
IPO-s: incremental generation of combinatorial interaction test data based on
symmetries of covering arrays

Andrea Calvagna
University of Catania, Italy
Dip. Ingegneria Informatica
e delle Telecomunicazioni
andrea.calvagna@unict.it

Angelo Gargantini
University of Bergamo, Italy

Dipartimento di Ingegneria dell’informazione
e metodi matematici

angelo.gargantini@unibg.it

Abstract

Verification and validation of highly-configurable soft-
ware systems, such as those supporting many optional or
customizable features, is a challenging activity. In fact, due
to its intrinsic complexity, formal modeling of the whole sys-
tem may require a great effort. Modeling activities may
become extremely expensive and time consuming, and the
tester may decide to model (at least initially) only the in-
puts and require they are sufficiently covered by tests. The
recent wide spreading usage of combinatorial interaction
testing (CIT) is dramatically improving the effectiveness of
this activity. Although there exist analytical ways to derive
minimal sized CIT test suites, they are not applicable to all
task sizes. Therefore, researchers have explored many tech-
niques based on greedy or heuristic algorithms that may
lead to sub-optimal result in the size of the built test suite but
that are applicable to problems of real size. In this paper, a
new parameter-based heuristic algorithm for the construc-
tion of pairwise covering test suites is presented; it is based
on a symmetry property of covering arrays and it is called
IPOS . Time and space complexity of IPOS is discussed in
comparison especially with the only other parameter-based
approach existing in literature. The proposed approach is
supported by a prototype implementation, and experimen-
tal assessment is also presented.

1 Introduction

Systematic testing of highly-configurable software sys-
tems can be challenging and expensive. Moreover, tradi-
tional approaches to systematic testing may not be able to
detect incorrect behaviors or failures caused by unintended
interaction between optional features [25, 38]. Since most
of the faults in a software system are triggered by unin-
tended interaction of a relatively low number of input pa-

rameters, typically 4 to 6 [25], testing of all combinations
of input configurations can be very effective in revealing
software defects [24]. The recent widely spreading usage
of combinatorial interaction testing (CIT) is improving the
effectiveness of this activity. CIT consists in systematically
testing all possible "partial" configurations (that is, involv-
ing up to a fixed number of parameters only) of a given
software system in order to reveal unintended feature inter-
actions. In fact, it has been empirically shown that most
of the failures of software systems are actually triggered by
unintended interaction between a very small number of pa-
rameters.

Combinatorial Interaction Testing (CIT) systematically
explores t-way feature interactions inside a given system,
by effectively combining all t-tuples of parameter assign-
ments in the smallest possible number of test cases. This
allows to budget-constraint the costs of testing while still
having a testing process driven by an effective and exhaus-
tive coverage metric [25, 8]. The most commonly applied
combinatorial testing technique is pairwise testing, which
consists in applying the smallest possible test suite cover-
ing all the pairs of input values (each pair in at least one
test case). In fact, it has been experimentally shown that a
test suite covering just all pairs of input values can already
detect a significantly large part (typically 50% to 75%) of
the faults in a program [26, 15]. Dunietz et al. [16] com-
pared t-wise coverage to random input testing with respect
to the percentage of structural (block) coverage achieved,
showing that the former achieves better results if compared
to random test suites of the same size. Burr and Young [5]
reported 93% code coverage from applying pairwise testing
of a large commercial software system, and many CIT tools
(see [30] for an up to date listing) and techniques have al-
ready been developed [14, 17, 25] and are currently applied
in practice [3, 33, 23].

Combinatorial testing can be applied to a wide variety of
problems: highly-configurable software systems, software
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Table 1. Input domain of a basic billing sys-
tem (BBS) for phone calls

access billing calltype status
LOOP CALLER LOCALCALL SUCCESS
ISDN COLLECT LONGDISTANCE BUSY
PBX EIGHT_HUNDRED INTERNATIONAL BLOCKED

Table 2. A test suite for pairwise coverage of
BBS

# billing calltype status access
1 EIGHT_HUNDRED LOCALCALL BUSY PBX
2 CALLER LONGDISTANCE BLOCKED LOOP
3 EIGHT_HUNDRED INTERNATIONAL SUCCESS ISDN
4 COLLECT LOCALCALL SUCCESS LOOP
5 COLLECT LONGDISTANCE BUSY ISDN
6 COLLECT INTERNATIONAL BLOCKED PBX
7 CALLER LOCALCALL SUCCESS ISDN
8 CALLER LOCALCALL BUSY PBX
9 EIGHT_HUNDRED LONGDISTANCE BLOCKED ISDN
10 COLLECT LONGDISTANCE BUSY LOOP
11 COLLECT LONGDISTANCE SUCCESS LOOP

product lines which define a family of softwares, hardware
systems, and so on. As an example, Table 1 reports the
input domain model of a simple telephone switch billing
system [27], which processes telephone call data with four
call properties, each of which has three possible values: the
access parameter tells how the calling party’s phone is
connected to the switch, the billing parameter says who
pays for the call, the calltype parameter tells the type of
call, and the last parameter, status tells whether or not
the call was successful or failed either because the calling
party’s phone was busy or the call was blocked in the phone
network. While testing of all the possible configurations for
BBS would require 34 = 81 tests, pairwise coverage can be
obtained by the test suite reported in Table 2 which contains
only 11 tests.

Significant time and cost savings can be achieved by
implementing this approach, as well as in general with t-
wise combinatorial interaction testing. In fact, although
t-wise coverage of a system featuring n configuration op-
tions, each ranging in r values, requires testing a number
of configurations which grows exponentially, rt

(
n
t

)
, combi-

natorial test suites effectively selects a much lower number
of test cases. As an example, for a system with a hundred
boolean parameters (2100 possible test cases) pairwise cov-
erage would require 19800 number of configurations to be
tested, which can be accomplished with only 10 test cases
by a combinatorial test suite. Similarly, pairwise coverage
of a system with twenty ten-valued options (1020 possible
tests) requires coverage of 19000 pairs, for which it is suffi-
cient a combinatorial test suite of only 200 tests cases.

From a mathematical point of view, the problem of gen-
erating a minimal set of test cases covering all t-wise tuples

of input assignments is equivalent to computing a covering
array (CA) of strength t over the alphabet of all the input
symbols [19]. Covering arrays are combinatorial structures
which extend the notion of orthogonal array [2], which in
turn are generalizations of latin squares. For a given sys-
tem under test exposing n features, all ranging in r dis-
tinct values, a t-strength, n-degree, r-order covering array
CAλ(N ; t, n, r) is anN×n array where everyN×t subar-
ray shall contain each t-wise combination of the r symbols
at least λ times. However, when applied to combinatorial
system testing only the case when λ = 1 is of interest, that
is, where every t-tuple is covered at least once. Moreover,
for testing of real systems we are really interested in mixed
covering arrays MCAλ(N ; t, n, ~r), with ~r = (r1, r2, ...rn)
a vector of positive integers, in which each system feature
may range on a different number ri of symbols. Each of the
N rows will be a complete test case specification, assigning
values to all features, while each column of the CA will list
all values chosen for each feature.

Devising a general algorithm to compute a CIT test suite
is a non trivial problem, as computing a minimal set of test
cases that satisfies n-wise coverage can be NP-complete
[36, 31]. Although exact solutions to compute it by alge-
braic construction do exist [22], they are not generally ap-
plicable to large problems. As a consequence, researchers
have addressed the issue of designing general solutions to
compute a minimal sized CIT test suite based on greedy
heuristic searches [4], although these may lead to near-
optimal results (typically, only an upper bound on the size
of constructed suite may be guaranteed). Less traditional
meta-heuristic algorithms have also been proposed [9, 29],
based on bio-inspired techniques (i.e. genetic algorithms,
simulated annealing) in order to converge to a near-optimal
solution after an acceptable number of iterations. In ad-
dition, recursive construction techniques do exist [12, 32],
computing a near-optimal test suite by composing together
instances of sub-arrays which are already minimal. How-
ever, most of the already existing algorithms and tools fall
in the greedy category. These algorithms build up the test
suite incrementally by adding either one test case, that is a
row, at the time or one parameter, that is a column, at a time
to the test suite, until coverage is complete. Although this
latter strategy (known as parameter-based construction) has
proven to outperform many of the existing strategies of the
former type (known-as AETG-like after its most influen-
tial algorithm [8]), many variants of the AETG-like strategy
have been already proposed in literature, in contrast to only
one parameter-based algorithm IPO [26], which makes this
point worth investigating.

Note that many algorithms and tools for combinatorial
interaction testing already exist in the literature. Grindal et
al. count more than 40 papers and 10 strategies in their sur-
vey [17]. There is also a web site [30] devoted to this subject
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and several automatic tools are commercially [8] or freely
available [26]. For this reason, even a small improvement
over existing techniques seems now hard to accomplish.

In this paper a new parameter based algorithm for the
construction of pairwise covering test suites is presented.
Based on a symmetry property of combinatorial test suites
we were able to formulate a (very short) recursive con-
struction algorithm. This algorithm’s heuristic, in contrast
to existing parameter-based approaches, can optimize in a
smaller set of pairs, actually a subset of just two parameters,
irrespective from the total number of the system parameters.
The paper is structured as follows: section 2 gives insights
on the theoretical aspects of the considered problem and
explains the idea behind our new construction technique,
section 3 discusses results from experiments on its imple-
mentation in order to assess its performance and scalabil-
ity, comparing also with most existing tools, and eventually
section 4 draws our conclusive statements and directions for
future work.

2 Computing the Test Suite by IPOS

In this section we present a novel test generation tech-
nique called IPOS (the s is short for Symmetry). IPOS is a
parameter-based strategy as it computes the test suite incre-
mentally, one parameter at time, starting from the first two
parameters and then extending the test suite in order to add
pairwise coverage, one column for each additional param-
eter. However, complete pairwise coverage of the new pa-
rameter may require also vertical extension of the test suite,
that is additional rows. The parameter-based construction
technique has been introduced by Tai and Yu with the IPO
algorithm [26]. In contrast with that algorithm, in the pro-
posed approach the horizontal and vertical growth are not
performed in separate and consecutive stages, but are in-
stead interleaved. As it can be easily derived, adding pair-
wise coverage for a new feature to an existing n-features
wide test suite implies extending it to cover an additional set
P of |P | = n(n+1)r2 pairs between the new parameter and
all the previous1. In fact, the heuristic in [26, 34] searches
in P in order to choose the best symbol for next assignment.
Conversely, in our algorithm this extent is reduced to a con-
stant r2 pairs, that is P does not grows with the number n
of features in the suite. This is possible as all other required
pairs will be already covered with a suitable initialization of
the new column symbols, thanks to a key property of cov-
ering arrays that we call symmetry, as showed in details in
the following. However, when mixed ranges are considered,
in order to compute the corresponding MCA the additional
assumption that parameters will be processed in descend-
ing ranges order will be required. As a consequence, the

1We assume here for sake of simplicity that all features have same
range, r, but is easy to extend it to mixed alphabet sizes.

variables and their ranges have to be known in advance all
at once, although this is not a big issue as it is usually the
case.

2.1 Incremental Construction

Let us consider a system under test which has n distinct
input parameters (v1, . . . , vn), and assume that vi has range
ri and values in Vi = {0, 1, ..., ri − 1}, that is V = V1 ∪
· · · ∪ Vn is the whole input domain. Note that actual values
of any parameter have been mapped to an equivalent set of
symbols (natural numbers) for convenience. Let S be the
current test suite that covers every pair between the first i−1
parameters with 2 < i ≤ n. The current test suite is a mixed
covering array of N × i − 1. We want now to extend S to
cover also the i-th parameter, vi. Given the assumption that
parameters have been processed in descending range order,
we have rk−1 ≤ rk ∀k = 2, . . . , n, that is the range of
vi will always be less or equal to those of all v1, . . . , vi−1

parameters already in the test suite.
As a consequence, it is always possible to define an in-

jection fk : Vi → Vk which associates distinct values of vi
with distinct values of one parameter vk (k ∈ {1 . . . i− 1})
of choice. We now consider the extended range V ?k =
Vk ∪ {x}, and similarly V ?i , in order to include the addi-
tional don’t care symbol, x. It is now possible to define a
new function Fk : V ?k → V ?i as follows:

Fk(α) =

 f−1
k (α) α ∈ Vi

x α /∈ Vi

Simply put, Fk is a surjection, which reverses the injection
fk (as we actually aim to compute values in Vi) and ex-
tends it by mapping any unassociated value in its range to
the don’t care value. As an example, a straightforward in-
jection fk is the copy function f(α) = α. In this case the
function Fk(α) is equal to α if α ∈ Vi, otherwise is equal
to x. That is, it copies the k-th column except for those val-
ues that are not in the range of the new variable vi, which
become x.

Theorem 1 (Symmetry property) By using function Fk to
initialize vi from vk guarantees that vi is already paired to
all the parameters except vk.

This can be proved by considering that the chosen pa-
rameter vk was by definition already paired with all other
(i − 1) parameters in S, then also vi will be paired to the
same parameters as vk, i.e. all except vk itself. In fact, the
function Fk, by construction associates each value of vi to
a distinct value of vk, that is, Vi will be just a renamed sub-
range of Vk. Thus, we only need to complete coverage for
pairs between vi and vk that, at this stage, will always be
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exactly ri pairs out of ri · rk, whatever the chosen injec-
tion. Note that the additional coverage requirements of the
extended test suite now have been already greatly reduced
without any greedy processing, yet. At this point, for each
of the uncovered pairs a greedy function will select an avail-
able row position, i.e. one corresponding to a redundant or
already covered pair, that can be edited to create the con-
sidered missing pair. Changes to actual values of the suite
can only happen to the values of the newly added column
only, while x values could safely be edited also in the rest
of the suite at any moment, as their modification can only
increase the overall coverage. It is important to note that
the changes operated to the last column will have to pre-
serve the pairs already covered between all parameters, vi
included. As the number of suitable rows for inserting the
missing pairs is limited to a subset of the (few) suite rows,
the effectiveness of this greedy stage relies in correctly se-
lecting the right sequence of edits to apply in order to avoid
unnecessary rows addition to the suite. However, if it fails
since no suitable positions are left available in the last col-
umn to form the missing pair, it will eventually add it to the
suite as a new row. This new row (a test case) will have
bindings for just the required pair of parameters, and don’t
care values in all other parameters.

From now on, we will use as function Fk the copy func-
tion Fi−1 which copies the last generated column in the col-
umn to add for vi, except for those values of vi−1 that are
not in the range of vi and that will be substituted by x.

Now let’s clarify it with an example. Assume we have
a system with variables v1, v2, and v3 ∈ {0, 1, 2}, and
a fourth variable v4 ∈ {0, 1}. We than first combine the
two major parameters and get an intermediate test suite with
nine rows. At next iteration we then initialize third column
(for parameter v3) with the same values of the second, or
with x, as from Fi−1. As v2 was already totally paired2

with v1, also v3 whose assignment resembles that of a sub-
set of v2, is consequently totally paired with v1 (see figure
1-(a)). We then only need to complete pairing of v3 and
v2. Note also that some of the pairs between v3 and v2
are already covered by construction: {(0, 0), (1, 1), (2, 2)},
and that they are (three times) redundant. We only need
to cover pairs {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)} and
have six redundant column places than can be reassigned to
this aim. A simple heuristic applicable here is to edit the
symbol in the row position of first redundant instance of a
pair, that is, in this case, we choose to change assignment
on fourth row so to form the missing pair (v2, v3) = (0, 1).
Since this will delete the unique pair (v1, v3) = (1, 0) we
need to restore it elsewhere, and precisely it can be done
by another change of assignment (always in last column)
in sixth row from 2 to 0. This last induced change delete

2Please allow us to use the following the expression totally paired to
denote that all their pair combinations of symbols are covered.

in turn the existing pair (v1, v3) = (1, 2), immediately re-
stored by changing fifth row redundant assignment to 2,
and also increased (v2, v3) coverage also by additional pairs
(2, 0) and (1, 2). Similarly, missing pair (v2, v3) = (0, 2) is
added by changing value in seventh row from 0 to 2, which
deleted pair (v1, v3) = (2, 0) as a side-effect, immediately
restored by changing value in redundant eighth row from
1 to 0. Eventually, missing pairs (v2, v3) = (1, 0) and
(v2, v3) = (2, 1) are obtained by changing v3 assignment
in sixth and ninth row respectively, without any side-effect.
This ends the first iteration since pairing of v3 and v2 is now
complete (see figure 1-(b)). Please note that this procedure
guarantees that at least one instance of each pair is in the
final suite, but does not require that each pair of values is
covered the same number of times.

A further iteration is needed to add the last parameter v4
to the suite, which has smaller range than its predecessors.
Again, this column’s values are copied from current values
in adjacent column v3 (see figure 1-(c)) and then edited to
complete the coverage. Since v3 has higher range than v4
this time x (don’t care) values will be used to initialize un-
matched rows. As shown in figure 1-(c) we only miss the set
of pairs (v3, v4) = {(1, 0), (0, 1), (2, 0), (2, 1)} to complete
the coverage. The first pair is created changing v4 value
in fourth row, and restoring deleted pairs (v2, v4) = (0, 1)
and (v1, v4) = (1, 1) by replacing with 1 the x in sev-
enth row and fifth row respectively. This also add missing
pairs (v3, v4) = (2, 1). Moreover, creating missing pair
(v3, v4) = (0, 1) by changing to 1 the value in sixth row
has no side effects, and eventually changing the x in third
row to 0 creates the last missing pair (v3, v4) = (2, 0). As
no parameters need to be added the process is complete and
the pairwise coverage is also 100% complete for all pairs
(figure 1-(d)). Please note that modifications have occurred
at each iteration only in the new column of S, and that a
value can be changed only if it is redundant and has not
been changed already. This requirement ensure that cover-
age is always increased, as added pairs cannot be undone,
and as a consequence it guarantees that the process eventu-
ally terminates. On the other hand, this safety condition can
lead to sub-optimal results. In fact, in more complex tasks
it may also happen that no rows exist which allows for the
required substitution. In this case a new row will be added
to the test suite to host the missing pair. The following sub-
sections shows algorithmic details of both main algorithm
and its value editing, recursive routine, recover().

2.2 Main loop

The main algorithm sorts the variables and builds the
tests for the two first variables v1 and v2 simply by building
every possible combination of their values. Then, it adds
the test for every variable vi at the time by calling an auxil-
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v1 v2 v3

0 0 0
0 1 1
0 2 2
1 0 0
1 1 1
1 2 2
2 0 0
2 1 1
2 2 2

v1 v2 v3

0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 0
2 0 2
2 1 0
2 2 1

v1 v2 v3 v4

0 0 0 0
0 1 1 1
0 2 2 x
1 0 1 1
1 1 2 x
1 2 0 0
2 0 2 x
2 1 0 0
2 2 1 1

v1 v2 v3 v4

0 0 0 0
0 1 1 1
0 2 2 0
1 0 1 0
1 1 2 1
1 2 0 1
2 0 2 1
2 1 0 0
2 2 1 1

(a) (b) (c) (d)

Figure 1. Example task: 3321.

//add the i-th column to S
add_column(S, ri, i){

//let Pi be the set of pairs between vi and vi−1

for each row j in S do{
//copy the (i-1)th column
//let a = S[j][i− 1]
if a ≤ ri then b:=a else b:=x;
S[j][i]:= b;
if (a, b) ∈ Pi then {

remove (a, b) from Pi;
set row j as required;

}
}
//recovering
for each (a, b) ∈ Pi recover(a, i− 1, b, i);

}

Figure 2. suite extension algorithm

iary method add_column(). This method is reported in Fig.
3 and is structured in two stages: the first stage initializes
the values added for the new parameter to each of the test
cases of the current suite, that is its last column. To do so
it implements here the copy function used in the previously
shown example. This step guarantees to give complete cov-
erage between the added i-th parameter and all the others
but one: the one that has been copied. Thus, a second stage
is necessary, where an internal recursive function, recover
is invoked for each of the missing pairs between these two
parameters. This function always ends up with the addition
of the specified pair to the coverage, either because it suc-
ceeds in doing so by refining the assignments in last column
or because it adds it as a new row.

//recover the pair (a, b) at columns (k, i)
recover(a, k, b, i){

//let p be a pair (a, b)
choose any row j where S[j][k] = x

or where j is unrequired and S[j][k] = a;
if none, add p as a new row and return;
if S[j][k] = x then S[j][k] := a;
set row j as required;
//create the missing pair
bold := S[j][i];
S[j][i] := b;
// restore any deleted pairs
if (bold = x) return;
for all h : 1..i− 2 do:

if pair (S[j][h], bold) is not covered
then recover(S[j][h],h,bold,i);

}

Figure 3. recursive pair-recover function
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2.3 Recursive recovering

The recover function edits the values in i-th column of
S until the specified pair p is successfully added to S, in
columns k and i. Editable rows are those whose value in
column i form a redundant pair with that of column k, and
thus it is replaceable with some other value to create the
missing pair. Routine is recursive and either sets the x value
in current "working" column k, if any, to the required value
or changes the value in column i, of a given row. How-
ever, a change in one value in the i-th column could cause
deleting an unique pair already existing between the current
parameter and the previous, on the same row. In that case,
any deleted pair will be restored recursively by means of the
same routine, as the structure of the recursive recover algo-
rithm is parametrized on the column indexes and the values
of the pair that has to be created. Note that this can also
recursively induce other changes and thus other deletions.
However, eventually this recursive process is always guar-
anteed to terminate, since the recursion is subject to the con-
dition that no row position can host more than one change,
at most. In other words, what previous recursions did can-
not be later undone. This ensures that the applied recursive
changes will always increase the coverage, eventually, and
puts an upper bound to the depth of the recursion (N · i,
see next section). In fact, if no chances exist to create the
desired pair or to recover a deleted pair then the recursion
terminates, after adding the missing pair as an additional
row, with all x values except for the values of the pair p
itself.

2.4 Time and Space complexity

In [8], the authors show that the number of tests for
pairwise coverage grows at most logarithmically in n and
quadratically in r with n the number of parameters and r
the number of values3. The regression analysis we per-
formed on experimental data in tables 3 and 4 to asses the
dependency on the number of parameters n and the range
of the parameters d, empirically confirmed that the size
of the test suites generated by IPOS grows in O(log (n))
and O(r2), respectively. Computational time complexity
of add_column function is O(r2), as it is dominated by the
loop of calls to the recover() function. The latter can at each
execution either modify a row assignment (always in last
column only) or add a new test case (a new row) to the test
suite. Recursion can be induced only when a row has been
modified. This in turn can happen only N times overall, as
any row can be modified only once. Moreover, since the
recursive call is nested inside an O(n) loop, the total time
complexity of the function isO(N ·n), that isO(r2n log n).

3This result can be extended to MCAs by averaging over all the actual
ranges.

Thus, as the add_column() is called n times, the overall
time complexity of the proposed strategy is O(r4n2 log n),
that is the same of the reference tool AETG [8] (as proved
in [26]) . Although better time complexity is achieved by
IPO, which is in O(r3n2 log n), this is computed assuming
that a crucial step of that algorithm, that is the test of a flag
indicating if a pair is already covered or not, can be imple-
mented with time complexity in O(1), that is, that it is pos-
sible to directly index a flag for each pair in the whole com-
binatorial space. Clearly, this assumption in turn requires
a data structure of size linearly proportional to the size of
the problem domain, that is, in O(rn). Indeed, this may be
a huge space requirement, growing exponentially with the
number of involved parameters, and so dramatically limit-
ing the scalability of that approach, or its extensibility to
higher degree of interaction strengths. In contrast, the space
requirements of the presented approach is in O(r2), as it is
always limited to the pair combinations of two parameters
only, irrespective of the overall number of involved param-
eters. In addition, the fact that the our tool space complex-
ity is dominated by r suggests that the proposed algorithm
could be more effective if applied to tasks characterized
by a large number of parameters but with short-to-medium
ranges. This will be confirmed by results of experimental
assessment in Section 3.

3 Evaluation

The proposed algorithm has been implemented in a pro-
totype tool, which has than been applied to a series of tasks
in order to benchmark its performance. In this section the
results of this assessment are reported and compared with
performance of other existing tools. The exponential nota-
tion used to represent the problem domain size in [19] has
been also adopted here, that is dn means a task with n pa-
rameters of range d. Note that the tool fully implements the
algorithm, including its support for tasks with mixed ranges.

The first series of experiments reports the size of the
computed test suite for two series of tasks, designed in order
to separately assess its scalability with respect to increasing
number of features n (Table 3), or increasing range r (Ta-
ble 4), respectively. In these first two tables, the respective
performance of the tool PairTest [26] has been also reported
as a reference for comparison, since it is the only other ex-
isting tool implementing a parameter-based approach, be-
sides IPOS , to the best of our knowledge. In order to test
the potential of this approach irrespective from any spe-
cific, local optimization strategy that could be applied in-
stead, our tool is currently implementing a simple random
search heuristic, and thus shows non deterministic behav-
ior, in contrast to the deterministic heuristic implemented
by the compared tool PairTest. In particular, the suite sizes
reported in the following for our tool IPOS are the best out
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n 10 20 30 40 50 60 70 80 90 100
PairTest 31 34 41 42 48 48 51 51 51 53
IPOS−min 28 34 38 41 43 45 47 48 49 50
IPOS−µ 30.1 35.7 40.7 43.2 45.2 46.9 48.5 49.9 50.9 52.1
IPOS−σ 1.35 1.20 1.21 1.21 1.23 0.99 1.17 1.10 1.17 1.21
IPOS−time 0.01 0.01 0.03 0.06 0.10 0.15 0.21 0.28 0.37 0.48

Table 3. Comparative suite size for 4n task size.

r 5 10 15 20 25 30
PairTest 47 169 361 618 956 1355
IPOS−min 44 177 390 686 1079 1548
IPOS−µ 47.0 187.1 418.8 741.4 1138.9 1631.7
IPOS−σ 2.13 5.36 12.72 25.71 37.06 48.45
IPOS−time 0.01 0.12 0.80 4.67 15.31 40.74

Table 4. Comparative suite size for r10 task size.

of fifty tries. Although this comparison may appear unfair,
please note that it is common practice in CIT literature to
compare the performance of the existing CIT tools, irre-
spective of whether their underlying approach is determin-
istic or not. It is also common practice for tools based on
greedy, non deterministic search heuristics (i.e. like AETG,
SA-SAT, ATGT, PICT4, our tool IPOS and so on) to be
benchmarked over a relatively small series of just fifty ex-
ecutions, although a larger number could lead the search to
better results. Experiments have all been executed on a lap-
top computer equipped with Intel Core Duo 2.4GHz and 2
GBytes of RAM.

Average size, standard deviation and execution time,
measured in seconds for a single try of the tool, have also
been reported for each computed task. The execution times
shown are very small even for large sized tasks, encourag-
ing the adoption of this tool for test data generation in a
production environment, and showing that the time perfor-
mance of this tool is good enough to allow for much more
than fifty executions in still reasonable overall time. As an
example, a five minute only execution of the tool on a task
size like 450, whose computing time is 0.10 seconds, would
allow for six hundred executions on the tool.

Data in Tables 3 and 4 show that our approach perfor-
mance and scalability is at least comparable to that of the
other parameter-based tool, both with respect to the number
of parameters n and to their range r, despite current imple-
mentation is not adopting yet any optimizing heuristic.

Tables 5, 6, 7, and 8 report series of experiments per-
formed in order to compare the performance of IPOS in
terms of the size of the generated test suite, to that of main

4The PICT tool core algorithm does make pseudo-random choices but,
unless a user specifies otherwise, the pseudo-random generator is always
initialized with the same seed value, in order to purposely let two execu-
tions of the tool on the same input produce the same output.

Task IPOS ATGT mAETG-SAT SA-SAT PICT TestCover
size [7] [10] [10] [13] [35]
33 9 9 9 9 10 9
43 16 15 16 16 17 16
53 27 25 26 25 26 25
63 36 36 37 36 39 36
73 53 51 52 49 55 49

Table 5. Comparative suite sizes for a3

existing tools for pairwise testing, on several sets of tasks
with increasing complexity. Tasks in Table 5 are covering
arrays with 3 factors of 3 to 7 values each, presented in [10],
while tasks in Table 6 have been taken presented in [19] and
[13]. As shown, our tool performed well in all of the con-
sidered tasks, and while in most of the remaining it has the
same (already optimal) performance in two other tasks, and
still performs well in the two remaining tasks. Table 7 re-
ports an additional performance comparison between our
tool and other well-known existing tools on a different and
larger series of tasks of increasing sizes. Although the per-
formance achieved is not optimal, it is still acceptable and
very close to that of the other compared tools, specially for
smaller tasks, which in overall demonstrates the practicabil-
ity of the underlying approach.

Table 8 reports computed test suite sizes for an additional
set of seven example specifications which this time are ac-
tual models of real-world software systems. Comparison is
made, where data was available, with the recently presented
tools mAETG-SAT presented in [10] and with our model
checker based tool ATGT presented in [6] and [7]. BBS is
a model of a basic telephone billing system [27], already
presented in the introduction of this paper. TCAS models
the specification of a software module part of a Traffic Col-
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Task IPOS ATGT AETG PairTest TConfig CTS Jenny DDA AllPairs PICT
size [7] [8] [26] [37] [18] [21] [11] [28] [13]
34 9 11 9 9 9 9 11 9 9
313 17 19 15 17 15 15 18 18 17 18
415317229 32 38 41 34 40 39 38 35 34 37
41339235 23 27 28 26 30 29 28 27 26 27
2100 10 12 10 15 14 10 16 15 14 15
1020 220 267 180 212 231 210 193 201 197 210

Table 7. Comparative suite sizes of several combinatorial tools

Task IPOS ATGT PairTest TConfig CTS Jenny
size [7] [26] [37] [18] [21]
410 28 31 31 28 28 30
420 34 39 34 28 28 37
430 38 45 41 40 40 41
440 41 49 42 40 40 43
450 43 51 47 40 40 46
460 45 53 47 40 40 49
470 47 56 49 40 40 50
480 48 58 49 40 40 52
490 49 59 52 43 43 53
4100 50 60 52 43 43 53

Table 6. Comparative suite sizes for 4b

lision Avoidance System (TCAS) presented in [24]. Cruise
Control models a simple cruise control system originally
presented in [1], while the Mobile Phone example models
the optional features of a real-world mobile phone prod-
uct line, and has been recently presented in [10]. SPIN is
a well-known publicly available model checking tool [20],
and can be used as a simulator, to interactively run state ma-
chine specifications, or as a verifier to check properties of a
specification. It exposes different sets of configuration op-
tions available in its two operating modes, so they can be
accounted for two different tasks of different sizes. Finally,
the GCC task is derived after the version 4.1 GNU com-
piler toolset, supporting a wide variety of languages, e.g.,
C, C++, Fortran, Java, and Ada, and over 30 different target
machine architectures. Due to its excessive complexity the
task size has been here reduced to model just the machine-
independent optimizer that lies at the heart of GCC. These
models have also been presented in [10]. For all these mod-
els, as can be seen from the data shown in Table 8, in all
the computed test suites the tool was able to improve the
best result over the other compared tools, but for TCAS
which is already at optimal size in the other too. In this
paper all tasks have been applied unconstrained, that is ig-
noring the restrictions on which pairs may legally be present
in the computed test suite (i.e. because they are actually re-
alizable) and which may not, if any. In fact, although we

are currently working on extending this approach to support
constraints over the inputs, we are leaving this issue out of
the scope of this paper.

Spec Task IPOS ATGT mAETG-SAT
BBS 34 9 11
TCAS 273241102 100 100
Mobile Phone 2233 10 11
Spin simulator 21345 20 23 25
Spin verifier 24232411 29 33 33
GCC 2189310 16 19 24

Table 8. Test suite sizes for models of real-
world systems.

4 Conclusions and future work

In this paper a new parameter-based technique for in-
cremental construction of pairwise covering test suites has
been presented, currently exloiting a symmetry property of
covering array. The core algorithm is based on the new idea
of inheriting the "pairing" relations between the parameters,
due to a symmetry relation between columns of a covering
array. Although many algorithms have been proposed for
incrementally computing a test suite one row at the time,
only one other algorithm sharing with us the (orthogonal)
one-column-at-the-time approach currently exist in litera-
ture. Moreover, in contrast to that other algorithm, the pre-
sented algorithm is characterized by much lower space re-
quirements, irrespective of the number of involved param-
eters. As a consequence it has shown to have also better
scalability with respect to increasing the number of the task
parameters. The experiments performed on the implemen-
tation of the proposed approach showed its space perfor-
mance is also always very close to, and in some cases even
better than, the best of the other available tools too, support-
ing the use of this approach to implement effective testing
automation in production environments. Although in cur-
rent experimentation a simple random search heuristic has
been applied, we believe that there is a lot of potential to
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further improve the performance of this approach by de-
signing smarter search based heuristics (e.g. how to select
rows, which uncovered pair to recover next, and so on). Fur-
thermore, we use only a simple copy function Fi−1 which
could be substitued by a more complex function Fk in or-
der to initialize every new column in a more efficent way.
We are currently investigating this issue, implementing and
evaluating several optional local optimization strategies, in
order to achieve significant results, and will present the re-
sults in the future. As a final remark, work is undergoing
to extend this algorithm to support n-way testing and con-
straints over the inputs. In particular, we are working on
applying the use of constraint solvers or model checkers to
the CIT in the presence of constraints, by combining the
techniques proposed in [6, 7] with the technique presented
in this paper.
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