
Automatic test generation with ASMETA for the
Mechanical Ventilator Milano controller

Andrea Bombarda1[0000−0003−4244−9319], Silvia Bonfanti1[0000−0001−9679−4551], and
Angelo Gargantini1[0000−0002−4035−0131]

Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione,
Università degli Studi di Bergamo, Bergamo, Italy

{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it

Abstract. This paper presents an automatic test cases generation method from
Abstract State Machine specifications. Starting from the ASMETA specification,
the proposed approach applies the following steps: 1. Generation of abstract tests
from a ASMETA model; 2. Optimization of the abstract tests; 3. Concretization
of the abstract tests in GoogleTest; 4. Execution of the concrete tests on C++
code. We have applied this approach to the Mechanical Ventilator Milano (MVM)
project, which our research group has contributed to develop, test, and certify
during the Covid-19 pandemic.

1 Introduction

In response to the lack of ventilators due to Covid-19, a group of physicists, engineers,
physicians, computer scientists, and others from 12 countries around the world has de-
veloped a simplified mechanical lung ventilator, called MVM (Mechanical Ventilator
Milano)1. The project started from an idea of the physicist Cristiano Galbiati, who was
also the leader, and our research group has been involved in the development and testing
of the device, in order to get the certifications from local authorities and distribute the
MVM in the hospitals of different countries. In only 42 days from the initial prototype
production to the demonstration of performances, the FDA (Food and Drug Adminis-
tration) declared that the MVM falls within the scope of the Emergency Use Authoriza-
tion (EUA) for ventilators and, during the following months, it has obtained the Health
Canada and the CE marking as well. Thanks to these achievements, the MVM can be
sold and used in the USA, but also in Canada and Europe.

During the development, as required by the standards, we (together with other col-
leagues) started to design the MVM controller (more details can be found in [1]) and
we have used the Yakindu Statechart Tool. Regarding unit testing, since Yakindu does
not provide an automatic test generator, tests were manually written and we were able
to test the entire machine in a satisfactory way, enough to obtain the required certifi-
cations. As well known, writing tests manually should be discouraged, especially if a
model is present, since it requires a significant amount of time and can be an error-prone
activity. Therefore, after the completion of the development and certification process,
we have wondered if test generation starting from formal specifications would have

1 https://mvm.care/

https://mvm.care/


Test Case Generator with
Model Checker

Abstract Tests
in Avalla

ASM 
Specification Test Optimizer

Optimized 
Tests

Avalla to
GoogleTest

Concretized
GoogleTestTest executor

Test results +
Code coverage

C code json conf file

Fig. 1: Test generation and execution process

been applicable in this case and since we still have access to the source code of the
MVM, we decided to apply a Model-based-testing (MBT) method to this project. We
have decided to use the ASMETA [2] framework which we are familiar with and which
offers all the necessary techniques (including those for V&V, missing in Yakindu).

We have started from the ASM specifications of the MVM controller and we have
validated and verified our formal specification. Using a model checker we have gener-
ated abstract test sequences, that have been optimized and, then, concretized in order
to be executable on the C++ implementation of the MVM controller. By evaluating the
coverage reached with this testing process, we have obtained better results than the one
got with manual tests. The entire process is presented in the following sections.

2 Test generation

The testing process applied to the case study is depicted in Fig. 1. It starts from the ASM
specifications, which have been validated, and verified - but the modeling activity is not
reported here for brevity. Starting from the ASM model, abstract tests are generated by
the ATGT tool, exploiting the counterexample generation of the model checker. Tests are
saved in Avalla, the language used to write scenarios in ASMETA [2]. In this paper, we
extend the approach presented in [11] by generating test sequences using the bounded
model checker (BMC) and Linear Temporal Logic (LTL) properties. ATGT generates
the test predicates which are then translated to suitable LTL temporal properties, called
trap properties whose counterexamples generated by the BMC are the tests we are
looking for. Test predicates are generated by applying the following coverage criteria:
1. Basic rule (every rule ri is executed at least once), 2. Complete rule (every rule is
executed and performs a non trivial update), 3. Rule update (every update is performed
once and it is not trivial), 4. Rule guard (every guard is evaluated true at least once, and
false at least once), 5. MCDC (Modified Condition Decision coverage of the guards),
6. 2-wise (pairwise testing of all the inputs - with a limited domain).

In this case study, tests are generated using the monitoring optimization: when a
test sequence ts is generated for a test predicate yet to cover, the algorithms checks if ts
covers accidentally other test predicates and it skips the test predicates already covered.

Moreover, we have introduced a timeout: for every test predicate tp to be covered,
the model checker is interrupted if it reaches the timeout before producing a test, either
because the test that covers tp exists but the model checker is unable to find it or because
tp is unfeasible, i.e. there is no test that covers it and the trap property is actually true.
However, because ATGT uses the classical bounded model checking, it is unable to
distinguish the two cases by proving test predicates unfeasibility.

2



Table 1: Comparison between different criteria for automatic test cases generation

Criteria #Tps
Timeout 10 minutes Timeout 40 minutes

#Tests #Time- Generation #Tps %Tps #Tests #Time- Generation #Tps %Tps
outs time [min] covered covered outs time [min] covered covered

Basic rule 72 13 29 345 43 60% 24 11 773 61 85%
Complete rule 2 0 0 0 2 100% 0 0 0 2 100%
Rule guard 124 1 60 601 64 52% 1 27 1080 97 78%
Rule update 89 0 52 520 37 42% 0 25 1000 64 72%
MCDC 148 10 55 581 93 63% 9 24 997 124 84%
2-wise 420 77 0 1 420 100% 73 0 1 420 100%

All criteria 853 101 196 2048 659 77% 107 87 3852 768 90%

Code 1: Original scenario
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Code 2: Check Opt.
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...
set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Code 3: Set Opt.
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...
step
check iValve = OPEN;

Tab. 1 reports the comparison in terms of test predicates, number of generated tests,
number of timeouts, generation time, and number of test predicates covered for each
coverage criteria by setting two different timeouts of 10 and 40 minutes.

We can observe that by increasing the timeout, the total number of covered test pred-
icates increases (from 77% with timeout 10 minutes to 90% with timeout 40 minutes)
as well as the number of generated tests and the generation time. For each coverage
criterion, the number of tps covered increases from 10 minutes timeout to 40 minutes
timeout, except for complete rule and 2-wise criteria. Considering complete rule, no test
is generated because, due to the monitoring optimization, all tps are already covered by
tests generated with basic rule criteria. For the 2-wise criterion, in both cases all the tps
are covered. There is a difference in the number of generated tests that is greater with 10
minutes timeout. This is because of the lower timeout, fewer tests are generated before
trying to cover 2-wise, so more tps will result uncovered and they will need more tests.

Remark: We suspect that many of the uncovered test predicates are unfeasible. Be-
ing able to prove unfeasible test requirements is necessary to give complete information
about the real coverage of the specification. We plan to extend ATGT in order to support
proof by induction using the IC3 algorithm (as we did for property verification).

Test optimization. Once the abstract tests are generated, we perform the following (op-
tional) test optimizations, which do not change the semantic of the tests but improve the
readability and the translatability of the abstract tests to concrete ones.
1. Check optimization: This operation removes unchanged controlled locations. If a
controlled location in state si has not changed w.r.t. state si−1, the corresponding check
is removed, if present. For instance, in Code 1 check command on the location iValve
is repeated, so it is possible to remove the second one (see Code 2).

3



[{”asmName”: ”startVentilation”,
”cName”: ”startVentilation”,
”commandType”: ”IN EVENT”

},{”asmName”: ”time”, ”cName”: ”time”,
”commandType”: ”TBD”

},{”asmName”: ”iValve”,

”cName”: ”defaultMock−>getInValveStatus”,
”commandType”: ”OPERATION”

},{”asmName”: ”state”, ”cName”: ”state”,
”commandType”: ”STATE”

},{”asmName”: ”mode”, ”cName”: ”mode”,
”commandType”: ”VAR”}]

Code 4: JSON file for function mapping

2. Set optimization: It aims to remove set commands of monitored variables in state
si−1 if they are not actually asked to compute the update set for state si. In Code 2, the
second instance of set respirationMode = PCV is removed in Code 3 since it is useless.

The average number of check and set per state in the generated scenarios without
optimization is respectively 37 and 15. By applying the check optimization technique
the optimized scenarios have an average of 11.22 check per state, while by applying the
set optimization the average of set per state became 3.31.

3 Test concretization

We have concretized Avalla tests as unit tests in the GoogleTest framework, in order to
be executed on the C++ code of the MVM controller generated by Yakindu. The con-
cretization process consists of the following three consecutive steps explained below.

1. Mapping of ASMETA functions to state machine variables. To map each ASM func-
tion with the corresponding function in C++ code, we introduce a configuration file in
the JSON format. It is automatically generated and filled with all the functions set or
checked in the Avalla scenarios which can be adjusted manually.

For each function, the JSON file contains: • asmName, i.e., the name of the func-
tion in the ASMETA model; • cName, representing the name of the corresponding
function in C++ code; • commandType indicating the type of the function chosen be-
tween IN EVENT, VAR, OPERATION, STATE, and TBD (TBD is the default type and
TBD functions are ignored during test concretization).

An example of the JSON file is reported in Code 4. The functions startVentilation is
IN EVENT since it is raised by the user. mode is VAR because it represents an internal
field of the state machine, and iValve is OPERATION function type because it interacts
with hardware components, i.e. the input valve. Functions used only in the ASMETA
model but not in the C++ code (e.g. time) are set to be ignored (TBD type).

2. Hardware mocking: Since the MVM state machine interacts with hardware, during
test concretization we needed to append in the generated C++ test file some hardware
mock. It has been written using the same interface as the real classes of the hardware
components and it is included automatically by the scenario concretization process.

3. GoogleTest code generation: Starting from the Avalla scenarios and using the JSON
configuration and the mocking files, we have concretized the tests in GoogleTest. MVM
has been developed as a cycle-based state machine. For this reason, we have defined the
main cycle duration of 100 ms as in the C++ implementation, which is used to con-
vert the step command in proceed time(100) command in GoogleTest. The other Avalla

4



set mode := PSV;
set startVentilation := true;
step
check time = 3;
check oValve = CLOSED;
check iValve = OPEN;
check state =

MAIN REGION PSV R1 INSPIRATION;

sm−>setMode(PSV);
sm−>raiseStartVentilation();
runner−>proceed time(100);

EXPECT EQ(valveMock−>getOutValveStatus() , CLOSED);
EXPECT EQ(valveMock−>getInValveStatus() , OPEN);
EXPECT TRUE(sm−>isStateActive(

MAIN REGION PSV R1 INSPIRATION));

Code 5: Test concretization from an Avalla scenario fragment to a GoogleTest test case

commands are concretized as explained in Tab. 2. Code 5 shows a test concretization
example of an Avalla scenario. IN EVENT functions (such as startVentilation) are raised
only when they are set to true in the Avalla scenario. VAR functions, like mode, are set in
the GoogleTest test case when there is a corresponding set in the Avalla scenario, while
OPERATION functions, such as iValve, are translated in method calls. VAR and OPER-
ATION functions are controlled when they are checked in the Avalla scenario. Finally,
the STATE function represents the active state of the machine.

4 Test execution

Having concretized the optimized tests, we have tested the C++ code of the MVM con-
troller with them. Tab. 3 reports the incremental coverage reached with the tests. These
results confirm those reported in Tab. 1: increasing the timeout leads to an increment
of the covered test predicates and the code. The table shows that every criterion, ex-
cept complete rule and rule update for which no test is generated, improves the code
coverage, so we cannot claim that any criterion could have been skipped.

We believe that higher values of coverage are difficult to be obtained since we
started from the code generated by Yakindu SCT and many parts of the code are only
used by Yakindu itself and can not be mapped in external calls.

Remark: Generating code automatically may hinder testers in reaching a complete
code coverage because some code could never be covered or because it would require
adding ad hoc tests that can not be easily derived from the behavior specifications.

With automatic test case generation, we are able to improve the coverage of the
controller compared to the coverage obtained with handwritten test cases. Nevertheless
unit testing the MVM controller was not mandatory in order to obtain the safety cer-
tification, it is important, since its behavior affects the valves position. However, these
tests can be used for integration testing, which is mandatory for the certification.

Table 2: Translation rules between Avalla and GoogleTest instructions (sm is the generic
name used to indicate the state machine object in Yakindu)

Function type Set Check

STATE // EXPECT_TRUE(sm->isStateActive([stateName]))

IN EVENT sm->raise[cName]() //

VAR sm->set[cName]([value]) EXPECT_EQ(sm->get[cName](),[value])

OPERATION [cName]([value]) EXPECT_EQ([cName](),[value])

5



Table 3: Coverage reached using different timeouts and coverage criteria

Criteria
Timeout 10 minutes Timeout 40 minutes

Statement Cov. Branch Cov. Function Cov. Statement Cov. Branch Cov. Function Cov.

Basic rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%
Complete rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%
Rule guard 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%
Rule update 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%
MCDC 70.24% 69.85% 65.54% 81.48% 81.74% 80.07%
2-wise 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

All criteria 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

5 Related works

In this paper, we generate concrete tests starting from the formal specification of the
MVM controller. In [5, 6], from an ASMETA specification, C++ unit tests are automat-
ically generated (using the Boost Test library) and they are executed against the C++
code automatically generated from the ASMETA specification. The main difference
with the approach presented in this paper is that the code is already available and a
map between ASMETA functions and C++ functions is required. This is a widely used
methodology, especially when the formal model of the SUT is available [10,12]. In this
work and in [4], we start from the ASM specification of the SUT, but many other tech-
niques have been used in the literature. For example, in [3] tests are generated off-line,
starting from a Timed Output Input Symbolic Transition System. This process is known
as conformance testing since the testers want to check the conformance between formal
specifications and the actual system [8]. FSMs, or their extensions, are often used for
this purpose [9, 13, 14]. However, the concretization of the generated tests has to be
performed in different ways in order to be executed against the actual implementation.
In this paper, we propose a test concretization methodology starting from Avalla sce-
narios and resulting in a collection of GoogleTest test cases. Other approaches exploit
different tools, such as the ACT one [7] that can be used for concretizing abstract tests
from formal specifications of web applications. Though Yakindu does not have an in-
tegrated model checker, other tools like Gamma [15] provide an environment to verify
properties but they do not generate automatically an entire test suite.

6 Conclusion

In this paper, we have presented an approach to automatically generate test cases from
ASMETA specification. The ATGT tool generates abstract tests by means of the model
checker and then they are concretized into GogoleTest cases. The unit tests are then
executed on C++ code and test results and code coverage are collected. This approach
has been successfully applied to the MVM case study, the code coverage is increased
compared to the one obtained with handwritten tests. As future work, we plan to com-
pare probabilistic random test generation instead of using the model checker, since the
counterexample generation is very time-consuming.

6



References

1. Abba, A., et al.: The novel mechanical ventilator milano for the COVID-19 pandemic.
Physics of Fluids 33(3), 037122 (mar 2021). https://doi.org/10.1063/5.0044445

2. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: The
ASMETA Approach to Safety Assurance of Software Systems, pp. 215–238. Springer Inter-
national Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-76020-5 13

3. Bannour, B., Escobedo, J.P., Gaston, C., Le Gall, P.: Off-line test case generation for timed
symbolic model-based conformance testing. In: Nielsen, B., Weise, C. (eds.) Testing Soft-
ware and Systems. pp. 119–135. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

4. Bombarda, A., Bonfanti, S., Gargantini, A., Radavelli, M., Duan, F., Lei, Y.: Combining
model refinement and test generation for conformance testing of the IEEE PHD protocol
using abstract state machines. In: Testing Software and Systems, pp. 67–85. Springer Inter-
national Publishing (2019)

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ unit tests from ab-
stract state machines specifications. In: 2018 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). IEEE (apr 2018).
https://doi.org/10.1109/icstw.2018.00049

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code generator
from Abstract State Machines specifications. Journal of Software: Evolution and Process
32(2) (nov 2019)

7. Bubna, K., Chakrabarti, S.: Act (abstract to concrete tests) - a tool for generating concrete test
cases from formal specification of web applications. In: ModSym+SAAAS@ISEC (2016)

8. Cavalli, A.R., Maigron, P., Kim, S.U.: Automated protocol conformance test generation
based on formal methods for lotos specifications. In: Proceedings of the IFIP TC6/WG6.1
Fifth International Workshop on Protocol Test Systems V. p. 237–248. North-Holland Pub-
lishing Co., NLD (1992)

9. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-
based conformance testing methods: A survey annotated with experimental eval-
uation. Information and Software Technology 52(12), 1286–1297 (dec 2010).
https://doi.org/10.1016/j.infsof.2010.07.001

10. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey. Software Test-
ing, Verification and Reliability 19(3), 215–261 (sep 2009). https://doi.org/10.1002/stvr.402

11. Gargantini, A., Riccobene, E.: ASM-based testing: Coverage criteria and automatic test se-
quence generation. JUCS - Journal of Universal Computer Science 7(11), 1050–1067 (nov
2001). https://doi.org/10.3217/jucs-007-11-1050

12. Hong, H., Lee, I., Sokolsky, O.: Automatic test generation from statecharts using model
checking. Technical Reports (CIS) (10 2001)

13. Kalaji, A., Hierons, R.M., Swift, S.: A search-based approach for automatic test
generation from extended finite state machine (EFSM). In: 2009 Testing: Academic
and Industrial Conference - Practice and Research Techniques. pp. 131–132 (2009).
https://doi.org/10.1109/TAICPART.2009.19

14. Merayo, M.G., Núñez, M., Rodrı́guez, I.: Formal testing from timed fi-
nite state machines. Computer Networks 52(2), 432–460 (feb 2008).
https://doi.org/10.1016/j.comnet.2007.10.002

15. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma statechart composition
framework: design, verification and code generation for component-based reactive systems.
In: Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings. pp. 113–116. ACM (2018). https://doi.org/10.1145/3183440.3183489

7

https://doi.org/10.1063/5.0044445
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1109/icstw.2018.00049
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1002/stvr.402
https://doi.org/10.3217/jucs-007-11-1050
https://doi.org/10.1109/TAICPART.2009.19
https://doi.org/10.1016/j.comnet.2007.10.002
https://doi.org/10.1145/3183440.3183489

	Automatic test generation with ASMETA for the Mechanical Ventilator Milano controller

