaborative framework for a graduate project course. Since the tool is very
powerful – it exposes a huge set of entities with complex semantics and relations
among them – we decided to make a set of key simplifications in order to make
it usable by the students with a reduced initial effort. Our starting point was
the development of a metamodel3 of the RTC concepts to adopt and simplify.

We tried to simplify as much as possible relations among concepts, for exam-
ple by reducing in some cases n-ary relations (with multiplicity 1..n) to unary
relations. These relations simplifications are clearly documented in the RTC
metamodel (see the following subsections) by grey boxes indicating the new car-
dinality. We removed non necessary entities or made their presence transparent
to the students (e.g. by adopting a single default category when a hierarchy of
nested categories could be defined). In the case we really removed an entity or
a relation, we added in the metamodel a grey cross on the class or association
representing the concept; instead, when we wanted only to make an entity a bit
transparent to students, the entities are shown in the diagrams with an empty

3 In software engineering, metamodeling is the construction of a collection of concepts
(things, terms, etc.) within a certain application domain. A model is an abstraction
of phenomena in the real world; a metamodel is yet another abstraction, highlighting
properties of the model itself. In practice, metamodeling implies the development of
UML-like class diagrams to describe and analyze the relations between concepts.



4

cross on them. In some cases, a simplification is made by restricting the possible
instances of an entity; this is only reported in the description text as well.

We categorize RTC concepts in three perspectives: Work Organization, for
concepts related to the developers’ work organization; SW Artifacts Manage-
ment, for concepts related to the management activities of the SW artifacts
being produced; and Development Process, for concepts pertaining to the de-
velopment process. In particular, we adopted a simplified Agile Model Driven
Development process [4] whose schedule organization was modeled inside Jazz.
The concept of process in Jazz is somehow complex, involving a huge set of
general choices such as defined roles, access rights associated to each role, a de-
fault timeline or available work item types. To this purpose, we exploit the Jazz
Simple Team Process which allows team members to perform any kind of mod-
ifications denying anything to outsiders and defines a very simple set of default
values which best suites our needs.

3.1 Work Organization

Fig. 1 shows a fragment of the RTC concepts related to the Work Organization
perspective. First of all, we decided to eliminate the concept of team area (see
class TeamArea) which is used in Jazz for organizing a small group of developers
who are in charge of a subset of the whole project. Since projects are quite small,
we decided to remove this intermediate way of aggregating developers. So, in our
case, each project is assigned to a project area and each team of students (users
of the RTC platform) has a dedicated project area which is not accessible by
other teams.

In the general case, users can be associated to an area with different roles.
The common application of this feature is to separate developers who have access
to code modifications, and users who are in charge of planning and monitoring
the evolution of the project allowed to modify plans and task assignments. We
decided to make a strong simplification adopting a unique possible team member
role (as instance of the Role class) which allows for every action inside an area.
For this reason, in the metamodel portion shown in Fig. 1 the multiplicity of
the association ends terminating on the Role entity are reduced to one. This
essentially removes the concept of “role” in our schema, because each user who
is assigned to an area has the team member role inside that area.

Inside Jazz RTC, a work item is the way of keeping track of the tasks and
issues that a team needs to address during the development cycle. Work items
are associated to an area and keep a reference to the user who created them,
while ownership indicates that a certain task is assigned to a specified user.
Developer activities make the state of work items advance. To reflect this, work
items have attributes such as time estimation in order to complete the task, a
severity and priority evaluation, a state value such as new or resolved, and a
type. We decided to keep the set of available work item types small, allowing
only for the Defect, Task and Enhancement types.

Finally, in Jazz it is possible to define work item categories inside a project
area. Categories can be nested and organized in a hierarchy. The aim of categories



5

is to assign a work item to one of them; developers who are interested to a certain
category subscribe themselves to it in order to be notified when the state of an
item belonging to the category changes. We tried to make the concept of work
item category transparent to the students keeping a default root category to
which all the work items belong to. Usually, students are free to organize items
in categories and trigger the notification mechanism on their own.

Fig. 1. RTC metamodel: Work Organization

3.2 SW Artifacts Management

Fig. 2 shows a fragment of the RTC concepts related to the SW Artifacts Man-
agement. Repository workspaces are used in Jazz as a remote copy of the devel-
oper’s work. They can be used for backup and as a source for delivering a change
set to a branch. A developer can own multiple repository workspaces inside the
same repository. We limited each student to a single repository workspace, in-
stead of the many ones that the platform could make available to him or her;
this workspace is used both to backup the work and to deliver later a change set
to a stream.

A single stream acts as a central repository for all the students participating
to the same project. This is related to the fact that we have adopted a single
timeline (see next subsection 3.3) for the project, so the unique repository of the
area is like an instantaneous photograph of the current state of development of



6

the project. This is quite different with respect to the complete functionalities
of Jazz RTC which allows us the adoption of many streams to contain the same
component (read: SW artifact) at different states of development (i.e. in different
versions).

It is common to divide a big project into several components, each of which
exports a subset of the system functionalities and has an explicit interface and
dependencies on the execution context. We decided to extremely simplify this by
making each project constituted of only one component which contains all the
functionalities that the project must implement. This choice basically removes
the original concept of component from the platform, because each versioned
file is assigned to the same component. We believe that this is a bit extreme
choice, being this solution suitable only for very small projects; even if the use
of components in RTC is discouraged because we believe that the presence of
different components makes harder to understand the basics of code versioning
at the beginning, students are encouraged to apply principles of component-
based development to their software artifacts, but this will be not traceable in
RTC. However, experts students can in the end also exploit the RTC component
concept taking advantage of this feature on their own.

Changes to a component are represented in terms of change sets. While a
developer modifies the code inside his or her local workspace, Jazz RTC keeps
track of the differences between the local workspace and the (remote) repository
workspace and adds these modifications to one ore more change sets. A change
set is always associated to only one component. The developer can commit the
change sets to his or her repository workspace, making it synchronized with the
local workspace. With a successive delivery operation, it is possible to apply
the change sets collected in a workspace repository to a stream, sharing the
modifications with other users of the same stream. The history of the change
sets applied to a component is stored inside a repository, so that the sequence
of changes can be inspected and under certain conditions undo operations are
also possible.

In the RTC platform it is possible to take a picture of the state of develop-
ment of a component as “base point” for further use/development by creating a
baseline in the component’s change history. When a component is created inside
a repository it is initialized with an “initial” baseline representing the empty
component before the addition of any change set. We decided to remove the
concept of baseline from our model, as we considered it non essential for our
purposes.

Another concept we decided to remove is the concept of snapshot that is a
repository object including exactly one baseline for each component in a reposi-
tory workspace. This is useful for recreating a workspace configuration which is
considered important. Snapshots and baselines can be delivered in the same way
of change sets and in this sense can be seen as collection of change sets; this is
the reason why in our diagram we have a relation between snapshots, baselines
and change sets.



7

Fig. 2. RTC metamodel: SW Artifacts Management



8

3.3 Development process

As it can be natural in an advanced course, we expect from the students a
decisive analysis effort before the implementation phase. Students are required
to create modeling artifacts that describe their architectural design choices and
even envision several alternatives evaluating the advantages of each solution. For
this reason we believe that a process centered on the use of high-level models
in the UML style, for example, is the best suited for our teaching purposes.
However, the modeling effort should be functional to the comprehension of the
solutions and its result should be immediately applied. These considerations
together with the small size of the teams and the ease of interactions between
students lead us to the choice of an “agile process” that easily allows for simple
management and rapid prototyping.

The AMDD[4] process is the agile version of a model-driven development
process. In a model-driven development process, like the OMG’s Model Driven
Architecture (MDA), extensive models are created and refined throughout the
development to guide the implementation of the final source code (that is possi-
bly generated, at least in part, in an automatic way from models). With AMDD,
models are involved in an agile way by creating and using in particular phases
only those modeling artifacts that are good enough to drive the development ac-
tivity. AMDD is best suited for small and co-located teams, which is a common
case of the students groups in an university project. We adopted a simplified
version of the AMDD process also because we believe this can help in achieving
our twofold goal: on one hand, we want to force the students at using a system-
atic approach to their work, on the other hand we want to provide them an agile
methodology without excessive constraints.

Fig. 3 shows the lifecycle of the AMDD-like development process we adopted.
Each box represents a development activity. Essentially, it comprises the typical
AMDD activities of Envisioning, Iteration Modeling, Model Storming and De-
velopment, organized as follows. The envisioning (iteration 0) includes two main
sub-activities: Requirements Envisioning, for collecting and representing initial
functional requirements (usually by text and use case models), and Architectural
Envisioning, to produce an initial SW architecture model (in terms of UML
component/deployment diagrams) following the component-based development
concepts and principles (components, provided/required interfaces, hierarchical
assembly, reuse, etc.). Then, an arbitrary number of iterations can follow. Each
of such next iterations is organized in three (self-explanatory) phases: Modeling,
Model Storming, and Development & Testing (in parallel). The time indicated
in each box represents the length of an average session. The basic idea is that
perhaps you model for a few minutes then code for several hours.

In order to encode our AMDD process within the RTC tool, we considered
the RTC concepts shown in Fig. 4. In the RTC environment, it is possible to
create different timelines inside each area: in a big project, it is common to have
different time schedules inside a project, such as the timeline for a stable release,
and the timeline for a beta version of a next release. However, the goal of the
students is usually to develop a stable version of their software for the deadline of



9

Fig. 3. AMDD development process adapted from [4]

the exam, which can be easily achieved with a single timeline containing several
intermediate milestones.

Each timeline can contain several iterations, eventually nested, representing
the progressive evolution phases of the project. Inside RTC, plans are used to
manage work items in the context of the given time constraints. Plans are used
to modify work assignments for team members, and, being synchronized with
the status of the work items, they can be used to track the progress of the work.
While it is possible to create many plans for each iteration, we limited this
feature, choosing to associate a single plan for each iteration in the timeline. We
also decided to associate plans only to the lowest level iterations in the timeline
and to limit the type of plans that can be used. In fact, in the RTC environment
it is possible to define not only iteration plans, but also plans associated to a
team release, to a project release, and others. This type of plans are useful for
the high level monitoring of a project progress, after deciding to keep track only
of certain work item types defined as top-level as describing high level tasks. We
decided to simplify these aspects by keeping only the iteration plans which are
used for the fine-grain monitoring of the progress of each iteration.

The screenshot in Fig. 5 shows the RTC timeline of a typical project following
our AMDD process. It can be intended as an instantiation of the metamodeling
concepts represented in Fig. 4. Our AMDD process time schedule structures the
timeline of the project. Students are encouraged to create the timeline in Jazz



10

RTC (see Fig. 5), filling in the tool the iterations and adding open work items
to each iteration as a “todo” list for each phase of the project.

Fig. 4. RTC metamodel: development process perspective.

4 Related work

In this paper, we presented a down-scaling approach of the Jazz RTC platform
experimented during a software design/programming course of the engineering
faculty at the University of Bergamo. We adopted this technique for allowing
students (divided in small teams) to develop and deliver the design/software
artifacts of their project works (assignments for the final exam) in a collabo-
rative and traceable manner. Though the proposed approach applied numerous
simplifications to the original Jazz vision [5], it is advantageous for the obtained
usability of the product and because it helps us to incorporate within the RTC
tool software development best practices on agile planning, traceability, itera-
tive development, management of different releases etc., exactly as we explained
them during theoretical frontal lessons.

Very few papers exist in the literature – see, for example, [9, 8] – on the use of
the Jazz RTC tool at university courses to support teaching software engineering
practices. These papers summarize the objectives and the most visible advan-
tages (similar to ours) obtained using RTC from the teaching point of view; but,
to the best of our knowledge, none of them explain clearly the concepts, simpli-
fications and configurations adopted to downscale the RTC platform. Instead,



11

Fig. 5. The simplified AMDD process within RTC

inspired from the work in [7], we illustrated, trough the metamodeling technique,
in a transparent and systematic way the pruning effects of our downscaling ap-
proach for teaching purposes.

5 Conclusions and future directions

In this paper, we presented the motivations and the work done for downscaling
RTC in order to be used in an academic course. The effort required to under-
stand where RTC could be simplified was remarkable but it has allowed a fair
explanation of the use of the platform in a reasonable time. We hope that the
students will explore other concepts and features during their autonomous use
to prepare the final project of the exam.

At the light of our experience, we found that starting from a very rich tool
with a considerable number of features and try to simplify it, requires a greater
initial effort than the scenario in which the tools is initially very simple and offers
very few functionalities and new concepts and features are later added by means
of plugins. We believe that if RTC offered initially a simple clean environment
which could be enriched by plugins and auxiliary tools, it would have a greater
spread especially among small companies which are not ready to embrace the
entire jazz/RTC philosophy and which still require a long maturity path in order
to adopt all the best practices supported by the tool itself.

The proposed approach allows for its adoption in very small teams, but,
as future work, we aim at refining/revising our technique to further dimension
the RTC platform for students academic-size applications in order to allow for
the management of larger teams by including specific “development roles” and
multiple time lines. We also plan to conduct a series of interviews with students



12

to gather their impression and reactions to Jazz, and to use their experience to
design our next iteration of our downscaling approach.

References

1. Eclipse Project, http://www.eclipse.org
2. IBM Rational Team Concert, http://jazz.net/projects/rational-team-concert/
3. Microsoft Visual Studio, http://msdn.microsoft.com/it-it/vstudio/default.aspx
4. Agile Model Driven Development, http://www.agilemodeling.com/essays/amdd.htm
5. Cheng, L., Hupfer, S., Ross, S., and Patterson, J. Jazzing up Eclipse with collabo-

rative tools. In Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology
Exchange (Anaheim, California, October 27 - 27, 2003). Eclipse ’03. ACM, New
York, NY, 45-49.

6. Frost, R. Jazz and the Eclipse Way of Collaboration IEEE Software, IEEE Computer
Society, 2007, 24, 114-117

7. P. Maresca, A. Cotugno, S. Mignogna, R. Longobardi, A. Donatelli, R. Gangemi.
Business process Eclipse Editor (BEE) Proceedings of the 3rd Italian Workshop on
Eclipse Technologies, Bari, Italy, November 17-18, 2008.

8. A. Meneely and L. Williams. On preparing students for distributed software devel-
opment with a synchronous, collaborative development platform. SIGCSE Bull. 41,
1 (Mar. 2009), 529-533.

9. Jaroslav Prochazka. How Jazz Rocks Teaching Iterative Software Development -
Utilizing IBM Rational Team Concert at the University of Ostrava. CSEDU 2009 -
Proceedings of the First International Conference on Computer Supported Educa-
tion, Lisboa, Portugal, March, 23-26, 2009 - Volume 2, INSTICC Press, 2009


