
Multi-thread Combinatorial Test Generation with SMT solvers
Andrea Bombarda

andrea.bombarda@unibg.it
University of Bergamo, Department

of Engineering
Bergamo, Italy

Angelo Gargantini
angelo.gargantini@unibg.it

University of Bergamo, Department
of Engineering
Bergamo, Italy

Andrea Calvagna
andreamario.calvagna@unict.it
University of Catania, Computer

Science Department
Catania, Italy

ABSTRACT
Combinatorial interaction testing (CIT) is a testing technique that
has proven to be effective in finding faults due to the interaction
among inputs and in reducing the number of test cases, without
losing effectiveness. Several tools have been proposed in the litera-
ture; however, generating tests remains a challenging task. In this
paper, we present a technique for generating combinatorial test
suites that uses a multi-thread architecture and exploits Satisfiabil-
ity Modulo Theory (SMT) solvers to represent model parameters,
constraints, and tuples, and it builds from SMT solver contexts the
desired test suite. This technique is implemented by the tool KALI.
The main advantage of using SMT solvers is that combinatorial
models can contain all kinds of parameters and constraints. To eval-
uate our approach, we tested the impact of several optimizations
and compared the performance of KALI with those of some existing
tools for test generation. Our experiments confirm that the use of
multi-threading is a promising technique but still requires some
optimization for being more effective than the already available
ones.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
combinatorial testing, multi-thread test generation, satisfiability
modulo theories, software testing
ACM Reference Format:
Andrea Bombarda, Angelo Gargantini, and Andrea Calvagna. 2023. Multi-
thread Combinatorial Test Generationwith SMT solvers. In The 38th ACM/SI-
GAPP Symposium on Applied Computing (SAC ’23), March 27-March 31, 2023,
Tallinn, Estonia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3555776.3577703

1 INTRODUCTION
In recent years, Combinatorial Interaction Testing (CIT) has been
widely studied because it has proven to be very effective in reducing
the complexity when testing complicated systems with multiple
input parameters and in helping testers in finding defects due to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’23, March 27-March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00
https://doi.org/10.1145/3555776.3577703

interaction of different inputs. In general, this interaction is checked
in such a way that every tuple of parameter values must be tested
at least once. However, especially for complex systems with many
parameters, generating combinatorial tests is not always an easy
task and may require a great number of resources (either time or
computational power) to be completed. The complexity of the test
generation process is even higher when systems are described with
not only many parameters, but also complex constraints among
them.

This is the reason why several groups of researchers have pro-
posed many test generators that exploit different strategies to gen-
erate combinatorial test suites in the most effective possible way.
An emerging approach aimed at reducing the generation time is
that of implementing multi-threading algorithms. However, due to
the increased complexity, currently available combinatorial multi-
thread tools either do not cope with constraints or offer only limited
support for them.

In this paper, we present a technique for generating combinato-
rial test suites on multi-threads architectures and exploiting Sat-
isfiability Modulo Theories for generating constraints-compliant
test suites with the desired combinatorial coverage. To test the pro-
posed technique, we have also implemented it in a publicly available
prototype tool called KALI.

Thanks to the use of SMT solvers, KALI can deal with all types
of constraints among those expressible with the CTWedge gram-
mar [11]: both logical andmathematical, andwith all types of param-
eters. The tool has been evaluated against well known benchmarks
provided in an international combinatorial testing tool contest.
Based on the results, we also provide answers to several research
questions related to combinatorial testing tool development.

The paper is structured as follows. In Sect. 2, we present the
general background on CIT and SMT solvers, together with the
basic idea underlying the use of this kind of solvers for CIT. Then,
Sect. 3 presents the proposed solution, the KALI test generator, its
structure and data flow. The performance of the tool is evaluated in
Sect. 4 by using the benchmark examples provided in the context of
a combinatorial test tool competition. In Sect. 5 we present relevant
related works on combinatorial test generators and their parallel
applications, and finally, Sect. 6 presents some future work and
concludes the paper.

2 BACKGROUND
2.1 Combinatorial Interaction Testing
With Combinatorial Interaction Testing (CIT), the tester systemati-
cally explores the t-way interaction between all the features inside
a given system under test, where 𝑡 is commonly called strength. To
achieve this, chosen any 𝑡 parameters, every combination of values
among those parameters is tested at least one (unless there exist

1

https://orcid.org/0000-0003-4244-9319
https://orcid.org/0000-0002-4035-0131
https://orcid.org/0000-0001-7965-3327
https://doi.org/10.1145/3555776.3577703
https://doi.org/10.1145/3555776.3577703
https://doi.org/10.1145/3555776.3577703

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Andrea Bombarda, Angelo Gargantini, and Andrea Calvagna

Model Example1
Parameters: P1: { v1 v2 };

P2: { v3 v4 };
P3: Boolean;
P4: [0 .. 3]

Constraints:
(P3!=true OR P2!=v3 OR P1!=v1)

! (P3 = true AND P1 = v2)
(P3 = true) => P4 > 2

Figure 1: Example of a combinatorial model

constraints that make a combination unfeasible). The aim of CIT
algorithms is generating in the shortest time the smallest possible
test suite achieving the desired coverage. The most often applied
combinatorial testing technique is pairwise testing (𝑡 = 2), which
consists in generating a test suite that covers all input values pairs.

Fig. 1 shows a simple example of a combinatorial model, where
a list of parameters and a list of constraints are specified using
the CTWedge format [11]. In particular, the model contains four
parameters (one Boolean parameter, two enumeratives, and an inte-
ger range) and three constraints, which express the logical relation
between the parameters and their values. A model such as the one
in Fig. 1 can be passed as input to a test generator that, given a
defined strength 𝑡 , generates all test cases covering every t-tuple.
Note that the CTWedge grammar does not support for now rational
numbers, but we plan to implement its grammar in order to allow
their use. In this case, generating tests using SMT solvers, as we do
in this paper, could be even more suitable.

2.2 SMT solvers
Satisfiability modulo theories (SMT) are used for generalizing, by
using first-order formulas, Boolean satisfiability (SAT) by adding
several aspects, among which there are equality reasoning, arith-
metic, fixed-size bit-vectors, arrays, quantifiers, and other first-
order theories. An SMT solver is a tool for deciding the satisfiability
(or validity) of formulas in these theories. SMT solvers are exploited
for different tasks, including extended static checking, predicate
abstraction, test case generation, theorem proving, and bounded
model checking over infinite domains, to mention a few.

Many solvers have been proposed in the literature, such as Z3 [9],
Yices [10], MathSAT5 [8], and SMTInterpol [7]. Since they are
generally capable not only of checking the satisfiability of a formula
but also of generating a model for it, SMT solvers are often used for
test generation [16]. In this paper, we have decided not to commit
to any specific solver, and all the algorithms and encodings we
propose work for a variety of solvers. In the future, we may decide
to adopt a specific tool and tailor all algorithms to it.

2.3 How to represent CIT models, constraints,
tuples, and tests

Having introduced in Sect. 2.2 the main features of SMT solvers, we
can now explain how we use them for CIT. First, we recall that a
combinatorial model is composed of two different sets of elements,
namely a set of parameters and a set of constraints.

2.3.1 Parameters encoding. Given an SMT solver context, the pa-
rameters can be represented as variables in that context. In partic-
ular, the parameters in a combinatorial model can be of different

types, and thus their translation into variables in a solver context
has to be done accordingly:
• Boolean parameters are represented as SMT Boolean variables;
• Integer ranges are represented as SMT integer variables. How-

ever, since when defining ranges in combinatorial models one must
specify the lower and the upper threshold, we must add another
constraint that specifies these limits when converting a range to an
SMT variable. For example, if a range is defined in the combinatorial
model as P1 : [0 .. 3], in addition to the P1 integer variable, the
following constraint is added: 𝑃1 ≥ 0 AND 𝑃1 ≤ 3;
• Enumerative parameters can be represented in different ways,

depending on the support given by the SMT solver chosen. Since
our aim is to propose a solution compatible with all SMT solvers and
with the simple SMT theory for Boolean formulas, we convert each
enumeration with 𝑛 values into a set of 𝑛 SMT Boolean variables
and a set of constraints that ensure that only one of the possible
Boolean variables must be true. This process is generally defined as
flattening [13]. For example, the enumeration P2 : {v1 v2 v3} is
translated into three different SMT Boolean variables P2v1, P2v2,
and P2v3. Furthermore, the following constraint must be added for
P2v1: P2v1 <=> (not P2v2 and not P2v3), and similar ones for
the other two variables.

2.3.2 Model constraints. The constraints of a combinatorial model
can be easily mapped to SMT constraints, exploiting the variables
previously defined. In particular, a combinatorial model may con-
tain relational, mathematical, or comparison operators (between
parameters or values) in general propositional formulas. All these
aspects can be easily represented with operations between variables
and values defined in an SMT context.

2.3.3 Tuples. Once the combinatorial model has been converted to
SMT structures, they can be used for generating tests, by checking
which of the possible tuples are compatible with the SMT solver
context. In particular, given a tuple 𝑡𝑝 , it can be represented in
the SMT solver context by adding a new constraint that limits
the values of the parameters to those specified by the tuple. For
example, a tuple 𝑡𝑝 = ⟨𝑃1, 𝑣1⟩⟨𝑃2, 𝑣2⟩ is translated in the following
SMT constraint 𝑃1 = 𝑣1 AND 𝑃2 = 𝑣2.

As we will discuss in detail later, our approach builds the tests
incrementally, collecting suitable tuples to obtain valid tests. The
tests are derived from a combinatorial problem 𝑃 = {𝑋,𝐶}, where
𝑋 = {𝑥𝑖 , 𝑣𝑖 } is a set of parameters (each 𝑥𝑖 with the set of possible
values 𝑣𝑖) and 𝐶 is the set of constraints (as shown in Fig. 1). To
store information on the model and its constraints, together with
the tuples added so far to a (partial) test, we modify the definition
of test context, previously defined in [3], as follows.

Definition 2.1 (Test context). We call 𝑇𝐶 = ⟨𝐴, 𝐿𝐶𝑇𝑆 ⟩ a test con-
text for a combinatorial problem 𝑃 , where 𝐴 is a list of assignments
to some parameters 𝑝𝑖 to one of their possible values 𝑣𝑖, 𝑗 and 𝐿𝐶𝑇𝑆
is the SMT solver context representing 𝑃 and the assignments com-
mitted to the context so far.

Thus, each test context 𝑇𝐶 contains a list of assignments 𝐴 that
represents a partial test case 𝑇 together with the solver context
containing all the information about the model (parameters and
constraints) and the test itself. A test context is complete, i.e., it

2

Multi-thread Combinatorial Test Generation with SMT solvers SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

CIT Model

Tuples
Generator
Thread

Tuple Buffer

Test Builder
Thread 1

Test Builder
Thread n

 Test Context 1 Test Context 2 Test Context m

SMT
Context

SMT
Context

SMT
Context

Test Builder
Thread 3

Test Builder
Thread 2

1 2

3

4

Figure 2: Data flow for the KALI tool

represents a complete test case if the assignment list 𝐴 includes
all the parameters of the model. Given a test context 𝑇𝐶 and 𝐿𝐶𝑇𝑆
being its SMT solver context, a tuple 𝑡𝑝 can be:
• implied, if all assignments of the tuple 𝑡𝑝 are already contained

in the assignments 𝐴, i.e., the possibly partial test case 𝑇 .
• compatible, if the tuple 𝑡𝑝 contains only assignments which

are not in conflict with those of the test context 𝑇𝐶 , i.e., in the test
𝑇𝐶 , each parameter contained in the tuple 𝑡𝑝 does not yet have
any value or has an equal value, and 𝑡𝑝 does not clash with the
constraints of the combinatorial problem.
• uncoverable, if the assignments contained in the tuple 𝑡𝑝 clash

with the constraints of the combinatorial problem.
While checking whether a tuple 𝑡𝑝 is implied by a test context

𝑇𝐶 does not require any call to the SMT solver, to check if 𝑡𝑝 is
compatible or uncoverable, the use of the SMT solver context 𝐿𝐶𝑇𝑆
is necessary.

3 KALI: USING SMT SOLVERS FOR TEST
GENERATION

In this paper, we present KALI, a Java tool that exploits an SMT
solver, through the library java-smt1, to generate test suites with
combinatorial coverage. It implements multi-threading strategies
for reducing the test generation time.

The source code, together with the tests, data, and evaluation
scripts used in Sect. 4 are available in the replication package [4].

3.1 Tool architecture and algorithm
The data flow we devised for KALI to generate all the tests is shown
in Figure 2. All the tuples to be covered are generated by a single
thread (step 1 in Fig. 2) from a CIT model such as the one in Fig. 1.
The generated tuples are stored into a shared buffer (step 2 in Fig. 2)
with limited capacity (40 tuples in our experiments, but users may
configure it with a different capacity). Then, when the shared buffer
is fully filled, the tuple generation thread stops and waits until a
new free slot is available. This process allows avoiding storing all
tuples at the same time, and thus, guarantees a consistent saving in

1https://github.com/sosy-lab/java-smt

memory utilization, especially for complex combinatorial models,
in which the number of tuples can be significantly high. Then, 𝑛
test builder threads (step 3 in Fig. 2) start consuming the tuples
in the tuple buffer. Note that 𝑛 can be automatically selected by
the tool depending on the hardware architecture or decided by
the user. Each test builder can consume a tuple 𝑡𝑝𝑖 and try to add
𝑡𝑝𝑖 to any of the available test contexts (step 4 in Fig. 2), which
are continuously updated and created if necessary. This process
is described in Algorithm 1 and is repeated by each thread until
all the tuples have been consumed. In particular, given a tuple 𝑡𝑝𝑖
(extracted from the buffer in line 1):
• the function findImplies at line 2 finds, in the list of all test
contexts 𝑇𝐶 , the first test context 𝑡𝑐 𝑗 , which already implies
the tuple 𝑡𝑝𝑖 , if there exists one. Then, if 𝑡𝑐 𝑗 has been found,
𝑡𝑝𝑖 is consumed;
• the function findCompatible at line 6 finds, in the list of all
test contexts 𝑇𝐶 , the first test context 𝑡𝑐 𝑗 that is compatible
with the tuple 𝑡𝑝𝑖 (i.e., the tuple does not clash with the
assignments already performed by the test context and with
the constraints of the combinatorial model), if there exists
one. Then, if 𝑡𝑐 𝑗 has been found, 𝑡𝑝𝑖 is passed to 𝑡𝑐 𝑗 , which
updates its SMT solver context, and 𝑡𝑝𝑖 is consumed;
• if a thread cannot find a test context 𝑡𝑐 𝑗 in which the tuple
𝑡𝑝𝑖 is compatible or implied, a new test context is created. It
is initialized by the function createTestContext (line 11)
which builds a new SMT solver context 𝑡𝑐 𝑗 and adds all the
variables and constraints of the combinatorial problem to
𝑡𝑐 𝑗 . If 𝑡𝑝𝑖 is compatible with the newly created test context,
the tuple is consumed, added to the context; otherwise, it
means that the tuple is not compatible with the constraints,
it is considered as uncoverable and skipped, and the empty
test context is discarded.

When all tuples are consumed, each test context provides the result-
ing test case, which can be complete (if all parameters have been
assigned) or incomplete. In the former case, the test case is derived
from the list of assignments 𝐴 contained in the test case, while in
the latter case the test case is derived by computing a model that
satisfies the SMT context.

3.2 Algorithm optimizations
The proposed tool implements several optimizations that can be
activated to reduce either the generation time or the size of the test
suite. In particular, the possible optimizations are in the following
directions:

(1) tuple selection or generation: tuples can be generated (or ex-
tracted from the tuple buffer) in an optimized manner, by
following specific heuristics,

(2) constraints management: when no constraints are available in
the combinatorial model, no solver context should be created
and updated,

(3) selection of test context: the threads building the tests can give
precedence to certain test contexts during their selection (for
example, based on the grade of completeness of the context,
i.e., the number of assignments already performed).

The first optimization can be performed by modifying the tuple
selection or generation process. In fact, from the literature, it is often

3

https://github.com/sosy-lab/java-smt

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Andrea Bombarda, Angelo Gargantini, and Andrea Calvagna

Algorithm 1 Tuple consumption procedure
Require: TupBuffer , the buffer containing the tuple already pro-

duced and ready to be consumed
Require: 𝑇𝐶 , the list of all the test contexts
Require: 𝑀𝐶 , the CIT model

⊲ Extract the tuple from the tuple buffer
1: 𝑡𝑝𝑖 ← TupBuffer .𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑟𝑠𝑡 ()

⊲ Try to find a test context which implies the tuple
2: 𝑡𝑐 𝑗 ← 𝑓 𝑖𝑛𝑑𝐼𝑚𝑝𝑙𝑖𝑒𝑠 (𝑇𝐶, 𝑡𝑝𝑖)
3: if 𝑡𝑐 𝑗 is not 𝑁𝑈𝐿𝐿 then
4: return
5: end if

⊲ Try to find a test context which is compatible with 𝑡𝑝𝑖

6: 𝑡𝑐 𝑗 ← 𝑓 𝑖𝑛𝑑𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 (𝑇𝐶, 𝑡𝑝𝑖)
7: if 𝑡𝑐 𝑗 is not 𝑁𝑈𝐿𝐿 then
8: 𝑡𝑐 𝑗 .𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝐶 (𝑡𝑝𝑖)
9: return
10: end if

⊲ Create a new empty test context
11: 𝑡𝑐 𝑗 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑒𝑠𝑡𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝑀𝐶)
12: if 𝑡𝑐 𝑗 .𝑖𝑠𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 (𝑡𝑝𝑖) then
13: 𝑡𝑐 𝑗 .𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝐶 (𝑡𝑝𝑖)
14: else
15: 𝑡𝑝𝑖 .𝑠𝑒𝑡𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑙𝑒 ()
16: end if
17: return

reported that the best way for generating the tuples in sequential
algorithms consists in starting from the ones containing the param-
eters with the widest ranges (see the IPO algorithm [18]). For this
reason, KALI natively implements the parameter ordering strategy
IN_ORDER_SIZE_DESC (OD) which allows the generation of tuples
starting from the parameters assuming the highest number of val-
ues. However, one may want to try different strategies. Thus, other
ordering strategies are implemented, such as IN_ORDER_SIZE_ASC
(OA) which allows to first generate the tuples starting from the
parameters assuming the lowest number of values, RANDOM (RD),
which shuffles the list of parameters before starting the tuple gener-
ation process, and AS_DECLARED (AD), which considers the parame-
ters in the order in which they are declared inside the combinatorial
model. In Sect. 4 we report further details about the impact of the
tuple selection strategy on size and generation time.

One of the most costly activities during test generation is the
update of the SMT solver context and the computation of the model
satisfying all the constraints. This activity can be avoided when the
combinatorial model has no constraints: the test can be extracted
only by looking at the assignment list 𝐴 included in each test con-
text. This can be easily implemented by modifying the line 8 in
Algorithm 1, which should be changed in the conditional statement
reported in Algorithm 2.

Finally, the last optimization regards the test contexts that can
be selected by giving higher priority to those that have a lower
completeness grade, i.e., those that have fewer parameters already
assigned. In this way, the number of test cases is reduced since
the compatibility and coverability check is first performed on test

Algorithm 2 Optimized test context update

𝑡𝑐 .𝑢𝑝𝑑𝑎𝑡𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 (𝑡𝑝𝑖)
if 𝑡𝑐 .𝑔𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝐿𝑖𝑠𝑡 ().𝑠𝑖𝑧𝑒 () > 0 then

⊲Update the SMT solver context of the test context with 𝑡𝑝𝑖

𝑡𝑐 .𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑣𝑒𝑟𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝑡𝑝𝑖)
end if

contexts that are more likely able to accept the new tuple. On the
other hand, introducing this optimization is not the best idea when
the objective is to reduce the generation time, because, especially
for combinatorial models with a lot of parameters and values (and
thus, implicitly, a lot of test cases), the sorting procedure always
adds a significant amount of time (see Sect. 4 for more details).

4 EXPERIMENTS
In this section, we report the results that we have obtained ap-
plying KALI to the benchmarks provided by the organizers of the
CT-Competition2, proposed in [2]. These benchmarks have been
explicitly introduced for evaluating CIT tools and include models
with varying characteristics:

(1) U_BOOL: uniform models, with Boolean parameters, and no
constraints;

(2) U_ALL: uniform models, with all the parameters assuming
the same number of values, and no constraints;

(3) MCA: with Boolean and enumerative parameters, but no con-
straints;

(4) BOOLC: with Boolean parameters, and logical constraints be-
tween them;

(5) MCAC: with Boolean and enumeratives parameters, and logi-
cal constraints between them;

(6) NUMC: with Boolean, enumeratives, and integer ranges param-
eters, and logical, relational, and mathematical constraints between
them.

Using these benchmarks, we have analyzed KALI through a list
of research questions as reported in Tab. 1. First, in order to find
the best configuration for KALI, from RQ1 to RQ4, we have used
the benchmarks given during the training phase of the competi-
tion3 (limited model set in Tab. 1). Then, in RQ5 and RQ6, we have
compared KALI with other approaches available in the literature
using all the 300 benchmarks released for the evaluation phase of
the competition.

We have executed the experiments on a PCwith Ubuntu 20.04.3, 2
CPUs Intel(R) Xeon(R) E5-2620 v4with 2.10 GHz, 32 threads, and 128
GB RAM. In order to increase the statistical confidence in the results,
each test has been executed multiple times (see column Num Exec.
in Tab. 1) . All data used to answer the research questions, together
with the Jupyter Notebook used for the analysis, are available in
the replication package [4].

2https://fmselab.github.io/ct-competition/
3https://github.com/fmselab/ct-competition/raw/gh-pages/examples/ADD_
CTWedge.zip

4

https://fmselab.github.io/ct-competition/
https://github.com/fmselab/ct-competition/raw/gh-pages/examples/ADD_CTWedge.zip
https://github.com/fmselab/ct-competition/raw/gh-pages/examples/ADD_CTWedge.zip

Multi-thread Combinatorial Test Generation with SMT solvers SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

Table 1: Design of the experiments

RQ RQ Goal Model Set Solver N Threads Par. Ordering TC Ordering Num Exec. Other Tools

RQ1 SMT solver limited all 32 all all 3 -
RQ2 N threads limited SMTInterpol 1,2,4,5,16,32 all all 10 -
RQ3 Par. Ordering limited SMTInterpol 32 all all 10 -
RQ4 TC Ordering limited SMTInterpol 32 all all 10 -
RQ5 SMT vs MDD complete SMTInterpol 32 OD yes 3 pMEDICI
RQ6 SMT vs IPO complete SMTInterpol 32 OD yes 3 ACTS

(a) Test suite size

(b) Test suite generation time

Figure 3: Impact of the SMT solver used for test generation

4.1 RQ1: Is the choice of the SMT solver
important?

Since KALI is implemented using the java-smt library, the user
can choose which solver to adopt for test generation. Therefore, we
have performed the experiments with KALI using three different
solvers, namely Z3 [9], SMTInterpol [7], and PRINCESS [17]. Fig. 3a
and Fig. 3b report the impact of the SMT solver chosen, respectively,
on test suite size and generation time. As expected, the choice of
the SMT solver to be used does not significantly influence the test
suite size. On the other hand, the SMT solver has a great impact in
terms of generation time. In fact, in our case, SMTInterpol has been
demonstrated to be the one producing test suites in the shortest
amount of time4.
4The optimal performance of the SMTInterpol tool are confirmed also by the competi-
tion among SMT solvers https://ultimate.informatik.uni-freiburg.de/smtinterpol/news.
html

From now on, we test all the optimizations using only the SMT-
Interpol solver and 32 threads, unless otherwise specified. In the
following, we run the experiments to collect the data and evaluate
the impact of the optimizations by performing a set of Wilcoxon
Signed-Rank tests [21], in which the null hypothesis is rejected if
the p-value5 is smaller than 𝛼 = 0.05.

4.2 RQ2: What is the gain (if any) in
parallelizing the generation algorithm?

In order to assess whether the introduction of multi-threading
has improved the performance of the test generation tool, we have
executed the experiments on the limited model set using 1, 2, 4, 8, 16,
and 32 threads. Fig. 4a and Fig. 4b report the impact of the number of
threads used, respectively, on the test suite size and generation time.
In particular, Fig. 4a shows that the sum of test suite sizes initially
grows when the number of threads increases. This is the price of
having multiple threads working on test generation, since more test
context can be created. However, this effect may be mitigated (but
not overcome) by using a higher number of threads. On the other
hand, Fig. 4b evaluates the impact on the test suite generation time.
We can observe that introducing a higher number of threads allows
for reducing the test suite generation time. Thus, we can conclude,
as expected, that the main gain in parallelizing the process of test
generation is the significant reduction of the time required for it.

4.3 RQ3: Is the order of the parameters
important during tuple generation?

KALI can be configured for considering the parameters in a different
order during tuple generation. In particular, they can be considered
as declared (AD) in the combinatorial model, in an ascending (OA)
order in terms of the number of possible values, in a descending
(OD) order in terms of the number of possible values, or in a random
(RD) order. To evaluate the impact of the chosen parameter ordering
strategy, we have performed a Wilcoxon Signed-Rank test with the
following hypothesis:
• 𝐻0, the size (or generation time) of the test suites produced
with a parameter ordering strategy 𝑂1 is equal to the one of
a strategy 𝑂2;
• 𝐻𝐴

+, the size (or generation time) of the test suites produced
with a parameter ordering strategy𝑂1 is higher than the one
of a strategy 𝑂2;

5With the p-value we indicate the probability of obtaining test results at least as
extreme as the result actually observed, under the assumption that the null hypothesis
is correct.

5

https://ultimate.informatik.uni-freiburg.de/smtinterpol/news.html
https://ultimate.informatik.uni-freiburg.de/smtinterpol/news.html

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Andrea Bombarda, Angelo Gargantini, and Andrea Calvagna

(a) Test suite size

(b) Test suite generation time

Figure 4: Impact of the number of threads used for test gen-
eration

• 𝐻𝐴
− , the size (or generation time) of the test suites produced

with a parameter ordering strategy 𝑂1 is lower than the one
of a strategy 𝑂2;

Tab. 2a and Tab. 2c report which hypothesis is accepted based on
the comparison between an ordering strategy𝑂1 (on the rows) and
a second one𝑂2 (on the columns), respectively, in terms of test suite
size and generation time. Surprisingly, the results obtained suggest
that the order of the parameters does not influence the size of the
test suite as expected. In fact, using the parameters in the same
order in which they are declared in the combinatorial model leads
to the smallest test suites (see Tab. 2b) and to results comparable to
those obtained using the ordering in a descending way (OD). Note
that the models on which we have performed the experiments are
randomly generated by the CT-Competition organizers, and thus,
the advantages in using the AD ordering strategy may be related
to this random origin. In the following, we prefer OD over AD
because it is more predictable, since it does not depend on the order
in which the parameters are declared in the combinatorial model.
Our experiments do not show a considerable advantage in using
OD instead of AD, while in the literature OD performs much better
than AD. This is probably due to the nature of algorithms, where,
for IPO and variants, the order of parameters seems to significantly
affect the test suite size. On the contrary, in terms of test suite
generation time, the results report that the null hypothesis has to
be always accepted, thus, it is not possible to define a method that
is the most rapid.

Table 2: Statistical analysis of the impact of parameter order

(a) Impact on size

AD OD OA RD

AD – 𝐻0 𝐻𝐴
− 𝐻𝐴

−

OD 𝐻0 – 𝐻0 𝐻𝐴
−

OA 𝐻𝐴
+ 𝐻0 – 𝐻0

RD 𝐻𝐴
+ 𝐻𝐴

+ 𝐻0 –

(b) Average Size

Size

AD 731.62
OD 732.15
OA 734.78
RD 733.94

(c) Impact on generation time

AD OD OA RD

AD – 𝐻0 𝐻0 𝐻0
OD 𝐻0 – 𝐻0 𝐻0
OA 𝐻0 𝐻0 – 𝐻0
RD 𝐻0 𝐻0 𝐻0 –

4.4 RQ4: Is the order of the test contexts
important during test generation?

KALI implements an option that allows ordering the test contexts,
aiming to choose the best one, i.e. the one that is more likely able to
cover the new tuple. To evaluate the impact of test context ordering
on test generation, we have performed a Wilcoxon Signed-Rank test
with the following hypothesis:
• 𝐻0, the size of the test suites produced when the ordering
optimization is activated is the same as the one obtained
when the optimization is not activated;

The data allowed us to reject the hypothesis 𝐻0 and claim that the
size of the test suites is smaller when the ordering optimization is
activated. Moreover, we have performed the same analysis on the
test suite generation time:
• 𝐻0, the generation time for the test suites produced when
the ordering optimization is activated is the same as the one
obtained when the optimization is not activated;

The data allowed us to reject the hypothesis 𝐻0 and claim that the
generation time for the test suites is, in general, higher when the
ordering optimization is activated. In conclusion, looking at the
evaluation results, we can observe that ordering the test contexts
before trying to assign them a tuple allows producing smaller test
suites, with a consistently lower variance, but requires more time.

Once we have tested all the optimizations, we performed an
evaluation of KALI w.r.t. other tools using all the 300 benchmarks
of the evaluation phase of the CT-competition, by executing 3
times each model and keeping only the best test execution. From
the results of the previous research questions, we have configured
KALI for using the best configuration possible, i.e., 32 threads (since
it is the number of threads - greater than 1 - leading to the lowest
total size), the SMTInterpol solver, the ordering optimization for
test contexts enabled, and the OD parameter ordering. Moreover,
we have set a timeout of 300 seconds for each execution, in order
to cap the test generation time.

6

Multi-thread Combinatorial Test Generation with SMT solvers SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

4.5 RQ5: Is the SMT solver also efficient when
no constraints would require its use?

The main advantage of using an SMT solver for generating tests
from combinatorial models is that it allows dealing with all types
of parameters (including enumeratives) and constraints (including
mathematical operations and comparisons between parameters).
However, SMT solvers exploit complex sets of heuristics (depending
also on the type of the variables contained in the solver context),
which can slow down the generation process.

Thus, we have wondered if other solutions are better performing
than SMT-based generation tools when the constraints do not re-
quire the advanced functionalities offered by the SMT solvers. For
this reason, we have compared the performance of KALI and that
of pMEDICI [3], which is based on the same concept of parallel test
generation but uses multivalued decision diagrams (MDDs) instead
of SMT solvers.

By analyzing the results, we could observe that pMEDICI per-
forms better than KALI in most executions, especially in terms of
test suite generation time. Also in terms of timeouts, pMEDICI fails
only 9 times, whereas KALI 10.

In order to validate our preliminary observations, we have per-
formed a Wilcoxon Signed-Rank test comparing the results of KALI
and pMEDICI, in which the unsupported and timed-out models
have been excluded, with 𝐻0 stating that the two tools have the
same test suite size and test suite generation time. For the genera-
tion time, the null hypotesis can be rejected and, as we preliminarly
observed, we can conclude that KALI requires more time to gener-
ate test suites. On the other hand, for the test suite size, the obtained
𝑝𝑣𝑎𝑙𝑢𝑒 is too high and no conclusions can be drawn from the ex-
periments, so the performances of the two tools can be considered
comparable. We suspect that the low time performance is due to
the overhead of the SMT solvers w.r.t. the one of MDDs and to the
way in which enumeratives are to be encoded by using the java-smt
library. For this reason, a specific SMT solver, natively allowing the
use of enumeratives, should be investigated. Thus, we believe that
the SMT-based solution implemented in KALI is justified, at least
for now, only when constraints require the use of SMT solvers, i.e.,
when comparisons between parameters or mathematical operations
are needed.

4.6 RQ6: Is our approach as efficient as others
already known in the literature?

As described in Sect. 2.3, through the use of SMT solvers, KALI is
able to support all the kinds of parameters and constraints. However,
in the literature, other tools supporting the same type of constraints
and parameters are available, among which ACTS [24] is one of the
most used. By analyzing the data collected with KALI and ACTS on
the same benchmarks (including those not supported by pMEDICI),
we could observe that ACTS performs better than KALI in most
executions. Also in terms of timeouts, ACTS never fails, whereas
KALI fails 26 times.

In order to validate these considerations, we have performed
aWilcoxon Signed-Rank test, excluding all the instances in which
KALI timed out, with 𝐻0 stating that the two tools have the same
test suite size and test suite generation time. In both cases, we can
reject the null hypothesis, and confirm our preliminary observations

that KALI is, in general, slower in generating test suites than ACTS
and produces test suites with more test cases.

Advantages of using KALI. RQ5 and RQ6 clearly indicate that the
use of the approach implemented by KALI comes with a price.
However, we can identify two main advantages w.r.t. other tools
and algorithms:

• pMEDICI outperforms KALI especially for generation time,
but it cannot deal with complex constraints that cannot be
represented in MDDs. For example, even simple constraints,
such as 𝑥 = 𝑦 where 𝑥 and 𝑦 are parameters, cannot be
directly represented in an MDD. More complex constraints
that include mathematical functions and numbers, such as
𝑥 > 𝑦 + 3, require the use of a more sophisticated constraint
solver, which is more demanding in terms of time.
• ACTS supports a large set of constraints, and it is very ef-
ficient. However, ACTS and similar approaches build the
whole test suite by adding a parameter one by one, and this
means that no test is complete until the generation is com-
pleted. KALI instead completes one test by one, and after
a short period of time a test case may be already available.
This makes approaches like KALI more suitable for online
testing [19], where test execution starts during test gener-
ation. In this case, having tests immediately available can
reduce the time required to discover faults and can drive test
generation to improve the fault detection capability.

5 RELATEDWORK
While covering array generation and application has been an active
field of research for several decades, very few attempts at parallel
CIT construction algorithms have been proposed so far, to the best
of our knowledge. In [5], the authors were the first to propose the
exploitation of high-performance, parallel computing environments
for combinatorial optimization problems. Particularly, they used the
GRID to run a multi-threaded algorithm that, given a sub-optimal
covering array, explores the spanning tree of available moves to
reduce its size while preserving coverage. In [6] a slightly different
refinements-based combinatorial algorithm is presented, designed
to build a covering array in any MPI compliant shared memory,
parallel computing environment. Both these and later works from
the same authors focus solely on proposing viable solutions to cope
with the scalability issues of larger combinatorial problems, i.e., by
means of parallel computing or incremental constructions, and do
not take constraints management into account.

Grieskamp et al. [12] propose an approach where the whole
constrained covering array computing problem is formalized as an
SMT constraint resolution task, for which the Z3 solver has been
integrated into an iterative test suite construction algorithm. It pro-
vides many desirable features, like i.e. support of seeded test cases,
generic propositional constraints, and variable strength coverage,
but the proposed approach is implemented as a sequential algo-
rithm. Younis et al. [22] proposed a new strategy called multi-core
modified input parameter order (MC-IPOG) that allows running
the IPOG algorithm [14] on multi-core systems. Avila et al. [1]
also presented a strategy to run parallel instances of a simulated
annealing metaheuristic combinatorial algorithm on the GRID.

7

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Andrea Bombarda, Angelo Gargantini, and Andrea Calvagna

Yilmaz et al. [15] approach is the first to leverage the computing
power of thousands of GPU cores for the parallel computation of
several instances of a meta-heuristic (again, simulated annealing)
algorithm. However, its support for constraints over the inputs
is limited to forbidden tuples, in turn managed by the integrated
Sugar CSP solver. Moreover, as the same authors noted, the effec-
tive implementation of a combinatorial heuristic algorithm aimed
at GPU hardware is not a straightforward task. Careful design of
the algorithm computational steps is required in order to ensure
the efficacy of the approach, as the CUDA API environment pro-
vides very specific and low-level parallel computing primitives
that were not primarily designed for combinatorial optimization
tasks. Recent work by Wang et al. [20] adopts Java Parallel Streams
multi-threading technology to improve the performance of the
fitness function computation required by a tabu-search based com-
binatorial optimization algorithm. In this approach, constraints are
supported as a set of minimal forbidden tuples (MFT) [23] against
which a SAT solver validates candidate test cases.

Our present work derives from the previous effort presented
in [3] and differentiates from it for a new heuristic strategy and the
integration of an SMT solver for constraints management, based
on the java SMT library java-smt. To contrast with existing related
works, our contribution is originally being the first combinatorial
testing approach that, to the best of our knowledge, implements
a combinatorial algorithm with a bottom-up parallel design and,
at the same time, fully supports constraints expressed as general
propositional formulas. No other reviewed approaches integrate
both features: in most of them, either parallel execution is applied
to just a single processing step or to run multiple instances of the
whole (sequential) heuristic algorithm. The remaining approaches,
even though feature a parallel algorithm, do not support constraints
or provide basic support by means of forbidden tuples listing.

6 CONCLUSIONS
In this paper, we have presented a technique, implemented in the
KALI tool, to generate combinatorial test suites. It exploits SMT
Solvers and the multi-threading capabilities of recent PCs in or-
der to reduce the time required for the generation of a test suite.
Our analysis has confirmed that KALI allows overcoming all the
limitations of tools already available in the literature (e.g., the in-
ability of those tools to deal with particular types of constraints).
However, the other side of the coin for this ability of dealing with
more complex models is, in general, the higher demand in terms of
generation time and the larger test suite size we produce with KALI.
Thus, as future work, we are planning to introduce some mecha-
nisms which allow reducing the size and the coordination effort
between threads, in order to optimize also the generation time. All
the analyses conducted in this paper are based on pairwise testing.
Nevertheless, our experiments show that our tool also works with
t-wise coverage, but further experiments are needed. In general,
we believe that the approach we devised for KALI, based on the
parallelization and on the use of several test contexts, is promising
and can be further extended with more functionalities, heuristics,
and coverage criteria.

REFERENCES
[1] H. Avila George. 2012. Constructing Covering Arrays using Parallel Computing

and Grid Computing. Ph. D. Dissertation. Universitat Politècnica de València.
[2] A. Bombarda, E. Crippa, and A. Gargantini. 2021. An environment for bench-

marking combinatorial test suite generators. In 2021 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE.

[3] A. Bombarda and A. Gargantini. 2022. Parallel Test Generation for Combinatorial
Models Based on Multivalued Decision Diagrams. In 2022 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE.

[4] A. Bombarda, A. Gargantini, and A. Calvagna. 2022. Replication package for the
paper "Multi-thread Combinatorial Test Generation with SMT solvers". https:
//github.com/fmselab/ct-tools/tree/main/KALI

[5] A. Calvagna, A. Gargantini, and E. Tramontana. 2009. Building T-wise Combi-
natorial Interaction Test Suites by Means of Grid Computing. In 2009 18th IEEE
International Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises. 213–218.

[6] A. Calvagna, G. Pappalardo, and E. Tramontana. 2012. A Novel Approach to
Effective Parallel Computing of t-Wise Covering Arrays. In 2012 IEEE 21st In-
ternational Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises. 149–153.

[7] J. Christ, J. Hoenicke, and A. Nutz. 2012. SMTInterpol: An Interpolating SMT
Solver. In Model Checking Software, Alastair Donaldson and David Parker (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 248–254.

[8] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. 2013. The MathSAT5
SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
Nir Piterman and Scott A. Smolka (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 93–107.

[9] L. De Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and
Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and
Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

[10] B. Dutertre. 2014. Yices 2.2. In Computer-Aided Verification (CAV’2014) (Lecture
Notes in Computer Science, Vol. 8559), Armin Biere and Roderick Bloem (Eds.).
Springer, 737–744.

[11] A. Gargantini and M. Radavelli. 2018. Migrating Combinatorial Interaction Test
Modeling and Generation to the Web. In 2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). 308–317.

[12] W. Grieskamp et al. 2009. Interaction coverage meets path coverage by SMT
constraint solving. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5826 LNCS
(2009), 97–112.

[13] C. Henard, M. Papadakis, and Y. Le Traon. 2015. Flattening or not of the combi-
natorial interaction testing models?. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 1–4.

[14] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. 2007. IPOG: A General
Strategy for T-Way Software Testing. In 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS'07). IEEE.

[15] H. Mercan, C. Yilmaz, and K. Kaya. 2019. CHiP: A Configurable Hybrid Parallel
Covering Array Constructor. IEEE Transactions on Software Engineering 45, 12
(2019), 1270–1291.

[16] J. Peleska, E. Vorobev, and F. Lapschies. 2011. Automated Test Case Genera-
tion with SMT-Solving and Abstract Interpretation. In Proceedings of the Third
International Conference on NASA Formal Methods (Pasadena, CA) (NFM’11).
Springer-Verlag, Berlin, Heidelberg, 298–312.

[17] P. Rümmer. 2008. A Constraint Sequent Calculus for First-Order Logic with
Linear Integer Arithmetic. In Proc., 15th Int. Conf. on Logic for Programming,
Artificial Intelligence and Reasoning (LNCS, Vol. 5330). Springer, 274–289.

[18] K. C. Tai and Y. Lie. 2002. A Test Generation Strategy for Pairwise Testing. IEEE
Trans. Softw. Eng. 28, 1 (jan 2002), 109–111.

[19] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. 2005. Online Testing
with Model Programs. SIGSOFT Softw. Eng. Notes 30, 5 (sep 2005), 273–282.
https://optdoi.org/10.1145/1095430.1081751

[20] Y. Wang et al. 2022. An Adaptive Penalty based Parallel Tabu Search for Con-
strained Covering Array Generation. Information and Software Technology 143
(2022).

[21] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in Software Engineering. Springer Berlin Heidelberg.

[22] Mohammed I. Younis and Kamal Z. Zamli. 2010. MC-MIPOG: A Parallel t-Way
Test Generation Strategy for Multicore Systems. ETRI Journal 32, 1 (feb 2010),
73–83.

[23] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn. 2015. Constraint handling
in combinatorial test generation using forbidden tuples. In 2015 IEEE Eighth
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW). 1–9.

[24] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. 2013. ACTS: A Combinatorial Test
Generation Tool. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. 370–375.

8

https://github.com/fmselab/ct-tools/tree/main/KALI
https://github.com/fmselab/ct-tools/tree/main/KALI
https://optdoi.org/10.1145/1095430.1081751

	Abstract
	1 Introduction
	2 Background
	2.1 Combinatorial Interaction Testing
	2.2 SMT solvers
	2.3 How to represent CIT models, constraints, tuples, and tests

	3 KALI: Using SMT solvers for test generation
	3.1 Tool architecture and algorithm
	3.2 Algorithm optimizations

	4 Experiments
	4.1 RQ1: Is the choice of the SMT solver important?
	4.2 RQ2: What is the gain (if any) in parallelizing the generation algorithm?
	4.3 RQ3: Is the order of the parameters important during tuple generation?
	4.4 RQ4: Is the order of the test contexts important during test generation?
	4.5 RQ5: Is the SMT solver also efficient when no constraints would require its use?
	4.6 RQ6: Is our approach as efficient as others already known in the literature?

	5 Related work
	6 Conclusions
	References

