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Abstract—Medical device software malfunctioning can lead to
injuries or death for humans and, therefore, its development
should adhere to certification standards. However, these stan-
dards establish general guidelines on the use of common software
engineering activities without any indication regarding methods
and techniques to assure safety and reliability.

This paper presents a formal development process, based on
the Abstract State Machine method, that integrates most of
the activities required by the standards. The process permits
to obtain, through a sequence of refinements, more detailed
models that can be formally validated and verified. Offline and
online testing techniques permit to check the conformance of the
implementation w.r.t. the specification. The process is applied
to the validation of the SAM medical software, that is used to
measure the patients’ stereoacuity in the diagnosis of amblyopia.

Index Terms—medical software, certification standards, Veri-
fication & Validation, Abstract State Machines

I. INTRODUCTION

In medical devices, human safety depends upon the correct
operation of the software controlling the device: software
malfunctioning can cause injuries to, or even the death of,
patients. Therefore, medical software certification is a crucial
issue. Medical software requires validation and verification to
ensure its correct behavior, and its development should adhere
to some guidelines prescribed by standards.

Currently, the most relevant standards of medical devices, as
ISO 13485 [1], ISO 14971 [2], IEC 60601-1 [3] and the EU
Directive 2007/47/EC [4], mainly focus on physical aspects
and electrical components rather than on software. The main
reference concerning development of medical device software
is the standard IEC 62304 [5] (International Electrotechni-
cal Commission) which classifies medical software in three
classes on the basis of the potential injuries caused, and
defines the required software documentation of appropriate
life cycle activities. Besides standards, the FDA (Food and
Drug Administration) has established General Principles of
Software Validation [6] applicable to medical software. It
defines several broad concepts that can be used as guidance for
software validation and verification, although no specific life
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cycle model or specific technique or method is recommended.
It mainly requires that software validation and verification are
conducted throughout the entire software life cycle.

Both IEC standard and FDA principles aim for more rigor-
ous approaches, based on the use of formal methods, to assure
safety and reliability of software for medical devices [7].
Potential methods should allow writing well-defined models
that can be used to guide the software development, to prove
that safety-critical properties hold, and to guarantee confor-
mance of device software to behavioral models specifying safe
device operation (since, most of the time, software for medical
devices is not developed from scratch). Furthermore, it must
be endowed with a set of tools for modeling and analysis.

In the wide range of existing formal methods, the Abstract
State Machines [8] is a system engineering method able to
guide the development of software and embedded systems
seamlessly from requirements capture to their implementa-
tion. Within a precise but simple conceptual framework, the
ASM method allows a modeling technique which integrates
dynamic (operational) and static (declarative) descriptions, and
an analysis technique that combines validation (by simulation
and testing) and verification methods at any desired level of
detail. ASMs are an extension of Finite State Machines. The
method has, therefore, a rigorous mathematical foundation, but
a practitioner needs no special training to use the method since
ASMs can be correctly understood as pseudo-code or virtual
machines working over abstract data structures.

ASMs allow a design process based on the concept of a
ground model representing a precise but concise high-level
specification of the system, and on the refinement principle that
allows to capture all details of the system design by a sequence
of refined models till the desired level of detail. Validation and
verification (V&V) are fully integrated into the ASM design
process, and, at any abstract level, a series of tools can be
used for different forms of analysis both at model level w.r.t.
the requirements, and at code level w.r.t. the models.

By exploiting the advantages that ASMs offer, both in terms
of software life cycle activities and in terms of developing
methods and tools, in this paper we present an FDA-compliant
software development process. It inherits the mathematical
rigor and the variety of techniques and tools of the ASMs, and
it is compliant with the principles and the concepts required by
the FDA principles, especially those regarding the integration



of V&V activities. The main contribution of our work is to
define a process for rigorous development of software for
medical devices where (i) models are a mathematical-base
for safety properties assurance; (ii) V&V activities can be
planned, performed continuously along the software life cycle,
and always aimed at defect prevention; (iii) software quality
evaluation can be carried out in an objective and repeatable
manner, i.e., by ”independence of review” [6]; and (iv) a
device manufacturer can always demonstrate that software has
been validated and verified.

We show the results of the application of the ASM-based
FDA-compliant V&V process to the SAM (Stereo Acuity Mea-
surer) software. This is a component of a medical application,
called 3DSAT, developed within the 3D4amb project1 for the
diagnosis of amblyopia, a disorder of sight also called lazy
eye. The SAM component is used to measure young patients’
stereoacuity, and belongs to the class B (non-serious injury
is possible) on the basis of the IEC 62304 classification. A
local Italian hospital is testing the effectiveness of the 3DSAT
software w.r.t. standard opthalmologic methods. The ongoing
work is to formally validate and verify the tool in order
to avoid wrong diagnoses and possible injuries to patients.
The long term goal of this research is to establish rigorous
evaluation methods and tools to assure safe and reliable
medical software operation.

The paper is organized as follows. Sect. II briefly presents
standards available for the certification of medical software.
After an introduction to the ASMs in Sect. III, Sect. IV
describes an ASM-based formal development method that has
the aim to comply with the related standards. Sect. V presents
a case study, and Sect. VI and VII show how the ASM-based
method has been applied to the case study. Sect. VIII presents
some related work, and Sect. IX concludes the paper.

II. MEDICAL SOFTWARE STANDARDS AND GUIDELINES

Here we very briefly review the main concepts of standards
and guidelines on medical software development, skipping
those more related to physical aspects of medical devices.

The standard IEC 62304 defines safety classes of the
software. The classification is based on the potential to cause
an injury to a patient in case of software malfunction:
• Class A: No injury or damage to health is possible
• Class B: Non-serious injury is possible
• Class C: Death or serious injury is possible
IEC 62304 defines the software documentation for each

class as shown in Table I. Class A does not require testing
and verification since this class of medical device software is
not critical. These activities are required for software of classes
B and C, since software malfunctioning may cause injuries.
Class C also requires a detailed design.

FDA recommends an integration of software life cycle
management and risk management activities [6]. The FDA
guidelines list some general principles that should be consid-
ered for software V&V process: 1) A documented software

1http://3d4amb.unibg.it/

Software documentation Class
A B C

Software development plan X X X
Software requirements specification X X X
Software architecture X X
Software detailed design X
Software unit implementation X X X
Software unit verification X X
Software integration and integration testing X X
Software system testing X X
Software release X X X

Table I
IEC 62304 SOFTWARE DOCUMENTATION

requirements specification to be used as baseline for V&V;
2) A continuous attention on defect prevention; 3) Prepara-
tion for software V&V early and conducted throughout the
software life cycle; 4) Software V&V considered within the
software life cycle model; 5) Software V&V plan to guide the
activities; 6) Procedures for V&V activities, tasks and work
items identifying the specific actions to be taken; 7) Software
V&V upon any (software) change; 8) Validation coverage
based on software complexity and safety risk; 9) Independence
of review to guarantee the software quality; 10) Device manu-
facturer has flexibility in choosing V&V principles, but retains
ultimate responsibility for demonstrating that the software has
been validated and verified.

III. ABSTRACT STATE MACHINES AND THE METHOD

Abstract State Machines (ASMs) are an extension of Finite
State Machine where unstructured control states are replaced
by states with arbitrary complex data. A state represents the
instantaneous configuration of the system under development,
and transition rules describe the change of state. ASM states
are multi-sorted first-order structures, i.e., domains of objects
with functions and predicates defined on them. ASM transition
rules express how function interpretations are modified from
one state to the next one, and therefore describe the system
configuration changes. The basic form of a transition rule is the
guarded update: “if Condition then Updates”, where Updates
is a set of function updates of the form f(t1, . . . , tn) := t
which are simultaneously executed when Condition is true; f
is an arbitrary n-ary function and t1, . . . , tn, t are first-order
terms.

An ASM state is represented by a set of couples (location,
value). ASM locations represent the abstract ASM concept
of basic object containers (memory units). Location updates
represent the basic units of state change.

Besides if-then, there is a limited but powerful set of
rule constructors: par for simultaneous parallel actions, seq
for sequential actions, choose for nondeterminism (existential
quantification), forall for unrestricted synchronous parallelism
(universal quantification).

Functions that never change during any run of the machine
are static. Those updated by agent actions are dynamic, and
distinguished between monitored (only read by the machine



Figure 1. Control state ASMs – Alternative definition

and modified by the environment), and controlled (read and
written by the machine).

A computation of an ASM is a finite or infinite sequence
s0, s1, . . . , sn, . . . of states of the machine, where s0 is an
initial state and each sn+1 is obtained from sn by simultane-
ously firing all the transition rules which are enabled in sn.
The (unique) main rule is a transition rule and represents the
starting point of the computation. An ASM can have more
than one initial state. It is possible to specify state invariants.

When modeling control systems, as it is often the case for
medical device software, it could be useful to use a particular
class of ASMs, called control state ASMs [8], suitable to
explicitly model system modes (or control states). Control state
ASMs have an intuitive graphical representation by means of
control state diagrams. To express a decision point depending
on the value of an enumerative function (even boolean), we
introduce here a variant of control state diagram in [8]. It is
shown in Fig. 1, together with its corresponding mathematical
model. Each value taken by x (specified as a label on the
arrow) corresponds to a different statement. An arrow without
label is to be understood as x is different from the values
reported on all the other arrows exiting from the guard (at
most one unlabelled arrow can exit from a guard).

For system specification, the ASM method builds upon two
further concepts [8]:
• ground model, an ASM which is a first reference model

for the design;
• model refinement, a general scheme for stepwise instanti-

ations of model abstractions to concrete system elements,
providing controllable links between the more and more
detailed descriptions at the successive stages of system
development.

The modelling activity is supported by a number of V&V
activities on models, already applicable at the ground level
and along the chain of refined models, that help to guarantee
correctness of the developed system.

IV. ASM-BASED FDA-COMPLIANT V&V PROCESS

A. ASM-based V&V process

A rigorous process for ASM-based development [9], based
on the concepts of ground model and model refinement, is here
presented for medical device software. The process is depicted
in Fig. 2: the modelling activity is complemented with a num-
ber of other activities on models and eventually on code. All
these activities help the modeler to develop a correct system
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Figure 2. ASM-based development process

in a correct way. A set of tools exists to support the developer
in the various activities and to make the ASM method useful
in practice. The process is not automatic, but it is automatable
if an order among the activities is imposed. Tools are part of
the ASMETA (ASM mETAmodeling) framework2 [10], and
are strongly integrated in order to permit reusing information
about models during different development phases. The IDE
AsmEE is available to assist the user when editing an ASM
model by using the concrete syntax AsmetaL [11].

An abstract ground model (ASM0 in Fig. 2) is specified
using terms of the application domain by reasoning on the
informal requirements (generally given as a text in natural
language), possibly with the involvement of all stakeholders.
The ground model should be correct, i.e., it reflects the
intended initial requirements, and consistent, i.e., it removes
ambiguities of the initial textual requirements. However, it
does not need to be complete, i.e., it may leave some given
functional requirements unspecified.

From the ground model, by step-wise refined models, fur-
ther details are added to capture all the functional requirements
and provide descriptions of the complete software architecture
and component design of the system. In this way, the com-
plexity of the system can be always taken under control, and it
is possible to bridge, in a seamless manner, the gap between
specification and code. Each time a model is specified as a
refinement of an abstract one, refinement correctness should
be checked. This can be done by hand, but we provide an
automatic way to achieve this assurance in case of stuttering
refinement, a restricted form of ASM refinement. The tool
ASMRefProver automatically checks stuttering refinement
between two ASM models (see Sect. VII-A).

Modelling activity is supported, at each level of refinement,
by model validation and verification (V&V). Model validation
should be applied, already at ground model level, in order
to ensure that the specification really reflects the user needs
and statements about the system, and to detect faults in the

2http://asmeta.sourceforge.net/



specification as early as possible with limited effort. ASM
model validation is possible by means of the model simu-
lator AsmetaS [11] (see Sect. VII-B) and by the validator
AsmetaV [12] (see Sect. VII-C) that allows to build and
execute scenarios of expected system behaviours. A further
validation technique is model review (a form of static anal-
ysis) to determine if a model has sufficient quality attributes
(as minimality, completeness, consistency). Automatic ASM
model review is possible by means of the AsmetaMA tool [13]
(see Sect. VII-D).

Validation usually precedes the application of more expen-
sive and accurate methods, like formal requirements analysis
and verification of properties, that should be applied only when
a designer has enough confidence that the specification cap-
tures all informal requirements. Formal verification of ASMs
is possible by means of the model checker AsmetaSMV [14]
(see Sect. VII-E). Both Computation Tree Logic (CTL) and
Linear Temporal Logic (LTL) formulas can be proved.

When an actual code of the system implementation is
available, either derived from the model as last low-level
refinement step, or externally provided, also conformance
checking (see Sect. VII-G) is possible. Both model-based
testing and runtime verification can be applied to check if
the implementation conforms to its specification. We support
conformance checking w.r.t. Java code. The tool ATGT [15]
can be used to automatically generate tests from ASM models3

and, therefore, to check the conformance offline; CoMA [16],
instead, can be used to perform runtime verification, i.e., to
check the conformance online.

In Sect. V, we present the application of the proposed
process to the SAM case study.

B. How ASM V&V process achieves FDA principles

The proposed process realizes the FDA guideline principles
as explained in the following.

Requirements specification includes the identification, anal-
ysis, and documentation of information about the device and
its intended use. The ASM development process, based on
refinement, clearly specifies and documents the requirements
as a chain of ASM models that provide a rigorous baseline
for both validation and verification.

The modeling process permits a continuous defect preven-
tion. Indeed, along the chain of refinements proved correct,
models preserve the desired properties, starting from a very ab-
stract system description to the actual implementation. Safety
properties are formally proved on models. However, this is
not enough: would you accept to use a medical software
whose model is proved correct but it has never been tested?
Our methodology includes software testing for conformance
verification of the implementation.

The proposed methodology allows preparation for software
validation and verification as early as possible, since one
can start validation and verification already at the very ab-
stract level of the ground model. The V&V process can be

3Note that sequences generated by ATGT could be used to test programs
written in any programming language.

planned at different abstract levels, and every activity is clearly
documented in the different phases and supported by precise
procedures.

When a change of the software occurs, in case the change
does not involve the model (i.e., it is a local change in the
implementation), our methodology requires to rerun only the
conformance checking. Instead, if the change affects the ASM
specification at a certain level i, it requires to re-prove the
refinement correctness w.r.t. the more abstract model i − 1
(if any) and the more concrete model i + 1 (if any), and the
re-execution of the V&V activities for the models only from
level i down to the implementation.

Regarding validation coverage, during simulation (user-
guided or scenario-based) and during testing, we can collect
the coverage in terms of rules or code covered. This can be
used by the designer to estimate if the validation activity is
commensurate with the risk associated with the use of the
software for the specified intended use. We plan to work
on techniques for measuring the coverage of formal property
verification like advocated also in [17].

Since validation and verification are performed by exploit-
ing mathematical-based techniques, they facilitate independent
evaluation of software quality assurance.

Finally, the ASM-based development process always allows
a device manufacturer to demonstrate that the software has
been validated and verified, both when it is a software
implementation obtained as the last step of ASM model
correct refinement, and when it is external code that has been
conformance checked.

V. CASE STUDY – SAM

Within the project 3D4amb, we have developed a fam-
ily of applications usable by optometrists and ophthalmol-
ogists to detect visual problems. One of these applications,
3DSAT [18], is currently used in an Italian hospital to measure
the stereoacuity of young patients and to detect amblyopia.
Based on the IEC 62304 standard, the software belongs to
class B (non-serious injury is possible), because a patient could
have some future injuries if the doctor gives her/him a wrong
treatment. The core component of the 3DSAT application is
SAM (Stereoscopic Acuity Measurer), designed to decide the
stereo depth of the image to be shown to the patient, when to
stop the test, and to provide the final exam result (stereoacuity
certification). We are interested in validating and verifying
SAM following the FDA principles.

Informal Requirements

To certify the patient’s stereoacuity, different stereo random
dot images are shown in a 3D stereo monitor at different (6)
levels of difficulties. The test starts at level 6, that is the easiest
level. Every time a patient recognizes the shown image, the
level decreases (i.e., the test becomes more difficult) until it
reaches level 1, which is the most difficult level. A level is
passed if the patient recognizes three times the shown images.
When the patient answers incorrectly, (s)he can try another
time at the same level. If (s)he fails again, the level increases
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(i.e., the test becomes easier), and (s)he cannot be tested at that
level anymore: (s)he can try to be certified at the upper level.
If the patient fails twice the 6th level, the test stops with no
certified level. Besides recognizing images, a user can EXIT
the test or SKIP an image. The SKIP answer is treated like
the wrong answer: if the patient skips twice at the same level,
the level increases.

The SAM component eventually stops: 1) by certifying the
patient at level i, if the patient has been able to recognize three
images at level i, but has failed at level i−1 (if any); 2) without
certification, if the patient has been unable to complete the test
or the doctor has quit the exam.

VI. REQUIREMENT CAPTURE BY MODELING AND
REFINEMENT

The SAM component has been modeled using five levels
of refinement. The starting ground model captures the core
behavior of the component; the further requirements have been
considered incrementally along the subsequent refined models
till a level detailed enough to be checked for conformance
w.r.t. the code4.

1) Ground model: In the ground model, we abstract from
the explicit answers of the patient, and we consider only if
(s)he successfully recognizes an image (regardless of the spe-
cific image). We, therefore, model the reaction of the software
component to a user input which can be a correct/incorrect
patient’s answer or the doctor request to quit the system
without any certification. Therefore, in the ground model, the
patient is certified at a given level if (s)he recognizes the image
once. Fig. 3 shows the corresponding ASM control state.

The system can be in three different configurations: in state
Test when the patient is doing the test, in (the final) state
Uncertified when the patient is not able to complete the test
and the system is not able to certify the patient, in (the final)
state Certified when the patient finishes the test at a given level
and can be certified at that level.

In state Test (also initial), the system checks for the user
answer. If the doctor wants to EXIT, the test is stopped (Go

4Complete models are available at http://fmse.di.unimi.it/sw/
MEMOCODE15.zip. They are written in AsmetaL [11], a concrete
syntax for ASM models. An AsmetaL model is structured into three
sections: a header where the signature is declared and external models
(i.e., ASM without the main rule) are imported, a body in which functions,
domains, invariants, and rules (including the main rule) are defined, and an
init which initializes the machine.
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out) and the system goes in Uncertified state. Otherwise, the
system checks if the patient’s answer is correct or not.

If the answer is RIGHT and the patient is in level 1, (s)he
has completed the test. The system provides the correspond-
ing certification (Certify level) and moves to Certified state.
Otherwise, the software checks if the patient has previously
failed a level (i.e., a level has been increased before). If this is
the case, the software certifies the patient at the current level
and moves to Certified state. Otherwise, the level is decreased
(Decrease level) and the system returns to Test state.

If the answer is WRONG and the patient is doing the test
at level 6, the system stops the test and moves to Uncertified
state. Otherwise, the level testing is increased (Increase level)
and the system returns to Test state.

2) First refinement: At this level of refinement, we add the
SKIP option. At each level the patient can skip the answer
once. If (s)he skips the answer twice at the same level, the
level is increased. Fig. 4 shows the control state ASM of the
first refinement, where the new part is marked in bold. If the
user inserts SKIP for the first time, the system memorizes that
a SKIP has been made and returns to Test state. In case it is
the second skip at the same level, the system behaves as in
presence of a WRONG answer in the previous model.

3) Second refinement: At this level of refinement, we model
the requirement that the patient can give a wrong answer only
once; thus, on the second mistake at the same level, the level
is increased. Fig. 5 shows the control state ASM of the second
refinement. The added part of the model is marked in bold.
When the patient gives the WRONG answer for the first time
at the same level, the system memorizes that an error has been
made and returns to Test state. Otherwise, if it is the second
error at the same level, the system behaves as in presence of
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a WRONG answer in the previous model.
4) Third refinement: At this level of refinement, we specify

the requirement that the patient has to recognize the shown
image three times at the same level to get certification at that
level. Fig. 6 shows the control state ASM of the third refine-
ment. The new part is shown in bold. When the patient gives
the RIGHT answer, the system checks for the current level
under test. If it is level 1 and the patient has already answered
correctly twice (i.e., the current answer is the third correct
image recognition), the system issues her/him a certification
and moves to the Certified state. Otherwise, the number of
images recognized at that level is incremented and the patient
continues the test. The same behavior is performed when the
patient is not in level 1 but (s)he has already incremented the
level (i.e., (s)he made two skips or two errors in a lower level).

5) Fourth refinement: This model refines RIGHT and
WRONG answers with the images name. Images are randomly
chosen and the system checks whether the patient correctly
recognizes the shown image or not. Fig. 7 reports the control
state ASM of the fourth refinement, where the new part is
shown in bold. When the patient answers SKIP or the doctor
selects the EXIT answer, the behavior is the same as in the
previous refinements. In case the answer is an allowed image
name, the system checks whether it is the right one. If the
answer is correct, the system behaves as previously modeled
in case of RIGHT answer, otherwise it has the same behavior
as in case of a WRONG answer (see previous refinements).

VII. V&V OF THE SAM
In this section we show the application to the case study of

the V&V activities presented in Sect. IV.

A. Proving refinement
Each step of refinement is proved correct [8] using the

SMT-based tool ASMRefProver5. We check a notion of
refinement, called stuttering refinement, more restrictive than
the definition given in [8]. It comes with a notion of locations
of interest, namely those state locations one wants to relate
in corresponding abstract and refined states, and a notion
of conformance relation between abstract and refined states
having equivalent values of locations of interest. Given a run
ρ̃ of the refined model, there must exist a run ρ of the abstract
model such that (i) initial states of both runs are conformant,
and (ii) each refined state in ρ̃ is conformant with an abstract
state in ρ: if a refined state s̃ in ρ̃ is conformant with an abstract
state s in ρ, then its successor state s′ in ρ̃ is conformant with
either s or with s′, the next state of s in ρ.

If we consider as conformance relation between abstract
and refined states the equality of functions levelTest
(representing the current level) and certMsg (representing
the status of the certification), all our refinement steps are
correct. Let us consider the third refinement in which we
model the fact that the certification is granted only when
three images are recognized at the same level. The proof of
correct refinement in case of (a) wrong answer, (b) right
answer to decrease the level, (c) skip answer, and (d) skip
command, is straightforward (since there is surely an abstract
run equal to the refined run). We must also show that the
runs in which a given level is certified (i.e., three shown
images are recognized) have corresponding runs in the abstract
machine. A refined state in which the shown images have
been recognized once or twice is stuttering conformant with
the abstract state in which no image has been recognized yet.
Fig. 8 shows an example of refined run certifying level 1 and
a corresponding abstract run.

Similar arguments for proving refinement correctness can
be done for all the refinements. Note that the proof of the
refinement correctness is completely automatic: the designer
must only indicate which are, in the two models, the “locations
of interest” [8] that are involved in the conformance relation.

B. Simulation
Simulation is a validation activity. We have executed the

produced ASM models by the AsmetaS simulator. It allows
interactive simulation and random simulation. In interactive
simulation, at each step the user is asked for the values of
the monitored functions, whereas in random simulation the
simulator itself randomly chooses the values for monitored
functions. Moreover, the AsmetaS simulator allows to check
if some invariants are satisfied during simulation. For example,
we introduced the following invariant:

(certMsg=CERTIFIED and not loop) implies
levelCertificate=1

It states that if the patient has been CERTIFIED and (s)he has
never increased the level (i.e., function loop is false), (s)he
is definitely certified at level 1.

5http://asmeta.sourceforge.net/download/asmrefprover.html



. . . //
levelTest = 1

certMsg = undef
userAnsw = RIGHT

//
levelTest = 1

certMsg = CERTIFIED
userAnsw = -

. . . //
levelTest = 1

certMsg = undef
userAnsw = RIGHT

≡

KS

//
levelTest = 1

certMsg = undef
userAnsw = RIGHT

≡

gg

//
levelTest = 1

certMsg = undef
userAnsw = RIGHT

≡

kk

//
levelTest = 1

certMsg = CERTIFIED
userAnsw = –

≡

KS

Figure 8. Stuttering refinement from the second refinement model to the third refinement model – Example of refined run

C. Scenario Validation

Simulation is useful in the earlier stages of model devel-
opment when it is easy to follow the machine executions
due to the compactness of the model. When the ASM be-
comes more complex and large or the simulations become
repetitive, AsmetaV is a useful tool to support the user in
validation. AsmetaV permits to specify scenarios describing
the interaction between a user (i.e., the environment) and the
machine. The Avalla language [12] provides constructs to
set the values of the monitored functions, to execute a step of
simulation of the ASM, and to check that a given closed first-
order formula (assertion) holds in a given state. The validator
AsmetaV simulates (using the simulator AsmetaS) the ASM
model according to the commands of the scenario, and checks
if all the assertions are satisfied. As soon as an assertion is not
satisfied, the simulation is interrupted reporting the violation.
We used AsmetaV to write some scenarios for simulating
ASM behaviours. Such scenarios have been executed when-
ever we modified the models to check that the behaviour of
the ASM was not altered (in a kind of regression testing).
Moreover, we also construct some scenarios for simulating
different refined models; indeed, a scenario for an abstract
model M should be correct also for a refined model M̃ if the
scenario is related to the elements of M that have not been
refined in M̃ . For example, the scenario that simulates the
certification of first level without any error has to be the same
in the ground model, first, and second refinement. Indeed, first
and second refinements add the counting of the wrong answers
and the possibility of giving the SKIP answer; however, the
handling of correct answers is the same in the three models.
As future work, we plan to automatically create a scenario for
M̃ starting from a scenario written for M (possibly also over
the elements refined in M̃ ), exploiting the correctness proofs
produced by ASMRefProver (see Sect. VII-A).

D. Model review

Model review is an automatic validation technique that
verifies some general properties that any model should guar-
antee such as completeness, minimality, and consistency.
The AsmetaMA tool [13] (based on the model checker
AsmetaSMV presented in Sect. VII-E) allows automatic re-
view of ASMs. Typical vulnerabilities and defects that can
be introduced during the modeling activity using ASMs are
checked as violations of suitable meta-properties (MPs, de-
fined in [13] as CTL formulae). The violation of a meta-
property means that a quality attribute is not guaranteed, and

it may indicate the presence of an actual fault (i.e., the ASM is
indeed faulty), or only of a stylistic defect (i.e., the ASM could
be written in a better way). An inconsistent update (meta-
property MP1 in [13]), for example, is a signal of a real fault
in the model; the presence of functions that are never read
nor updated (meta-property MP7 in [13]), instead, may simply
indicate that the model is not minimal, but not that it is faulty.

We run the model reviewer on all the developed models.
We found that, in the fourth refinement, function expAnsw
(specifying the expected answer) could not take values SKIP,
EXIT (violation of meta-property MP6 in [13]). This violation
is not a signal of a real fault in the model, but of a bad
choice at design time. Indeed, in our models (starting from
the ground model), we use the same domain Answers for
modeling the patient’s choices (i.e., RIGHT and WRONG till
the third refinement, the image names in the fourth refinement)
and the commands to skip a step and to exit the test (i.e., SKIP
and EXIT). In the fourth refinement, we model the random
choice of an image by the machine and we store the chosen
value in expAnsw: since for the function codomain we use
the same domain Answers used for the patient’s choice, we
must avoid to select SKIP and EXIT as chosen images. A
better design choice would have been to separately model the
available images and the test execution commands.

In a preliminary version of our ground model, instead,
we found a real fault. We wrongly wrote levelTest < 7
instead of levelTest < 6 in the guard of a conditional rule
and this did not allow the else branch of the conditional rule
to be ever executed (violation of meta-property MP3 in [13]).

These small examples show that model review is a quite
powerful push-button validation activity that can be used
since the first stages of model development to find faults
(e.g., inconsistencies) and/or stylistic detects (e.g., minimality
violations) of our models.

E. Property verification

In Sect. VII-D we have shown how model checking is used
as a push-button validation activity (i.e., model review) that
checks application-independent properties, namely properties
that any formal specification should assure.

In this section, instead, we use model checking (by means
of the AsmetaSMV tool) for verifying application-dependent
properties, i.e., properties specific to our case study. Some have
been derived directly from the requirements of the system,
others have been added during the verification activity for
increasing the requirements completeness. We here report



some CTL properties common to all models. Note that, for
each developed model, we have also specified more spe-
cific properties regarding the requirements considered by that
model.

As first property, we check that it is always possible to
terminate a test (note that the boolean function test is true
when the test is running).

AF(not test)

Moreover, we check that if the test is terminated, it cannot
start again (for us, a test corresponds to a run of the ASM).

AG(not test implies AG(not test))

The decision whether or not to certify a level for a patient
can only be made when the test is finished. Therefore, we
verify that, during the test, the message containing the cer-
tification decision (i.e., function certMsg) is undefined and
becomes defined when the test is finished.

AG(test implies isUndef(certMsg))
AG(isDef(certMsg) implies not test)

Note that the previous two properties were also specified as
invariants for simulation6.

Then we check that both decisions can be taken:

EF(certMsg = CERTIFIED)
EF(certMsg = NOTCERTIFIED)

We further check that, once a decision has been taken (either
certified or not certified), it cannot be changed:

AG(certMsg = CERTIFIED implies
AG(certMsg = CERTIFIED))

AG(certMsg = NOTCERTIFIED implies
AG(certMsg = NOTCERTIFIED))

F. Scenario and test generation

We have also exploited model checking tools for identifying
interesting runs of the models by introducing trap properties,
which are not actual system properties to be verified. A trap
property has form never(φ), where φ is a predicate over the
state that we want to cover with a system run, and never is
translated to a corresponding model checker operator. If a state
S satisfying φ exists, the trap property is false and the returned
counterexample is a trace leading to S. Such counterexamples
are used in the scenario-based validation for constructing
execution scenarios (see Sect. VII-C) and in the test framework
for testing the implementation (see Sect. VII-G). Some trap
properties we have specified are:

never(certMsg = NOTCERTIFIED)
never(certMsg = CERTIFIED and

levelCertificate = 1)
...
never(certMsg = CERTIFIED and

levelCertificate = 6)

6The tool AsmetaSMV, for each invariant ϕ, automatically creates the CTL
property AG(ϕ).
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Figure 9. Wrap class for testing

import org.asmeta.monitoring.∗;

@Asm(asmFile = ”models/SAM ref4.asm”)
public class SAMWrapper {

@FieldToLocation(func = ”certMsg”)
OutMessage outMessage;
@FieldToLocation(func = ”test”)
boolean test;
@Monitored(func = ”expAnsw”)
ShapeW chosenShape;
@Monitored(func = ”userAnsw”)
AnswersW userAnswer;
3DStereoLogic logic = new 3DStereoLogic(5);

@StartMonitoring
public SAMWrapper() {

logic.startTest(new ExperimentSetupData(6), false);
test = (certifier.getMode() == TEST);

}

@RunStep
public void chooseShape() { ... }

@MethodToFunction(func = ”levelTest”)
int getCurrentLevel() {

return certifier.getCurrentDepth();
}

}

Code 1. Java implementation of SAM Wrapper

By means of these properties, we are able to generate a sce-
nario (test) in which the exam is terminated without certifying
the patient and six different scenarios (tests) in which the
patient is certified in one of the six levels.

G. Conformance checking

In this section, we show how we have used the formal
specifications for testing the Java implementation of SAM.
First of all, we have to link the implementation with the
formal specification: in order to do this, we use a set of Java
annotations originally introduced in the runtime verification
framework CoMA [16]. Such annotations link both the data
part (some fields and pure methods of the implementation are
linked to functions of the specification) and the behaviour
(the execution of some selected methods corresponds to a
step of the ASM). In the original version of CoMA, only one
class can be connected with the formal specification. In this
work, we extend CoMA to handle more complex programs: If
a program is composed of several classes, the tester writes
a wrapper class and connects it with the specification. In
our case, SAM is composed of the main 3DStereoLogic
class, and the DepthCertifier class, which is internally
used by 3DStereoLogic. A wrapper is used as shown
in Fig. 9. Code 1 reports its Java implementation annotated
for testing and connected to the last refined model. For
example, for the data part, the field outMessage is connected
to the ASM function certMsg (in the implementation, the
certification result is shown as an output message) and the
pure method getCurrentLevel is connected to the ASM
function levelTest; for the behavioural part, the execution
of method chooseShape corresponds to an ASM step.

To produce tests from formal specifications, we use the
model checking approach described in Sect. VII-F; we use the
ATGT tool [15] which is based on the model checker SPIN.

The produced tests are abstract and they need to be con-
cretized in tests for the implementation (e.g., JUnit tests): in
order to do this, we use the technique introduced in [19] that
exploits the linking provided by the Java annotations.



#tests total length of tests Achieved coverage (%)
3DStereoLogic DepthCertifier

Handmade 15 872 62.1 60.8
BFS 14 1181 62.5 69.3
DFS 8 1688 64.4 83.4

Table II
CODE COVERAGE

In a preliminary version of the Java implementation, we
found an error related to the counting of the recognized
images. The requirements prescribe that a level i is certified
if the patient recognizes three times the shown images, with-
out changing the level between two recognitions. Thus, the
number of recognized images in a level is reset when the
patient change the level. The preliminary Java implementation,
instead, did not reset the counters for the different levels: a
patient could be wrongly certified at level 2 by recognizing
the image at level 2, moving to level 1, failing twice at level
1, and guessing twice at level 2 (i.e., recognizing three times
at level 2 but moving to level 1 between two recognitions).

We have tested the implementation (whose size is 2.6
KLOCs) with three different test suites: one we generated
manually by reasoning on the requirements (Handmade),
one generated by ATGT using a Breadth-First-Search (BFS)
approach in generating the tests, and the last one generated by
ATGT using a Depth-First-Search (DFS) approach. Table II
reports the obtained results in terms of number of tests,
global test length, and achieved coverage. The coverage is
split between the two main components of the program SAM.
We can observe that the handmade test suite has the mini-
mum number of test instructions, but also obtains the lowest
coverage. DFS obtains better coverage than BFS, although
both test suites have been built for covering the same set of
test predicates over the ASM; this is due to the fact that a
depth-first approach usually builds longer tests that are able to
exercise code instructions not reached by the usually shorter
tests generated by a breadth-first approach. Finally, we observe
that the advantage of using an automatic approach becomes
significant when the program under test is particular complex
(as the DepthCertifier component); for simple programs
(as the 3DStereoLogic component), instead, the handmade
approach can still obtain good results.

Note that the linking of the implementation with its formal
specification can also be used for checking the conformance
at runtime [16] (in a kind of online testing).

VIII. RELATED WORK

In recent times, the use of formal methods is escalating
for the development of software-intensive medical systems.
For example, Osaiweran et al. [20] use the formal Analytical
Software Design (ASD) [21] approach for developing the
power control service of an interventional X-ray system. Jiant
et al. [22] present a methodology based on timed automata to
extract timing properties of a heart that can be used for the val-
idation and verification of implantable cardiac devices. Tuan et
al. [23] provide a solution for the pacemaker challenge using

model checker PAT (Process Analysis Toolkit) [24]. Méry et
al. [25] and Macedo et al. [26] present a model of pacemakers
in Event-B and VDM methods, respectively. Arney et al. [27]
present a reference model of PCA (Patient Control Analgesia)
infusion pumps and test the model for structural and safety
properties. José et al. [28] present a formal model in MAL
(Modal Action Logic) [29] that helps comparing different
infusion devices and their provided functionalities. Bowen
et al. [30] use the ProZ model checker [31] to test various
safety properties of infusion pumps. Mashkoor et al. [32]
use the Event-B method to specify the behavior of dialysis
machines, and verify and validate various system properties
using theorem proving, model checking and animation.

The approach for medical software components develop-
ment we have followed in this paper shares with some of the
others the use of a rigorous formalism for system specification,
but the V&V activities are more integrated into the develop-
ment process as compared to the aforementioned works.

We cover a multitude of model analysis activities, e.g.,
model checking, simulation, model review, testing, confor-
mance checking, that give us a grasp on the notion of correct-
ness far better than approaches which are comprised of only a
subset of analysis techniques we have employed. Additionally,
ASM method’s ease of use, understandability and notion of
refinement helped us to manage the complexity of the critical
software development process while remaining fully compliant
with the guidelines of FDA and recommendations of related
medical standards. The basic principle of ASM’s model-based
development via refinement is discussed and compared in
detail in [33].

IX. CONCLUSIONS

Medical device software, due to its critical application, is
required to be thoroughly validated and verified in order to
avoid (serious) injuries that may occur in case of malfunction-
ing. IEC 62304 classifies medical software based on possible
injuries caused by the medical device malfunctions, while FDA
principles describe the activities that must be carried out in
order to certify a medical software.

In this paper, we have shown a formal development process,
based on the Abstract State Machine method, that integrates
the software life cycle activities required by the standard
and fulfills the FDA principles. Starting from a very abstract
model of the system, the developer can obtain, through a
sequence of refinements, more detailed models till a level
where the model is very close to the final implementation
(that could be considered as last step of refinement). Each
step of refinement can be proved correct in an automatic way.
Moreover, different validation (simulation and model review)
and verification (model checking) activities can be carried
out, at any level of abstraction, on all the specified models.
The process allows for an early planning of the validation
and verification activities, and repeating them along the steps
of software development and upon any software change.
Software safety properties can be guaranteed in a rigorous
and human independent way. Finally, the conformance of the



implementation w.r.t. the specification can be checked through
testing and runtime verification.

We have shown the application of the proposed process to
the development of a real medical software that is used for
measuring the patient’s stereoacuity.

In the future, we plan to apply the proposed formal process
for the rigorous development and validation of the other
components of the 3DSAT medical software. Although using
control state ASMs and scenario-based validation proved to be
very useful for communicating with non-expert users, we plan
to provide more facilities for facilitating the communication
with the stakeholders. We also plan to improve the process,
especially the techniques regarding model refinement and
automatic generation of simulation scenarios.
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