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Abstract—According to best practices of model-driven engi-
neering, the implementation of a system should be obtained from
its model through a systematic model-to-code transformation.
Following the same approach, model-based testing suggests
deriving also (unit) tests from abstract models. Previously, we
have presented Asm2C++ [1] – a tool that translates Abstract
State Machines (ASMs) to C++ code. In this paper, we extend
the Asm2C++ tool such that it can now automatically produce
unit tests for the generated code. Abstract test sequences, either
generated randomly or through model checking, are translated to
concrete C++ unit tests using the BOOST library. We also present
some experiments that prove the feasibility of the proposed
approach.

I. INTRODUCTION

The Abstract State Machines (ASM) method [2] is a formal
method that is used to guide the rigorous development of soft-
ware and embedded systems. The ASM-inspired development
starts from an abstract specification of a system and then it
goes on to capture the complete details of the system through
a sequence of refinements. During this process, a designer
can apply classical verification and validation techniques on
models, e.g., simulation, walking through a scenario, and
model checking, in order to assess the correctness of the
development. The last step of the development process is the
automatic generation of code artifacts.

The generation of code directly from specifications is one
of the main cornerstones of the model-driven engineering
paradigm [3] and also a common practice in industry. For ex-
ample, Airbus uses automatic code synthesis from SCADE [4]
models to generate the code for embedded controllers in the
Airbus A380 [5]. The Event-B [6] method has been used in the
past to generate code artifacts for hemodialysis machines [7].
The Matlab/Simulink1 method is also a popular method in the
automotive industry [8].

The code generated through a rigorous refinement process
is, in principle, correct-by-construction, i.e., already verified
and validated. However, this is not enough in case of critical
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1https://www.mathworks.com/products/simulink.html

systems. For such systems, the generated code should also be
tested. In principle, testing an automatically generated code
seems useless if both specification and the code generation
process can be proven correct. In practice, however, designers
want to test even the automatically generated code, in order to
gain confidence that errors are not introduced inadvertently in
any step (including code compiling, for example)2. Testing is
actually a valuable and complementary adjunct to the use of
formal methods in software development [9]. Moreover, tests
are extremely useful for regression testing, i.e., if the code is
later manually modified in order to introduce implementation
details, the designer can use tests in order to check that
no faults are introduced. Inspection of unit tests can reveal
potential errors in specifications and eventually increases the
confidence that both specification and its implementation are
correct. Moreover, unit tests can be used to validate the model-
to-code transformation [10]. Unit tests can also detect possible
faults introduced by the model-to-code transformation process.

The automatic test generation from models has been ad-
vocated by researchers in the area of Model-Based Testing
(MBT) for several years. A good introduction of this topic can
be found in [11], [12]. In the MBT process, the specification is
reused also for testing purposes. The main aim of this process
is to substitute or at least complement other testing processes,
like manual, capture/replay, or script-based ones. Instead of
writing test cases, the test designer writes (or reuses) the
abstract model of the system under test and then, through a
sequence of steps, a MBT tool generates the test cases from
the model. This approach can provide advantages in terms of
cost and test effectiveness [11].

In this paper, we present the extension of our code gen-
eration framework by introducing a technique that generates
unit test cases for the code generated from a formal model
given as an ASM. First, some abstract tests are generated from
the ASM of the system. To do that, we can use either test
cases generation tools like ATGT [13] which exploits a model
checker, or use the ASM simulator [14] in order to obtain

2Ed Brinksma said in his 2009 keynote at the Testcom/FATES conference:
”Who would want to fly in an airplane with software formally verified but
never tested?”. We can rephrase his statement in this way: ”Would you fly in
an airplane with automatically generated code that has never been tested?”
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traces of abstract states. Then, we translate the sequences of
abstract states into C++ unit tests. This translation leverages the
model-to-code translation we implemented in the Asm2C++
tool. The resulting unit tests are C++ tests in the BOOST
framework3.

The paper is organized as follows: In Section II, the ASM
method is briefly introduced along with its associated tool-
set - the Asmeta framework. In Section III, we introduce
the example that is subsequently used in the paper to explain
the code and the test case generation process. The code
generation process is explained in Section IV along with an
analysis of the generated C++ code. Section V describes the
unit tests generation process using the illustrative example. In
Section VI, we compare two test generators tested on some
ASM specifications. Section VII reports on the related work.
The limitations of our approach are listed in Section VIII and
the future works to overcome these limits are discussed in
Section IX.

II. ABSTRACT STATE MACHINES

A. The ASM language

Abstract State Machines (ASMs) [2] are an extension of
Finite State Machines (FSMs), where unstructured control
states are replaced by states with arbitrarily complex data.
ASM states are algebraic structures, i.e., domains of objects
with functions and predicates defined on them. An ASM
location, defined as the pair (function-name, list-of-parameter-
values), represents the abstract ASM concept of basic object
containers. The couple (location, value) represents a machine
memory unit. Therefore, ASM states can be viewed as abstract
memories.

Location values are changed by firing transition rules. They
express the modification of functions interpretation from one
state to the next one. Note that the algebra signature is
fixed and that functions are total (by interpreting undefined
locations f(x) with value undef ). Location updates are given
as assignments of the form loc := v, where loc is a location
and v is its new value. They are the basic units of rules
construction. There is a limited but powerful set of rule
constructors to express: guarded actions, simultaneous parallel
actions, sequential actions, nondeterminism, and unrestricted
synchronous parallelism.

An ASM computation is, therefore, defined as a finite or
infinite sequence S0, S1, . . . , Sn, . . . of states of the machine,
where S0 is an initial state and each Sn+1 is obtained from Sn

by firing the unique main rule which in turn could fire other
transitions rules. An ASM can have more than one initial state.

During a machine computation, not all the locations can
be updated. Functions are classified as static (never change
during any run of the machine) or dynamic (may change
as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by
the machine and modified by the environment) and controlled
(read in the current state and updated by the machine in

3http://www.boost.org/
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Fig. 1. The ASM development process powered by the Asmeta framework

the next state). A further classification is between basic and
derived functions, i.e., those coming with a specification or
computation mechanism given in terms of other functions. It
is possible to specify state invariants.

An ASM can be nondeterministic due to the presence of
monitored functions (external nondeterminism) and of choose
rules (internal nondeterminism).

B. The ASM methodology

The ASM method can facilitate the entire life cycle of
software development, i.e., from modeling to code generation.
Fig. 1 shows the development process based on ASMs. The
process is supported by the Asmeta (ASM mETAmodeling)
framework4 [15] which provides a set of tools to help the
developer in various activities. The first step is modeling the
system using the language AsmetaL. Starting from the first
model (also called the ground model), the developer refines it
until the final ASM is reached. During the refinement steps,
the tool AsmRefProver ensures whether the current ASM
model is the correct refinement of the previous ASM model.
During the modeling, the user is supported by the editor
AsmEE and the visualizer AsmetaVis which transforms
the textual model into a graphical notation. The graphical
notation helps the developer to better understand the behavior
of the textual model. At any level of refinement validation and
property verification activities can be applied. The validation
of the model can be achieved either through the model simu-
lator AsmetaS, through scenarios AsmetaV, or through the
model reviewer AsmetaMA. The simulator AsmetaS allows
to perform two types of simulation: interactive simulation (the
user inserts the values of functions that depends on the envi-
ronment) or random simulation (the tool randomly chooses the
values of functions that depend on the environment). Scenarios
can be written using the Avalla language and they contain
the expected system behaviors. The scenarios are executed
using the AsmetaV tool to check whether the machine runs
correctly. The model reviewer AsmetaMA performs static
analysis – it determines whether a model has sufficient quality
attributes (e.g., minimality, completeness, consistency). The
verification tool AsmetaSMV checks whether the properties
derived from the requirements document comply with the
behavior of the model.

When the final ASM model is reached, the Asm2C++ tool
automatically translates the ASM specification into C++ code

4http://asmeta.sourceforge.net/
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(see Section IV). In this paper, we have extended the Asm2C++
tool such that now it translates the abstract tests – generated,
for example, by using ATGT tool – to concrete tests (see
Section V).

III. ILLUSTRATIVE EXAMPLE

A. The ACVM example

The process from modeling to unit test generation, going
through code generation is explained in the paper using the
Automatic Coffee Vending Machine (ACVM) example. The
example chosen is not too complicated because we want
to show all the code including the ASM model, the code
generated by the Asm2C++ tool, and the unit tests.

The ACVM distributes coffee, tea, and milk and it accepts
only 50 cents and 1 Euro coins. If the user inserts 50 cents
the machine distributes milk (if it is available); if the user
inserts 1 Euro the machine distributes coffee or tea (if they are
available) based on user choice. If a drink is distributed then
its availability is decremented and the money is preserved into
the machine. At the beginning, the machine has 10 coffees,
10 teas and 10 milks. The machine can contain 25 coins at
maximum, when this limit is reached the machine does not
distribute products any longer.

B. The ASM model for the ACVM example

The ACVM example is modeled using a refinement-based
approach and each refinement step is amenable to validation
and verification activities. Once the final ASM model (see
Code 1) is reached, the Asm2C++ tool is applied.

For brevity, we skip here the refinement steps and only
explain the final ASM model. Four domains are defined in
the ACVM ASM model:

• CoinType: enumerative domain to represent the coins
accepted by the machine (HALF for 50 cents, ONE for
1 Euro).

• Product: enumerative domain to represent the products
available at the coffee machine (COFFEE, TEA, MILK).

• QuantityDomain: static domain to represent the quantity
of products available: from 0 (the product is not available)
to 10 (the maximum quantity of the product available in
the machine).

• CoinDomain: static domain to represent the number of
coins inside the machine: from 0 (no coins are inside the
machine) to 25 (the maximum number of coins contained
by the machine).

Two monitored functions are defined: insertedCoins as
CoinType to read the coin inserted by the user and chosen-
Product as Product to read the product selected by the user.
The number of coins inside the machine and the availability
of the product are represented by two controlled functions:
coins as CoinDomain and available as QuantitativeDomain
subjected to its input (Product type). The domains declared in
the signature are static and their definition is performed inside
the definition section. The behavior of the machine is modeled
in the main rule, while the activity of serving the product is
modeled in the rule (r serveProduct). The init section contains

asm coffeeVendingMachine
import STDL/StandardLibrary

signature:
enum domain CoinType = {HALF | ONE}
enum domain Product = {COFFEE | TEA | MILK}
domain QuantityDomain subsetof Integer
domain CoinDomain subsetof Integer
controlled available: Product −> QuantityDomain
controlled coins: CoinDomain
monitored insertedCoin: CoinType
monitored chosenProduct: Product

definitions:
domain QuantityDomain = {0 .. 10}
domain CoinDomain = {0 .. 25}

rule r serveProduct($p in Product) =
par

available($p) := available($p) − 1
coins := coins + 1

endpar

main rule r Main =
if(coins < 25) then

if(insertedCoin = HALF) then
if(available(MILK) > 0) then

r serveProduct[MILK]
endif

else if chosenProduct != MILK then
if (chosenProduct = TEA and available(TEA)>0) then

r serveProduct[TEA]
else
if (chosenProduct = COFFEE and

available(COFFEE)>0) then
r serveProduct[COFFEE]

endif
endif
endif

endif
endif

default init s0:
function coins = 0
function available($p in Product) = 10

Code 1. CoffeeVendingMachine ASM model
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Fig. 2. Code Generation Process: from ASM to C++

the initialization of coins and available functions. The initial
number of coins inside the machine is 0, while the availability
of each product is 10.

IV. CODE GENERATION

In [1], we presented the tool Asm2C++, which translates
ASMs to C++ code. Asm2C++ is based on Xtext5– a framework
for the development of domain-specific languages –, which
provides facilities to parse and translate specifications.

The process in Fig. 2 shows how an ASM specification is
translated into C++ code. The generated code is composed of a

5https://www.eclipse.org/Xtext/
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header (.h) and a source (.cpp) file. The header file contains the
translation of the ASM signature while the source file defines
how the ASM evolves by translating each ASM rule to a C++

method.
The header and the source files of the ACVM example –

automatically generated by the Asm2C++ tool – are shown in
Code 2 and Code 3. In the header file (see Code 2), we can
identify several parts: domain declaration, domain container
declaration, function declaration, and rule declaration. In
the domain declaration section, the domains defined in the
ASM file are translated (CoinType, Product, QuantityDomain
and CoinDomain). Enum, static and dynamic domains are
defined into the namespace using the keyword enum for enum
domains and typedef for static and dynamic domains; further-
more, enum domains are initialized. Inside the class, domain
containers are defined (one for each domain defined in the
domain declaration section) which contain domains elements.
The keyword const identifies static domains (no elements are
added or removed from the domain during ASM execution),
if it is omitted the container is relative to dynamic domain
(during an ASM execution elements are added or removed
from the domain). In the example, there are four containers
and they are represented using the set container which stores
unique elements (inside an ASM domain duplicate values are
not admitted). The function declaration section contains the
declaration of all the functions of the ASM specification.
Each function declared in the ASM file is translated as a
variable in C++ except for controlled functions. Each controlled
function is translated to an array of two elements, the first
is the value of the function at state Sn, while the second
element contains the value assumed at state Sn+1. Rules are
translated as methods in C++ and prototypes are defined in the
rule declaration section.

The source file (see Code 3) is divided in four parts: method
implementation, function definition, function and domain ini-
tialization, and updateSet. Each method defined in the header
file is implemented in the method implementation section
based on the behavior defined by the ASM specification. Func-
tions defined in the ASM definition section are implemented in
the function definition section (which is empty in the example).
The functions and the domains (dynamic domains) initialized
in the init section of the specification are added to the function
and domain initialization section of the source file. These
elements are included into the C++ constructor to guarantee that
the initialization is performed at the beginning of the program
execution. An ASM execution corresponds to a sequence of
steps, during each step the functions do not change their values
until the update set is applied (at the end of each step). To
guarantee the same behavior in C++, we introduce an array
of two elements for each controlled function (as previously
explained), the first element is the value of function at state
Sn, while the second element contains the value assumed by
the function in state Sn+1. At the end of the step, the value
of the next state is assigned to the current state using the
fireUpdateSet() method. The method updates the value of the
controlled function to the next state value. After that, the next

#ifndef coffeeVendingMachine H
#define coffeeVendingMachine H

#include<string>
typedef std::string String;
#include<iostream>
using namespace std;
#include <set>
#include <map>
#define ANY String

/* Domain declaration */
namespace coffeeVendingMachinenamespace{
enum CoinType {HALF, ONE};
enum Product {COFFEE, TEA, MILK};
typedef int QuantityDomain;
typedef int CoinDomain;
}
using namespace coffeeVendingMachinenamespace;
class coffeeVendingMachine{
/* Domain containers declaration */
const std::set<CoinType> CoinType elems;
const std::set<Product> Product elems;
const std::set<QuantityDomain> QuantityDomain elems;
const std::set<CoinDomain> CoinDomain elems;

public:
/* Function declaration */
std::map<Product, QuantityDomain> available[2];
CoinDomain coins[2];
CoinType insertedCoin;
Product chosenProduct;

/* Rule declaration */
void r serveProduct (Product p);
void r Main();
coffeeVendingMachine();
void fireUpdateSet();
};

#endif

Code 2. coffeeVendingMachine.h code

state can be computed.

V. GENERATION OF UNIT TESTS FROM ASMS

The complete process for MBT applied to ASMs we devise
in this paper is presented in Fig. 3. The user starts with
an ASM specification that is already validated and verified.
By applying the Asm2C++ transformation presented in Sec-
tion IV, the C++ code is obtained and compiled. At the same
time, the abstract test cases are generated starting from the
specification and translated into C++ unit tests. The generation
of abstract tests can be done in several ways. We currently
support two main ways: random generation by using the
Asmeta simulator and coverage-driven test generation by
model checking [13]. The translation of abstract tests to
concrete tests is done by the C++ unit tests builder, which
follows transformation rules we will present in Section V-B.
Once the abstract tests are translated, the C++ unit tests are
compiled. All the compiled code (system implementation and
tests) is linked together by the test executor and the C++ tests
can be run. The test executor produces some test results that
include possible failures and coverage information, if required.

4



//coffeeVendingMachine.cpp automatically generated
#include ”coffeeVendingMachine.h”
using namespace coffeeVendingMachinenamespace;
// Conversion of ASM rules in C++ methods
void coffeeVendingMachine::r serveProduct (Product p){
{
available[1][ p] = (available[0][ p] − 1);
coins[1] = (coins[0] + 1);
}
}
void coffeeVendingMachine::r Main(){
if ((coins[0] < 25)){
if ((insertedCoin == HALF)){
if ((available[0][MILK] > 0)){

r serveProduct(MILK);
}
}else if ((chosenProduct != MILK)){
if ((chosenProduct == TEA) & (available[0][TEA] > 0)){
r serveProduct(TEA);
}else if ((chosenProduct == COFFEE)

& (available[0][COFFEE] > 0)){
r serveProduct(COFFEE);
}
}
}
}
// Function and domain initialization
coffeeVendingMachine::coffeeVendingMachine():
// Static domain initialization
QuantityDomain elems(std::set<int>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}),
CoinDomain elems(std::set<int>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}),
CoinType elems({HALF,ONE}),
Product elems({COFFEE,TEA,MILK})
{
//Function initialization
coins[0] = coins[1] = 0;
for(auto const& p : Product elems){
available[0].insert({ p,10});
available[1].insert({ p,10});
}
}
// Apply the update set
void coffeeVendingMachine::fireUpdateSet(){
available[0] = available[1];
coins[0] = coins[1];
}

Code 3. coffeeVendingMachine.cpp code

To be more precise, the complete generation of C++ unit tests
from ASM specification, requires at least two steps:
A. The generation of abstract tests that are sequences of

abstract states.
B. The translation of abstract tests to concrete tests done by

the C++ unit tests builder.

A. Generation of abstract tests

We currently support two different ways to generate abstract
test sequences from ASM models. The first one is based on the
use of the Asmeta simulator. The simulator chooses randomly
the values of monitored functions (when they are required
to perform the execution of one step) and performs a given
number of steps of the machine as requested by the tester.
There is no guarantee at all that all the specification parts (like
rules and conditions) will be covered by test cases. However,
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Test Object
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C++ compiler
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Fig. 3. Generation of unit tests from ASMs

in this way, we are able to generate test cases from every
ASM, even if it contains complex terms and infinite domains
(like integers).

The second approach exploits the counterexample gener-
ation of the model checker NuSMV [13]. In this case, the
test sequences are generated in order to cover the rules and
the guards inside the conditional rules. The tool translates
the testing requirements to suitable temporal properties and
the counter examples generated by NuSMV are translated
to abstract test sequences. In this case, the tool guarantees
that the desired coverage is obtained, but only if the ASM is
translatable to the language of the model checker and if no
state explosion occurs. The use of model checker generally
requires more time, since it must perform the exploration of
the whole state space. One could use techniques for model
decomposition [16], but still the model checker we use, has
some limits, like it cannot accept infinite domains.

B. Translation of abstract tests to concrete tests

Once abstract test cases are generated, the next step is to
translate them to concrete test cases in the C++ programming
language. The test suite is composed of a set of abstract test
cases and each test case, in turn, is composed of a sequence
of states. The states contain the values of monitored and
controlled functions. Each test suite is translated using the
Boost Test C++ library. The boost library provides a set of
interfaces to write test programs organized in test suites and
test cases. The translation of abstract test cases into concrete
test cases is reported in Table I.

A test suite is defined by using the
BOOST AUTO TEST SUITE(testSuiteName) macro, it
automatically registers a test suite named testSuiteName. A test
suite is ended using BOOST AUTO TEST END(). Each test
suite can contain one or more test cases. A test case is declared
using the macro BOOST AUTO TEST CASE(testCaseName).
The content of a test case is enclosed by the symbols {} and
the name is unique.

Inside a test case, first we create an instance sut of the
class which the ASM is translated to. Then, for each state in
the abstract test, we check the value of controlled functions,
we set the value of monitored functions and finally we

5



Abstract Test Concrete Test

Test Suite
BOOST_AUTO_TEST_SUITE(testSuiteName)
...
BOOST_AUTO_TEST_SUITE_END( )

Test Case

BOOST_AUTO_TEST_CASE(testCaseName) {
SUTClass sut;
...

}

State Monitored
function
m = val

sut.m = val;

Controlled
function
c = val

BOOST_CHECK(sut.c[0] == val);

ASM step sut.mainRule();
sut.updateSet();

TABLE I
TRANSLATION OF ABSTRACT TESTS TO CONCRETE TESTS

perform an ASM step. The controlled functions are checked
using the macro BOOST CHECK(controlledFunctionName[0]
== value), while the values to monitoredFunctionName are
assigned using the assignment operator. The ASM step is
performed by calling the main method in C++ (that corresponds
to the main rule in ASM) and after that the updateSet is applied
in order to obtain the next state.

C. Test generation of the ACVM example

Code 4 shows an example of an automatically generated test
suite. This test suite includes four test cases which simulate
different execution scenarios. Each test case instantiates a
C++ object of the previously generated C++ class and checks
whether all initialized functions have the values defined in the
ASM initialization section. Once the values are verified, the
monitored functions values are set. After that a step of ASM
is executed by calling the main method and the update set
is applied. Once the update set is performed, the test case
starts again from the check of the controlled function. The
translation process continues until the list of states belonging
to the current test case is entirely translated.

VI. EXPERIMENTS

In order to test our approach, we have selected 8 ASM
specifications from the Asmeta repository6. These benchmarks
include 4 small examples (AdvancedClock, coffeVendingMa-
chine, ferryman, and Safety Injection System - SIS) and 4 case
studies taken from our previous projects: the specification for
a hemodialysis machine (Hemodialysis ref4) [17], the ground
model (LGS GM) and refined specification (LGS 3L) of a
landing gear system [18], and the specification of a medical
software component (StereoAcuityCertifier) [19].

For every specification, we have generated the test cases
by using different test generators and options, translated the
specification and the tests to C++, and executed the tests in
order to check that our process was able to successfully
test the system implementation under test. During testing, we
performed the coverage evaluation of the C++ code of the main
C++ file by using the gcov tool. We use the coverage as a

6https://sourceforge.net/p/asmeta/code/HEAD/tree/asm examples/

BOOST AUTO TEST SUITE(TestcoffeeVendingMachine)

BOOST AUTO TEST CASE( my test 0 ){
// instance of the SUT
coffeeVendingMachine sut;
// check state
BOOST CHECK(sut.available[0][COFFEE]==10);
BOOST CHECK(sut.available[0][TEA]==10);
BOOST CHECK(sut.available[0][MILK]==10);
BOOST CHECK(sut.coins[0]==0);
// set monitored variables
sut.chosenProduct=COFFEE;
sut.insertedCoin=HALF;
// call main rule
sut.r Main();
sut.fireUpdateSet();
}

BOOST AUTO TEST CASE( my test 1 ){ ...
}

BOOST AUTO TEST CASE( my test 2 ){ ...
}

BOOST AUTO TEST CASE( my test 5 ){
// instance of the SUT
coffeeVendingMachine sut;
// check state
BOOST CHECK(sut.available[0][COFFEE]==10);
BOOST CHECK(sut.available[0][TEA]==10);
BOOST CHECK(sut.coins[0]==0);
BOOST CHECK(sut.available[0][MILK]==10);
// set monitored variables
sut.chosenProduct=COFFEE;
sut.insertedCoin=HALF;
// call main rule
sut.r Main();
sut.fireUpdateSet();
// check state
BOOST CHECK(sut.available[0][TEA]==10);
BOOST CHECK(sut.available[0][MILK]==9);
BOOST CHECK(sut.coins[0]==1);
BOOST CHECK(sut.available[0][COFFEE]==10);
...
}

BOOST AUTO TEST SUITE END()

Code 4. CoffeeVendingMachine test suite example

measure of the quality of the produced tests. For each run, we
recorded the total number of test cases, the total number of
steps and the maximum length of the tests. We measured also
the total time required for test generation and execution. The
results are shown in Table II.

Regarding the choice of the abstract test generator, in order
to compare the two proposed techniques – NuSMV and the
simulator – we proceeded in the following way. We first
executed NuSMV and if it completed successfully, then we
asked the simulator to generate two test suites both with the
same number of tests as generated by NuSMV: the first one
with around the same total number of tests and the second
one with the same max number of steps. If NuSMV was not
able to generate the test suite, then we asked the simulator to
generate 10 tests with 1000 steps each.

For 3 specifications (ferryman, Hemodialyis, and LGS 3L),

6
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ASM specification Test Generator Tot. steps #tests max length time (millisec) coverage errors
AdvancedClock NuSMV 3661 7 3600 48693 100.0

Simulator 3661 7 523 20229 95.24
Simulator 25200 7 3600 134916 100.0

coffeeVendingMachine NuSMV 56 7 26 7331 100.0
Simulator 63 7 9 4950 100.0
Simulator 182 7 26 5802 100.0

ferryman NuSMV 0 0 0 3658 N/A no test generated
Simulator 10000 10 1000 111864 100.0

SIS NuSMV 88 32 6 15914 94.44
Simulator 128 32 4 4624 90.28
Simulator 192 32 6 5152 87.5

Hemodialysis ref4 NuSMV 0 0 0 11227 N/A no test generated
Simulator 1000 10 100 160984 68.3
Simulator 10000 10 1000 31929 N/A out of memory C++ compiler

LGS GM NuSMV 223 8 56 23255 100.0
Simulator 448 8 56 7232 100.0
Simulator 232 8 29 4426 100.0

LGS 3L NuSMV 0 0 0 1893 N/A no test generated
Simulator 10000 10 1000 476615 N/A out of memory C++ compiler
Simulator 11 1 11 2066 N/A out of memory C++ compiler

StereoAcuityCertifier NuSMV 364 80 9 42712 97.6
Simulator 720 80 9 15286 90.4
Simulator 480 80 6 8437 90.4

TABLE II
EXPERIMENTAL RESULTS

NuSMV was not able to generate tests as all the specifications
contain some constructs not supported by the translation
feature of the model checker. For the largest specification
(LGS 3L) of these, the simulator was able to generate tests
that were translated to unit tests, but then the compiler was
unable to build and execute those tests. We plan to adopt some
techniques able to reduce the size of unit tests, like limiting
the CHECK commands only to some controlled variables.

For 3 simple specifications (AdvancedClock, coffeVending-
Machine, and LGS GM), both test generator policies obtained
100% coverage of the generated code. However, as expected,
NuSMV was able to obtain the same level of coverage with
much shorter test sequences but requiring more time.

For 2 specifications (SIS and StereoAcuityCertifier), both
test generators produced unit tests, which, however, were not
able to cover all the implementation code. In both cases,
NuSMV achieved a good level of coverage with a fewer total
number of steps.

Although we applied our technique only to a limited set of
ASMs, the experiments confirm the feasibility of our approach.
As expected, a coverage-driven generation by model checking
produces better test cases than random test sequences. How-
ever, it pays the price in terms of applicability and requires
more time resources.

VII. RELATED WORK

The paper by Dick et al. [20] is one of the pioneering works
that promoted the use of formal methods in software testing.
The authors used the VDM method [21] for the generation of
test cases, their sequencing, and the test oracle.

In another work [22], authors generate test cases by per-
forming symbolic execution over a B model [23], and from
those test cases they obtain a Java program. The resulted Java
program acts as a test driver. When it runs in conjunction
with the implementation, testing is performed in an automatic
manner. A similar work is reported in [24]. In this paper,
authors present the BZ-Testing Tool (BZ-TT), which is capable
of generating functional test cases from B as well as Z [25]
specifications using Constraint Logic Programming.

Engel et al. [26] presented a method for automatic gener-
ation of self-contained unit tests in the JUnit format7. The
implementation is based on the verification system KeY [27]
and supports the JAVA CARD programming language [28].
The approach exploits the implementation of a system and
does not necessarily require its detailed formal specification.

In [29], authors present an approach to implement unit
test oracles from formal behavioral interface specifications.
Instead of writing testing code, a programmer writes formal
specifications (e.g., pre- and postconditions) that are later used
by runtime assertion checkers as the decision procedure for test
oracles. The authors have implemented the proposed approach
using the Java Modeling Language (JML)8 and the JUnit
testing framework.

In [30], authors present an approach to automatically gener-
ate test cases through model transformations. Their work takes
as input UML 2.0 sequence diagrams [31] and automatically
derive test cases scenarios that conforms the UML Testing

7http://junit.org
8http://www.eecs.ucf.edu/∼leavens/JML//index.shtml
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Profile9. In this work, these test case scenarios are automati-
cally transformed using the model to text transformation. The
models used for test case generation in this work are not
necessarily amenable to verification and validation activities.

One of the main differences between the work presented in
this paper and other works is that our approach is grounded
in the Asmeta framework that supports the complete model-
driven software engineering paradigm. Starting from the spec-
ification, the models are rigorously specified and analyzed
for their correctness through validation and verification tools.
After that, the Asm2C++ translates the specification in C++

code and generates C++ unit tests to verify the correct behaviour
of the generated C++ code.

VIII. LIMITATIONS

Despite the effort to cover all the ASM constructs, we
still have some limitations in test cases generation due to the
following factors:

• For specifications with infinite domains, only the random
approach provided by the simulator can be used. More-
over, the current translation to NuSMV does not support
some specific domains (like Strings) and complex terms
(like lists).

• The current translation to C++ [1] does not support some
ASM constructs (like abstract domains).

• ASMs can express internal nondeterminism by means of
the choose rule which randomly chooses an element in
a domain and then some actions are performed. Both the
test generation and the Asm2C++ translation support this
kind of rule. In C++, the rule is translated using a random
method that automatically selects a value from the limited
domain. Despite that, our technique is not suitable to be
used in the presence of internal nondeterminism. This
is because if the value chosen by the test generator is
different as compared to the value chosen by C++ com-
piler, the behavior of ASM and C++ will not be the same
and the test will fail. We plan to work on this issue in
two directions: either by combining runtime monitoring
with testing (as suggested in [32]) or by forcing the
choice of the same elements during test generation and
test execution. Currently, the only solution is to transform
a choose rule into a monitored variable, converting the
nondeterminism from internal to external.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented an extension of the
Asm2C++ tool that enhances the capability of the tool by
supporting the production of concrete unit tests. The unit tests
are generated automatically starting from the ASM model
by following the process shown in Fig. 3. Starting from the
ASM specification, the abstract tests are generated by a test
case generator and then they are translated into C++ unit tests
using Asm2C++. In parallel, the tool also translates the ASM
specification into C++ code. Once the test cases and the C++

9http://utp.omg.org/

code are available, the test executor runs the test cases and
verifies the test results. The process has been validated using
an illustrative example based on an automatic coffee vending
machine (see Section III). Furthermore, in Section VI, we
have performed some experiments to check the applicability of
our approach and we have compared two techniques adopted
to generate abstract tests. The first approach is based on
coverage-driven generation and covers the C++ code better than
the second approach which generates test sequences randomly.
However, random generation can be applied to a greater set
of specifications and it requires much less resources.

As listed in Section VIII, our approach suffers from some
limitations. In order to overcome those limits, we plan the
following future work. We intend to manage the internal
nondeterminism by finding a solution to assign the same value
to the test generator and to the C++ compiler. Furthermore,
we will work on the translation of further ASM constructs to
include a larger number of ASM specifications.
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