
CITLAB: a Laboratory for Combinatorial
Interaction Testing

Angelo Gargantini
Dip. di Ingegneria dell’Informazione e Metodi Matematici

University of Bergamo - Italy
Email: angelo.gargantini@unibg.it

Paolo Vavassori
Dip. di Ingegneria dell’Informazione e Metodi Matematici

University of Bergamo - Italy
Email: paolo.vavassori@unibg.it

Abstract—Although the research community around combina-
torial interaction testing has been very active for several years, it
has failed to find common solutions on some issues. First of all,
there is not a common abstract nor concrete language to express
combinatorial problems. Combinatorial testing generator tools
are strongly decoupled making difficult their interoperability and
the exchange of models and data. In this paper, we propose
an abstract and concrete specific language for combinatorial
problems. It features and formally defines the concepts of
parameters and types, constraints, seeds, and test goals. The
language is defined by means of XTEXT, a framework for the
definition of domain-specific languages. XTEXT is used to derive a
powerful editor integrated with eclipse and with all the expected
features of a modern editor. Eclipse is also used to build an
extensible framework in which test generators, importers, and
exporters can be easily added as plugins.

Index Terms—Combinatorial testing model, domain-specific
language, eclipse, XTEXT.

I. INTRODUCTION

Combinatorial interaction testing (CIT) has been an active
area of research for many years. In a recent survey [24] Nie
and Leung count more than 12 research groups that actively
work on CIT area and many other groups and tools are missing
in the count. In a previous survey, Grindal et al. [14] presented
16 different combination strategies, covering more than 40
papers. There are several web sites listing tools and approaches
(like [26]), and publishing benchmarks and evaluations of
tools and algorithms (like [11]). The most studied area in
CIT is the test suite generation, where several research groups
continuously challenge existing algorithms and tools in order
to provide better approaches in terms of execution times,
supported features, and minimality of the produced test suites.
However, even considering only the test generation problem,
the CIT community has failed so far in establishing solutions
for the following issues:
• A common abstract language to model combinatorial

problems with a precise semantics for parameters, values,
their constraints, and related concepts.

• A common concrete syntax or exchange format for tools:
All the CIT generation tools are strongly decoupled
making difficult to switch the use from one tool to another
and minimizing the reuse of information and data already
inserted in one tool.

• The comparison among tools and approaches, an activity
very useful and used in research literature, is therefore

quite unreliable since every user must redefine in its
own language and tool the examples taken from another
tool or from the literature, with possible errors and
misunderstandings.

• Limited assistance in writing the models: very often
generation tools do not offer any editing capabilities
(only a grammar and a parser) and are rarely integrated
in any IDE for programming or design. Very often the
formats accepted by algorithms and tools are quite hard
to understand1.

These issues may make difficult for practitioners the use of
CIT generation techniques and may slow down the research
in this area. Sometimes, designers may prefer a tool or a
technique because it provides an usable graphical or a web
interface instead of searching for the best tool that suites their
needs. For instance, one the most used tools ACTS [1], has
a very nice graphical interface regardless the fact that the
generation methods it supports (IPOG [21] and variants) may
be not suitable for the design of particular combinatorial test
suites since, for instance, its support for constraints is not as
powerful as in others.

Similar difficulties rise for researchers willing to devise a
new CIT technique and compare it with existing ones. In order
to experiment a new test generation algorithm, a researcher
should define a proper grammar and a parser, develop the
libraries to manipulate the model data, and translate the bench-
marks found in literature into the newly defined language.
These activities can be error-prone and quite time consuming
without adding any actual contribution to the real problem of
generating “better” combinatorial tests.

In this paper, we present CITLAB, a laboratory for com-
binatorial testing that tries to address all the aforementioned
issues. CITLAB features:

• A rich abstract language with a precise formal semantics
for specifying combinatorial problems.

• A concrete syntax with a well defined grammar that
allows practitioners to write models and researchers to
share examples and benchmarks written in a "standard"
notation. Besides the concrete syntax given in XTEXT,

1Consider for instance one of the best tools for Constrained CIT, CASA
[12]. CASA accepts only constraints written as a conjunction of disjunctions
over the symbols (CNF), in a quite difficult format to write for humans.

CITLAB provides also an ANTLR grammar and an XMI
interchange format for CIT models.

• A framework based on the Eclipse Modeling Framework
(EMF) which provides tools and run-time support to
(automatically) produce a set of Java classes for com-
binatorial models, along with a set of adapter classes and
utility libraries that enable manipulating combinatorial
problems in Java application using simple APIs. This
allows developers to access combinatorial models inside
their programs and tools.

• An editor integrated in the eclipse IDE for editing combi-
natorial problems. The editor provides users with all the
expected features in a modern programming environment
like syntax highlighting, code completion, run-time error
checking, quick fixes, and outline view.

• A simple EMF meta-model also for combinatorial test
suites.

• A rich collection of Java utility classes and methods,
specifically developed for combinatorial problems in CIT-
LAB, which can be reused for manipulating combinatorial
models and test suites. For instance, CITLAB provides
utility methods for generating all the test requirements for
a combinatorial coverage of strength t, a set of methods
to check if a test suite satisfies all the requirements, and
a set of methods for semantic validation of models and
test suites.

• A framework for introducing new test generation algo-
rithms which can be added to CITLAB as plugins. This
allows researchers to develop new generation techniques
and plug them in the framework without the burden of
defining a grammar, a parser, an abstract syntax tree
visitor, and so on.

• A framework for introducing code translators for import-
ing and exporting models and tests to other notations
based on Model to Text (M2T) or Model to Model
(M2M) transformations. This could facilitate the use of
CITLAB language as language for exchanging models
and benchmarks.

Section II briefly introduces the CIT problem and the
technologies used in our project. Section III introduces and
defines the language, which includes parameters and types,
constraints, seeds, and test goals. A powerful editor can be
derived thanks to the XTEXT tool from the definition of the
language, as explained in Sect. IV. Section V shows how
the eclipse extension framework can be used to define an
extensible platform in which test generators can be added as
plugins. Also importers and exporters can be plugged in the
platform in order to increase the inter-operability among tools.
Section VI presents some plans for future work.

II. BACKGROUND

Combinatorial Interaction Testing (CIT), often called simply
combinatorial testing or combinatorial testing design, aims at
testing the software or the system with a selected combinations
of input values or parameters. There exist several tools and
techniques for CIT. Good surveys on the ongoing research in

CIT can be found in [24], [14], while an introduction on CIT
and its efficacy in practice can be found in [20]. We assume in
this paper that the reader is familiar with the CIT in general.

CIT can be considered a specific application domain for
which developing a domain-specific language is worthwhile.
Domain-specific languages (DSLs) are languages tailored to
a particular problem domain [23] where they are very often
used to model specific problems and solutions. They offer
substantial gains in expressiveness and ease of use compared
with general-purpose programming languages in their domain
of application. DSL development is supported by several tools
and technologies.

XTEXT [30] is a framework for development of program-
ming languages and domain specific languages. The developer
can describe his very own DSL using XTEXT simple EBNF
grammar language and the generator will create a parser,
an AST-meta model (implemented in EMF) as well as a
full-featured eclipse text editor from that. The framework
integrates with technology from eclipse modeling such as
EMF, GMF, M2T and parts of EMFT. Development with
XTEXT is optimized for short turn-arounds, so that adding
new features to an existing DSL is a matter of minutes. Still
sophisticated programming languages can be implemented.
The APIs of the DSL and its specific editor are generated as
eclipse plugins; this important feature permits the development
of tools, related to the DSL, that are fully based on the eclipse-
IDE integration. XTEXT generator uses the special modeling
workflow engine (MWE2) to configure the generator.

XTEXT uses the lightweight dependency injection (DI)
framework Google Guice to wire up the whole language as
well as the IDE components created by its generator. Most
parts of XTEXT are implemented as services. A service is
an object which implements a certain interface and which is
instantiated and provided by Guice. When Guice instantiates
an object, it also supplies this instance with all its dependent
services. This architecture makes XTEXT one of the most
interesting framework for development of DSL.

The DSLs developed using XTEXT can be translated to
other languages or notations. XTEXT 2.0 provides the pos-
sibility to integrate a Model to Text (M2T) code generator.
The code generation is done with Xtend2 that substitutes the
old template language XPand. Xtend2 is a statically-typed
programming language which is tightly integrated with and
runs on the Java Virtual Machine. It is the natural successor
to Xtend which allows to have XPand template syntax as an
expression, in fact it is more Java like than XPand, but also
has some similarities. The introduction of Xtend2 makes the
developer able to choose the model to model transformations
approach in the code generation. It offers in fact a polymorphic
dispatch, extension methods or the template syntax. Xtend files
are directly compiled to Java source code, which means that
the developer does not have to manage byte-code when he
wants to debug a generation process.

III. DEFINITION OF A LANGUAGE FOR CIT PROBLEMS

The first goal of our project is the definition of a domain
specific language for combinatorial problems. We identify four
parts we want to model: the parameters and their types, the
constraints among them, the seeds to be included in the final
test suites, and further test goals defined by the user. Fig.
1 shows an example of combinatorial model, called Phone,
a modified version of an example given in [8]. Constraints,
seeds, and test goals are removed by the example for simplicity
and they will be discussed later in the paper.

A. Parameters and their types
A model for a combinatorial problem consists in several

parameters (at least 2) which can take values in their domain.
To describe a combinatorial problem would be sufficient to
specify the number of variables and their cardinality. Many
papers, like [17], simply use the exponential symbolic notation
xy to model y parameters each of which can take x values.
For heterogeneous alphabets, the notation is extended as
xy1

1 xy2

2 · · ·xyn
n to model yi parameters that take xi values with

i = 1 . . . n .
CITLAB language forces the designer to name parameters

and to specify their types by listing all the values in their
domain. Three kinds of parameter type are introduced:
• Enumerative for parameters that can take a value in a

set of symbolic constants.
• Boolean for parameters that can be either true or false.
• Numerical value for parameters that take any value in

an integer range.
Types can be defined with their name in the Types section to

be used in parameters declaration or can be introduced directly
when declaring a parameter belonging to an anonymous type.
For instance, in Fig. 1 only one type is defined, namely
cameraType. The type of display has no name and it is
considered anonymous. Moreover, we allow the definition of
parameters with a constant value. Note that all the types must
have finite cardinality, and so only ranges are allowed for
numerical parameters.

For instance, the hypothetical product line for smartphones
of Fig. 1 supports three display options (16MC, 8MC, BW)
and the presence of a text email viewer (parameter email-
Viewer). A phone may have two cameras, rear and front,
which can be of two types (2MP or 1MP) or without a camera
(NOC). The textLines denotes the number of lines in the
emailViewer and it is an integer between 25 and 30. The
parameter threshold is a constant with value 27, that may
be used in other expressions (like constraints).

We prefer to require explicit parameter names to facilitate
the modeling of real systems in which parameters have an
actual meaning since they normally refer to actual system
features. Furthermore, explicit names of parameters allow the
specification of constraints and seeds as explained in the
following. Note that the parameter names should not influence
test generation algorithms.

Moreover, we decide to allow the use of parameter types
with names to make more compact and more maintainable

Model Phone
Types:

EnumerativeType
cameraType { 2MP 1MP NOC};

end
Parameters:

Number threshold 27;
Boolean emailViewer;
Range textLines [25 .. 30] ;
Enumerative display {16MC 8MC BW};
Enumerative rearCamera type cameraType;
Enumerative frontCamera type cameraType;

end
Constraints: ... end
Seeds: ... end
TestGoals: ... end

Figure 1. A smartphone example

the models in case many parameters share the same domain.
In the example in Fig. 1, two parameters rearCamera and
frontCamera share the same type cameraType.

Definition of Parameters and Types. A CIT problem is
modeled by a set P of n parameters pi with i = 1 . . . n, where
n > 1 and each parameter has type the domain Di having mi

values, i.e., Di = {di1, . . . , dimi
}. A parameter pi with mi = 1

is a constant.

Definition of Tests and Test Suite. A test or test case is
a function that assigns to each parameter pi a value in Di. A
test suite is a set of of tests.

Sometimes tests are modeled as n-uple of values, assuming
that the parameters are ordered. In this case the n-uple
(v1, v2, . . . , vn) fixes the values for n parameters p1, p2, . . .,
pn.

A test suite achieves the t-way interaction coverage (t is
also called strength) if every combination of any t parameter
values is tested at least once [24], [19].

Definition of t-way coverage. A test suite achieves the t-
way combination coverage if for all the t-way combinations
of the n parameters in P , every variable-values configuration
is covered by at least a test.

Comparison with other approaches: It is apparent that the
exponential notation xy1

1 xy2

2 · · ·xyn
n can be easily translated

in the proposed notation without any loss of information. It
suffices to introduce

∑
yi parameters pij with range domain

[1 .. xi] with i = 1 . . . n and j = 1 . . . yi.
Note that sometimes parameters are referred as factors and

their cardinality as level [3].
In AETG [22], parameters and their values are defined in

the basic construct relation that is a table with columns for
each input item, and rows for the values of each input item.
Input items are called fields and represent the parameters. Each
field can have a different number of values, each of which is

a symbolic string. The translation to the CITLAB language is
straightforward. For instance, in AETG, the problem of Fig.
1 would be represented as the following table:

emailViewer textLines display rearCamera frontCamera
true 25 16MC 2MP 2MP
false 26 8MC 1MP 1MP

27 BW NOC NOC
28
29
30

Sometimes (like in [21]) parameters are named Pi and their
domains are number starting from 1 to the domain cardinality.
Also in this case the translation is straightforward.

Further constructs for modeling parameters and their types
we have found in literature are presented in Section VI.

B. Constraints

In most configurable systems, constraints or dependencies
exist between parameters. Constraints may be introduced for
several reasons, for example, to model inconsistencies between
certain hardware components, limitations of the possible sys-
tem configurations, or simply design choices [10]. Constraints
were first described as being important to combinatorial testing
in [7] and were introduced in the AETG system. In our ap-
proach, tests that do not satisfy the constraints are considered
invalid and do not need to be produced. For this reason, the
presence of constraints may reduce the number of tests of the
final test suite (but it may also increase it [10]). However, the
generation of tests considering constraints is generally more
challenging than the generation without them, and several test
generation techniques still do not support constraints, at least
not in a direct manner.

In CITLAB, we adopt the language of propositional logic
with equality and arithmetic to express constraints. To be
more precise, we use propositional calculus, enriched by the
arithmetic over the integers and enumerative symbols. As
operators, we admit the use of equality and inequality for any
variable, the usual Boolean operators for Boolean terms, and
the relational and arithmetic operators for numeric terms.

Definition of Constraints. A constraint is a predicate P
over the parameters, i.e., P(p1, . . . , pn). We say that a test
t satisfies a predicate P or it is a model of P and we write
t |= P iff P holds by substituting each parameter pi in P with
the value of pi in t.

In the CITLAB language all the constraints must be listed
in a section called Constraints (and included between two #
symbols). For instance, the following constraint may be listed
in the model of Fig. 1,

emailViewer or frontCamera != NOC =>
display != BW and textLines >= threshold #

It models the requirement that, if the phone has an email
viewer or a front camera, then the display cannot be black and
white and the lines of the email viewer must be greater than
or equals to the threshold.

We assume that all the constraints must be satisfied by any
test case, i.e., the constraints are conjoint with an implicit ∧
operator.

Definition of valid tests. Let Cj be the constraints of a
combinatorial problem with j = 1 . . .m. A test t is valid if it
is a model of the constraints, i.e., ∀j t |= Cj or equivalently
t |=

∧
j Cj .

Due to the presence of constraints, not all the t-way
combinations are coverable. We say that a combination is not
coverable if there is no valid test that can cover it. A test suite
still achieves the full coverage if it contains only valid tests
and it covers all the coverable combinations.

Finding if there exists a model that satisfies the constraints,
and building that model, is an NP-complete problem, since
it can be translated to a SATisfiability problem. However,
checking if a test is valid is linear with the dimension of the
constraints and can be performed easily.

Note that the constraints may be inconsistent, i.e., it is
impossible to find any test that satisfies them. Consistency
checking of constraints is again a SATisfiability problem.

Definition of consistent constraints. Let Cj be the con-
straints of a combinatorial problem with j = 1 . . .m. The
constraints are consistent if there exits at least a test that
satisfies them, i.e., ∃t t |=

∧
j Cj .

Comparison with other approaches: The CITLAB lan-
guage is expressive enough to represent most constraints we
found in examples and case studies presented in other papers.
Note that, in order to deal with constraints, some methods
require to remodel the original specification, while very few
directly support constraints in CIT. Cohen et al. [10] found that
just one tool, PICT [13], was able to handle full constraints
specification, that is, without requiring remodeling of inputs or
explicit expansion of each forbidden test case. Test generation
in the presence of (general) constraints has become a very
active research topic in the CIT arena [5], [8].

Most tools provide a limited support for constraints. For
instance, AETG [7], [22] requires to separate the inputs
in a way that they become unconstrained, and only simple
constraints of type if then else (or requires in [10]) can be
directly modeled in the specification. The translation of those
templates into our logic is straightforward. For example the
requires constraint is translated by an implication; the not
supported to a not, and so on.

Many approaches [10], [15] allow constraints only in the
form of forbidden configurations [16]. A forbidden combina-
tion would be translated in our model as a not statement. For
instance, a forbidden pair x = a, y = b would be represented
by the following constraint:

not (x = a and y = b)

Requiring to explicitly list all the forbidden combinations
can soon become impractical. As the number of input grows,
the explicit list may explode and it may become practically
unfeasible and error-prone to build it. For example, the model
of mobile phones presented in Fig. 1 has the constraint that

“A front video camera requires also a rear camera”. This
constraint would be translated into two forbidden tuples:

(frontCamera = 2MP, rearCamera = NOC);
(frontCamera = 1MP, rearCamera = NOC);

However, the translation as constraint in general form would
be simply:

frontCamera != NOC => rearCamera != NOC

which is more compact and more similar to the informal
requirement.

Other tools require the user to manipulate the definition
of test parameters in such a way that unwanted combina-
tions cannot possibly be chosen; either by splitting parameter
definitions into disjoint subsets [28] or by creating hybrid
parameters [29].

Moreover, we support constraints that not only relate two
variable values (to exclude a pair), but that can contain generic
bindings among variables. We believe that the translation from
natural language to a fixed form of constraints (as in [9]) can
be error prone, while allowing a more expressive constraint
language reduces the likelihood of errors. Note that any
constraint models an explicit binding, but their combination
may give rise to complex implicit constraints [10]: implicit
constraints do not need to be formalized in our language.

For example, a constraint may require x 6= y, another y = z.
They model also the implicit constraint x 6= z that in our
approach does not need to be listed, since it is implied by the
original two constraints.

Note that in our approach, the constraints must be satisfied
by any test case we obtain from the specification, i.e., a test
case is valid only if it does not contradict any constraint in the
specification. Others [3] distinguish between forbidden com-
binations (hard constraints) and combinations to be avoided if
possible (soft constraints). We consider only hard constraints,
for now.

Our framework is generic with respect how the test gener-
ation deals with constraints. They could be considered only
after the test suite has been generated, by deleting tests which
violate the constraints and then generate additional test cases
for the missing combinations. By this approach, any classical
algorithm for CIT may be extended to support constraints.
However, this is usable only if the number of missing combi-
nations is small and all the constraints are explicitly listed.

C. Seeds

The testers can also force the inclusion of their favorite
test cases by specifying them as seed tests [3]. The seed tests
must be included in the generated test set without modification.
CITLAB considers only complete seeds, i.e., seeds that assign
a valid value to each parameter (except the constants, which
can be left out the seed).

Definition of seed. Given a combinatorial problem with
parameters pi with i = 1, . . . , n, a seed assigns to each
parameter pi a value in Di, except if Di has cardinality 1.

Since seeds represent tests the user has already executed
or will execute in any case, the generation algorithm should
take advantage of the seeds and avoid redundant coverage of
interactions.

In CITLAB, seeds can be added in the Seeds section and
can be expressed as a sequence of assignments as follows:

emailViewer = true, textLines = 30, display = 16MC,
rearCamera = 2MP, frontCamera = 1MP #

Note that some seeds may be invalid if they violate the
constraints. Checking if a seed violates a constraint is easy
and has linear complexity. In Section IV we will present how
this check is performed in CITLAB.

Comparison with other approaches: Many approaches
and tools support seeds, like AETG [3], [7], PICT[13], NSS
[25], and t-tuples and IPOs [6]. Some approaches support
also partial seeds, i.e., tests that have some parameters with
unassigned values.

D. Test goals

CITLAB allows the tester to introduce extra testing require-
ments by means of test goals. They must be considered in
addition to the desired t-wise coverage. In fact, the user may
be interested to test some particular critical situations or input
combinations, for instance simple incomplete combinations,
i.e., p-wise assignments with p < n and p > t (being n the
number of parameters). We assume that these requirements
can be modeled as generic logical predicates, allowing the
same syntax as for the constraints. Combinations that must
be covered and that do not involve all the parameters are
easily translated to test goals. For example, if the user wants
to test the phone system of Fig. 1 with a specific combination
of inputs, such that both rearCamera and frontCamera
are NOC and display is 16MC, he is allowed to write the
corresponding test goal as follows:

rearCamera = NOC and frontCamera = NOC
and display = 16MC #

However, test goals can express more generic relations than
simple combinations among parameters the designer wants to
guarantee to be covered. For instance, if the user wants to be
sure that the test suite contains at least a test in which at least
one camera is missing and the display has at least threshold
lines, he can write the following test goal:

(rearCamera = NOC or frontCamera = NOC)
and textLines >= threshold #

Note that some test goals may never be covered, for they are
either a contradiction or in contradiction with the constraints
over the parameters.

Definition of test goals. A test goal is a predicate tg over
the parameters pi. A test goal tg is consistent iff there exists
a test that can achieve it, i.e., formally ∃t t |= tg. A test goal
tg is feasible iff there exists a valid test that can achieve it,
i.e., formally ∃t t |=

∧
j Cj ∧ tg.

Inconsistent test goals are never feasible. All the feasible
test goals should be covered.

Definition of covered test goals. Given a set of feasible
test goals TG , a test suite covers them if for each test goal
tg ∈ TG there exists at least test that makes tg true.

A test generation method may support or not extra test goals.
Checking feasibility of test goals is an NP-complete problem,
since it can be reduced to a SATisfiability problem (assuming
the all the parameters have finite domain). In CITLAB we
assume that a generator method, if it supports test goals, it
will also be able to check if they are feasible. We may add in
the future a feasibility checker of test goals based on the use
of SAT or SMT solving as done in [4]. However, checking if
a test suite covers a test goal is easy.

Comparison with other approaches: Test goals can be
used to represent partial seeds, used for instance by AETG
[7]. Partial seeds do not specify the value of each parameter,
however they must be covered by the final test suite. Most
tools, like AETG, complete the partial test cases by filling in
random values for the missing fields and adding the completed
seeds to the test suite.

IV. XTEXT-BASED EDITOR FOR CIT PROBLEMS

The development of a textual DSL and its corresponding
editor, using XTEXT, passes through the following five stages
from the definition of the DSL grammar to the creation of a
fully eclipse integrated text editor:

1) Grammar definition.
2) Configuration of the artifacts generator.
3) Generation of the DSL APIs and of the editor plugin.
4) Implementation of the scope and the validation rules.
5) Refinement of the text formatting and the content pro-

posal provider.

In order to develop a new DSL it is necessary to create a new
XTEXT project where the practitioner describes his very own
DSL using the XTEXT simple EBNF grammar language. The
next operation consists of defining the language configurations
of the code generator. The whole generator is composed by
fragments (as listed in Fig. 2) for generating parsers, the
serializer, the EMF code, the outline view, etc. One of the
most important features that XTEXT offers is the translation of
of a DSL grammar to an EMF meta-model. XTEXT generator
uses a special DSL called MWE2 - the modeling workflow
engine.

For the development of the CITLAB language was necessary
to customize many generated artifacts:

JavaScopingFragment - Scoping: The auto generated
scope-provider results fully operating for all the semantic
and syntactical expression except for the assignments that
present cross-reference. The CITLAB language ensures the
correctness of its cross-reference domains using a custom
AbstractDeclarativeScopeProvider, without this customization
it would be possible to write inconsistent assignments.

Class Generated Artifacts
EcoreGeneratorFragment EMF code
XtextAntlrGeneratorFragment ANTLR
GrammarAccessFragment Grammar access
ResourceFactoryFragment EMF resource
ParseTreeConstructorFragment Serializer
JavaScopingFragment Scoping
JavaValidatorFragment Model validation
CheckFragment Model validation
FormatterFragment Code formatter
LabelProviderFragment Label provider
OutlineNodeAdapterFactoryFragment Outline node
TransformerFragment Outline
JavaBasedContentAssistFragment Content assist
XtextAntlrUiGeneratorFragment Content Helper
SimpleProjectWizardFragment Project wizard

Figure 2. XTEXT fragments and artifacts

Figure 3. Validation of seeds

CheckFragment - Model validation: XTEXT provides
several levels of validation for the defined language. The first
level regards the syntactical validation done by the lexer and
the parser, a cross link validation done by a linker and a
concrete syntax validation done by the serializer that validates
all constraints that are implied by a grammar. Besides these
first three kinds of validation that are automatically introduced
by XTEXT, the user can specify additional constraints for the
model by providing generator fragments. We have introduced
the validation fragments for the following rules:

1) In each expression of kind x = y, where x is a parameter
and y is a value, y must belong to the domain of x.

2) A seed must assign a value to each parameter.
3) No seed can violate any constraint.

The validation of the last requirement (3), requires the
evaluation of constraints. This is performed by two classes:

• Logic Evaluator: evaluates Boolean expression starting
from the value of its operands.

• Arithmetic Evaluator: computes the integer value of a
numeric expression.

The validation is performed run-time while the user types
the model. If the validator finds an error in the model it
generates an error message. The nature of the error is indicated
in the error-log view of eclipse and the point in which the
error occurs is marked in the editor. Fig. 3 shows how the
editor checks the presence of inconsistencies between seeds
and constraints while the user writes them.

Editor-Contributes: Once the grammar, the meta-model
of the language, and the validation rules are defined, XTEXT

Figure 4. Content assist

Figure 5. A meta model for Tests Suites

generates an eclipse-based development environment provid-
ing editing experience known from modern IDEs. The editor
provides the developer with an IDE integrated in eclipse
for writing combinatorial models in the CITLAB language.
The editor features a content assist, quick fixes, a project
wizard, template proposal, outline view, hyperlinking, and
syntax coloring. For instance, the content assist shown in Fig.
4 helps the user to write the seeds and constraints while he
types.

Test Suite meta-model and Java utils: CITLAB introduces
also a simple meta-model for tests and test suites. The meta-
model is shown in Fig. 5. which reports also a fragment
of the language meta-model. A TestSuite, which refers to
a Model, contains several Tests which can contain several
Assignments. Each assignment gives a String value to a
Parameter. We have added also the code to check the validity
of the assignments and of the tests.

We have developed several classes and methods capable to
perform routine tasks like generating all the test requirements
for a given strength, checking if a test or a seed violates some
constraints, and checking if a test goal is covered by a given
test suite.

V. AN EXTENSIBLE FRAMEWORK FOR COMBINATORIAL
TEST GENERATION

Besides the definition of a language for combinatorial
problems, together with its editor, meta-model, and Java API to
manipulate combinatorial models, a further goal of CITLAB is
to introduce a framework for the definition and implementation
of actual test generators and a set of exporters/importers to and
from other languages to foster tools interoperability. In order
to ease the development and deployment of such components
that can extend its capabilities, CITLAB relies on the extension
techniques as defined by the eclipse framework. In eclipse, a
framework or platform can accept new contributions as plugins
by defining extension points. External contributors can add to
the framework new plugins by implementing extensions. One

Figure 6. TestGenerator extension point and corresponding extension

can think of an extension point as a port – an entry point
for other plugins to offer services. An extension is a plug that
connects to the right port. An extension point defines a contract
between the platform and the service provider introduced as
plugin. The extension implementation is the actual service
which will be added to the platform by using the plugin
mechanism of eclipse.

There are several benefits from this architecture. New plug-
ins can be dynamically added and removed from the platform
without recompiling them. Third-party tools can be easily
added to the platform by registering them as extensions. A
plugin includes some descriptive information and the platform
extension point can decide how to use it. For instance, a plugin
can declare to support a feature and the platform can decide
if it is worth loading the extension or not. The development
of a plugin is strongly decoupled with the development of the
platform, making easy for third-parties to contribute to the
framework.

Very often an extension point introduces a Java in-
terface which must be implemented by the extensions.
As depicted in Fig. 6, CITLAB introduces an extension
point called TestGenerator which defines the interface
ICitlabTestGenerator declaring the methods necessary
for any test generator. A plugin (XYZ in Fig. 6) must define a
class (XYZTestGenerator) implementing the required in-
terface in order to extend the platform with new test generators
and register this extension into the platform. The platform will
become aware of new generator and will be able to create and
call instances of that class when needed.

CITLAB introduces the four extension points listed in Tab.
I together with the interfaces and the required methods.

All the code for CITLAB is available under the Eclipse
Public License2.

A. Test generation plugins

Any test generator plugin must introduce a class that im-
plements the interface ICitLabTestGenerator. A test
generator must declare if it supports the constraints, the seeds
and the test goals (accept methods). Moreover, it must define a
method that actually computes the test suite for the n-wise cov-
erage of a given model (generateTests method). The method

2All the source code is available at http://code.google.com/a/eclipselabs.
org/p/citlab/.

http://code.google.com/a/eclipselabs.org/p/citlab/
http://code.google.com/a/eclipselabs.org/p/citlab/

Extension Point Interface Methods

TestGenerator ICitLabTestGenerator
TestSuite generateTests(Model m, int nWise)
boolean acceptConstraints(List<Constraint> c)
boolean acceptSeeds(List<Seed> s)
boolean acceptTestGoals(List<TestGoal> tg)

Exporter ICitLabExporter
void export(Model m)
boolean acceptConstraints(List<Constraint> c)
boolean acceptSeeds(List<Seed> s)
boolean acceptTestGoals(List<TestGoal> tg)

Importer ICitLabImporter
Model import(Reader r)

TestSuiteExporter ICitLabTestSuiteExporter
void save(TestSuite ts, String file)

Table I
EXTENSION POINTS DEFINED BY CITLAB

will be invoked by the CITLAB user interface upon an user
request. If an extension does not support some model features,
like constraints for instance, the CITLAB user interface will
prompt the user and will suggest to strip the model from that
feature in order to continue with the test generation. Any
test generator can decide to partially support a feature. For
instance, a test generator may support only constraints having
a particular pattern (like forbidden tuples or CNF). In this case,
its method acceptConstraints will examine the constraints and
it will decide if they conform to the requested pattern.

As proof of concept, we have implemented a small random
test generator. It randomly generates tests cases until all the
required tuples are covered. It does not support constraints
neither test goals. However, it supports seeds. The pseudo
code is reported in Fig. 7. Any realistic test generator should
outperform this random generator.

B. Translation to and from other notations and tools

CITLAB introduces also two extension points for importing
and exporting models from and to other notations and tools
(as reported in Tab. I) By defining exporters and importers,
the researchers could use the CITLAB language as a sort of
pivot language. In DSLs, a pivot language can be used for
exchanging models in several notations employed by different
tools.

A possible way to define importers and exporters is to use
Model to Text (M2T) or Model to Model (M2M) transfor-
mations. To this purpose, Xtend 2 can be used. For instance,
we have defined an exporter to the CASA [12] language by
defining a model to text transformer in Xtend. The trans-
former is translated to a Java class which implements the
interface required by the exporter extension point. Inside the
transformer, the designer can use polymorphic dispatching of
template definitions and easily navigate through models. For
instance, a fragment of the transformer for CASA is reported
in Fig. 8 in which the size of a domain is converted to a string.

Transformations could also be defined at higher level, be-
tween meta-models (if provided by the target notations). In this

Require: model with seeds loaded
Require: n strength

// compute requirements using library methods
requirements← allRequiredTuples(model, n)
// load seeds (if any) and discard covered requirements
for all s ∈ seeds do

for all r ∈ requirements do
if s covers r then

// remove r from the requirements
requirements← requirements\{r}

end if
end for

end for
testsuite← seeds
// generate tests for uncovered requirements
while requirements 6= ∅ do

randomly generate a testcase
toAdd← false
for all r ∈ requirements do

if testcase covers r then
requirements← requirements\{r}
toAdd← true

end if
end for
if toAdd then
testsuite← testsuite ∪ {testcase}

end if
end while
return testsuite

Figure 7. Random generation of a test suite

...
def getSize(Parameter param){
switch (param) {
Enumerative:
'''«(param as Enumerative).type.elements.size»'''

Boolean :'''2'''
Number :'''1'''
Range:
'''«(((param as Range).end−

(param as Range).begin) as Integer).toString»'''
}

}

Figure 8. A fragment of the XTEXT exporter to CASA

case, the meta-model provided by CITLAB for combinatorial
problems, could be used as pivot meta-model by providing
suitable model to model transformations in order to allow tools
interoperability. According to the view presented in [2], a pivot
meta-model of a given formalism or language L is intended
as a platform independent modeling language which abstracts
a certain number of general concepts about L. The integration
among tools supporting L can be achieved by providing, for
the notation L′ (a dialect of L) of each tool TL′ , a meta-model
- seen as a platform specific modeling language - and model
transformations to the pivot and from the pivot to the L′-meta-
model. Hence, the meta-model of the notation Li of a tool TLi

can be linked to the meta-model of the notation Lj of another
tool TLj by the composition of the two transformations from
Li-meta-model to the pivot and from the pivot to the Lj-meta-
model. In this way, the interoperability between tools TLi and
TLj is achieved by translating PSM (Platform-specific Model)
models written in Li to Lj and vice versa.

C. Test suite exporters

The third extension point is TestSuiteExporter that al-
lows designers to add new plugins for exporting the test
suite generated into files in specific formats. The plu-
gin must introduce a class that implements the interface
ICitLabTestSuiteExporter. In CITLAB we have al-
ready implemented an exported towards the Microsoft Excel
format.

VI. FUTURE WORK

a) Language extensions: There exist approaches that in-
troduce special constructs, not supported by the current version
of the CITLAB language, for modeling complex situations in
combinatorial models, beyond the basic parameters, values and
constraints.

For instance, [22] describes the notions of compound values,
auxiliary aggregates, and field groups. A compound is a set of
values for fields and compound values reflect closely linked
fields in a model. A compound field can be used to gather
any number of linked values together into a set (or tuple).
Compounds are useful when the interaction coverage is not
required within the values in the compound, but it is needed
with other parameters.

Auxiliary aggregates are used to link several combinatorial
models since they capture parameters and values that are
common between different test spaces. Field groups support
optional groups of values. This means that, if any field from
the group is present, then all fields from the group must be
present; however, the entire group is optional.

PICT [13] introduces hierarchies of parameters. This
scheme allows for certain parameters (at the bottom of the
hierarchy) to be combined with a given strength first and that
product is then used for creating combinations with parameters
on upper levels of the hierarchy. This is a useful technique
which can be used (1) to model test domains with a clear
hierarchy of test parameters i.e., API functions taking struc-
tures as arguments and UI windows with additional dialogs or

(2) to limit the combinatorial explosion of certain parameter
interactions.

A similar notion of sub-attributes is presented in [18].
It allows the user to express compound parameters, that
are parameters associated with sub-parameters. For instance,
consider a parameter A that has sub-attributes X, Y, and Z.
The tester may decide to treat sub-parameters in different
ways. For instance, sub-parameters may be considered as real
parameters. In the example, the three parameters A.X, A.Y,
and A.Z would be added to the problem instead of the single
parameter A.

Most of these constructs could be translated in suitable
constraints also in the CITLAB language, but it could be
useful to introduce some primitive constructs in the language
in order to directly deal with these other concepts. This would
make more compact the notation and test generator tools could
exploit the new constructs in order to generate efficiently tests
covering them. However, the semantics of these constructs
should be well-defined in order to avoid misinterpretations.
Sometimes (as in [18] for sub-attributes), it is left to user to
choose the desired meaning of special notations.

b) Other types of constraints: In our approach, the
constraints must be satisfied by any test case we obtain
from the specification, i.e., a test case is valid only if it
does not contradict any axiom in the specification. In [3] the
authors introduce the concept of (explicit) soft constraints:
they use a method to avoid tuples if possible. In this paper
we consider only hard constraints: a test is valid only if it
satisfies all the constraints (explicit and implicit as well). It
could be interesting to introduce soft constraints also in the
CITLAB language, although giving a formal semantics of such
constructs may be rather complex.

Some CIT approaches [27] introduce weights for parameter
values. Weights reflect the importance of different values for
a given parameter. The user can express further requirements
over the solution involving weights. Even if the same con-
straints may be expressed in our language, it may become
impractical. We plan to extend the CITLAB language in order
to include user defined functions that are defined over the
parameters and have value depending on parameter values.
A possible function could be the weight of a parameter.
Constraints and test goals could use such functions to express
complex testing requirements.

c) Seeds and test goals: Some tools introduce the con-
cept of partial seeds which can be easily translated into our
test goals as already explained. Other approaches classify
partial seeds between valid, partially valid, and invalid [27].
Valid partial seeds are seeds that can be extended only into
valid test cases. Invalid partial seeds cannot be extended to
valid tests. Partially valid partial seeds are neither valid nor
invalid, i.e., there is a valid extension but there is an extension
which is invalid. The same concept can be formalized if the
partial seeds are represented by test goals. A test goal is
invalid if it contradicts the constraints. Formally if Ci are the
constraints, and tg is a test goal, tg is invalid iff

∧
Ci → ¬tg

or, equivalently tg → ¬
∧

Ci . A test goal is valid iff

tg →
∧
Ci, i.e., any model of tg satisfies also the constraints.

A test goal is partially valid iff ∃m(m |=
∧
Ci ∧ tg) and

∃m(m |= ¬
∧
Ci ∧ tg). Checking the validity of a test goal is

equivalent to the SATisfiability problem.
d) Validation of constraints and test goals by SMT

solvers: As already noted, test goals may introduce further
requirements that can be never satisfied given the types of
the parameters and the constraints among them. On the other
hand, also constraints may be inconsistent and never admit any
solution. Finding tests covering test goals and constraints is
equivalent to finding solutions to propositional logic formulas,
which is an NP-complete problem. However, practical methods
and tools (SAT solvers) exist that are very fast in finding
models for most common proposition logic formulas. Recent
work has extended the SAT solver algorithms to work with
propositions containing arithmetic expressions; these are the
SMT solvers. We plan to add a validator of constraints and
test goals based on the use of SMT solvers in a similar way
as done in [4] for test generation.

VII. CONCLUSIONS

We have presented a laboratory called CITLAB for combi-
natorial interaction testing. It introduces a language which is
based on several formally defined concepts and it is defined
as DSL by using the XTEXT methodology. The concepts are:
parameters and types, constraints, seeds, and test goals. This
language becomes endowed with a powerful editor and a set of
Java APIs that allow the manipulation of combinatorial models
and tests. CITLAB provides also an extensible framework
based on the extension technique of eclipse where new test
generators, exporters, and importers from other tools can be
added as plugins. As a proof of concept we have already
implemented a simple random test generator and an exporter
to another tool using a model to text transformation.

Acknowledgments

We would like to thank Paolo Arcaini for the valuable
comments on the paper.

REFERENCES

[1] Advanced Combinatorial Testing System (ACTS).
http://csrc.nist.gov/groups/SNS/acts/.

[2] J. Bézivin, H. Brunelière, F. Jouault, and I. Kurtev. Model engineering
support for tool interoperability. In The 4th Workshop in Software Model
Engineering (WiSME’05), Montego Bay, Jamaica, 2005.

[3] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information &
Software Technology, 48(10):960–970, 2006.

[4] Andrea Calvagna and Angelo Gargantini. Combining satisfiability
solving and heuristics to constrained combinatorial interaction testing.
In Catherine Dubois, editor, TAP, volume 5668 of Lecture Notes in
Computer Science, pages 27–42. Springer, 2009.

[5] Andrea Calvagna and Angelo Gargantini. A formal logic approach to
constrained combinatorial testing. Journal of Automated Reasoning,
45(4):331–358, 2010. springer.

[6] Andrea Calvagna and Angelo Gargantini. T-wise combinatorial interac-
tion test suites construction based on coverage inheritance. Software
Testing, Verification and Reliability, Special issue on Model Based
Testing, 2011. JohnWiley&Sons.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: An approach to testing based on combinatorial design. IEEE
Transactions On Software Engineering, 23(7):437–444, 1997.

[8] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints: a
greedy approach. IEEE Transactions on Software Engineering, to appear,
2008.

[9] M.B. Cohen, M.B. Dwyer, and J. Shi. Exploiting constraint solving
history to construct interaction test suites. In Testing: Academic and
Industrial Conference-Practice and Research Techniques (TAIC PART),
London, September 2007, pages 121–130, 2007.

[10] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing
of highly-configurable systems in the presence of constraints. In ISSTA
International symposium on Software testing and analysis, pages 129–
139, New York, NY, USA, 2007. ACM Press.

[11] Charlie Colbourn. Covering array tables
http://www.public.asu.edu/ ccolbou/src/tabby/catable.html.

[12] Covering Arrays by Simulated Annealing (CASA).
http://cse.unl.edu/citportal/tools/casa/.

[13] J. Czerwonka. Pairwise testing in real world. In 24th Pacific Northwest
Software Quality Conference, 2006.

[14] Mats Grindal, Jeff Offutt, and Sten F. Andler. Combination testing
strategies: a survey. Softw. Test, Verif. Reliab, 15(3):167–199, 2005.

[15] Alan Hartman. Ibm intelligent test case handler: Whitch,
http://www.alphaworks.ibm.com/tech/whitch.

[16] Alan Hartman. Graph Theory, Combinatorics and Algorithms Interdis-
ciplinary Applications, chapter Software and Hardware Testing Using
Combinatorial Covering Suites, pages 237–266. Springer, 2005.

[17] Alan Hartman and Leonid Raskin. Problems and algorithms for covering
arrays. DMATH: Discrete Mathematics, 284(1-3):149–156, 2004.

[18] R. Krishnan, S. Murali Krishna, and P. Siva Nandhan. Combinatorial
testing: learnings from our experience. ACM SIGSOFT Software
Engineering Notes, 32(3):1–8, 2007.

[19] D.R. Kuhn, R.N. Kacker, and Y. Lei. Practical combinatorial testing.
Special publication, NIST, 2010.

[20] R. Kuhn, R. Kacker, Yu Lei, and J. Hunter. Combinatorial software
testing. Computer, 42(8):94 –96, aug. 2009.

[21] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James
Lawrence. IPOG/IPOG-D: efficient test generation for multi-way combi-
natorial testing. Software Testing, Verification and Reliability, 18(3):125–
148, September 2008.

[22] C. Lott, A. Jain, and S. Dalal. Modeling requirements for combinatorial
software testing. In A-MOST ’05: Proceedings of the 1st international
workshop on Advances in model-based testing, pages 1–7, New York,
NY, USA, 2005. ACM Press.

[23] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., 37:316–344,
December 2005.

[24] Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv, 43(2):11, 2011.

[25] Changhai Nie, Baowen Xu, Liang Shi, and Ziyuan Wang. A new
heuristic for test suite generation for pair-wise testing. In Kang Zhang,
George Spanoudakis, and Giuseppe Visaggio, editors, SEKE, pages 517–
521, 2006.

[26] Pairwise web site. http://www.pairwise.org/.
[27] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary decision

diagrams for combinatorial test design. page 254. ACM Press, 2011.
[28] G. Sherwood. Effective testing of factor combinations. In Proceedings

of the Third International Conference on Software Testing, Analysis and
Review,, pages 133–166, Washington DC, 1994.

[29] A. W. Williams and R. L. Probert. A practical strategy for testing
pair-wise coverage of network interfaces. In Seventh International
Symposium on Software Reliability Engineering (ISSRE ï£¡96), 1996.

[30] Xtext. http://www.eclipse.org/xtext/.

