
formal MVC: a pattern for the integration of ASM
specifications in UI development

Andrea Bombarda1[0000−0003−4244−9319], Silvia Bonfanti1[0000−0001−9679−4551], and
Angelo Gargantini1[0000−0002−4035−0131]

Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione,
Università degli Studi di Bergamo, Bergamo, Italy

{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it

Abstract. Using architectural patterns is of paramount importance for guaran-
teeing the correct functionality, maintainability and modularity, especially for
complex software systems. The model-view-controller (MVC) pattern is typically
used in user interfaces (UIs), since it allows the separation between the internal
representation of the information and the way it is shown to users. The main prob-
lem of using this approach in a formal setting, where formal models are used to
specify the requirements and prove safety properties, is that those models are not
directly used within the MVC pattern and, thus, all the activities performed at
model-level are somehow lost when implementing the UI. For this reason, in this
paper, we present the formal MVC pattern (f MVC), an extension of the classi-
cal MVC where the model is a formal specification, written using Abstract State
Machines. This pattern is supported by the AsmetaFMVCLib, which allows the
user to link the formal model with the view and the controller by using simple
Java annotations. We present the application of f MVC on a simple example of a
calculator for explanatory purposes, then we apply it to the AMAN case study,
which has inspired the definition of f MVC. We discuss the advantages of f MVC
and its shortcomings, trying to identify the scenarios where it should be applied
and possible alternatives.

1 Introduction

When we planned to apply the formal method of our choice, namely the Abstract State
Machines (ASM), to the ABZ2023 case study, we realized that the case study differs
from the past case studies because it contains a relevant part regarding the user inter-
face (UI) and the interaction with humans. Thus, we decided to evaluate the use of
patterns for developing UIs. In that case, one of the most used patterns is the model-
view-controller (MVC). MVC separates the UI from the data that it must show. To be
more precise, the MVC describes the architecture of a system of objects, and it can be
applied not only to UIs but to entire applications. However, it is also less clearly de-
fined than many other patterns, leaving a lot of latitude for alternate implementations.
It is more a philosophy than a recipe [4], and it can be easily adapted and tuned for
different use case scenarios. In UI development, Model objects store, encapsulate, and
abstract the data of the application, View objects display the information in the model
to the user, while Controller objects implement the application’s actions.

Even in a more formal setting, if one has developed a formal model for the system to
be implemented, MVC can be used by deriving part of the code from the formal spec-
ification or by using the formal specification as a guideline for developing the MVC
(especially for the part related to the controller and the model). However, a direct inte-
gration of the formal model is not expected by the existing implementations of MVC.

In this work, inspired by the case study, we devise an extension of the classical
MVC, the formal Model-View-Controller (f MVC) pattern, where the model is a formal
specification, an ASM. The way to integrate the model, the view and the controller
is provided by a Java library, called AsmetaFMVCLib, which allows user to annotate
components in the view in order to link them to the input and output locations of the
ASM model. The library is integrated in the Asmeta framework [1] and includes the
Model wrapper (that requires the user only to attach the ASM model) and the Controller
part, which can be used as they are or extended to be adapted to case-specific behaviors.
Moreover, the library provides an interface to be implemented by the View component.

By using the proposed pattern, users can take advantage of the main peculiarities
of formal models, e.g., rigorousness, possibility of properties verification, and iterative
development approach. Moreover, one of the advantage of using Asmeta specifications
and, in general, ASMs is that the models are executable and, thus, they can be tested
even before having the actual UI.

We apply the proposed pattern to the Arrival Manager (AMAN) case study1 by
showing the whole development process, from the Asmeta model specification, its val-
idation and verification, to the linking between the Java View and the Model. With this
case study, we are able to discuss the advantages and the disadvantages of the f MVC,
and we highlight the scenarios in which the proposed pattern better fits and those in
which alternatives are preferable.

The remainder of this work is structured as follows. Sect. 2 describes the Asmeta
framework with its available tools, and gives an example of a simple specification.
Sect. 3 introduces the formal Model-View-Controller pattern and explains how to use
the annotations provided with the AsmetaFMVCLib to exploit the proposed approach.
Then, in Sect. 4 we report the activities of modeling and V&V of the Arrival Manager
(AMAN) case study and application of the f MVC pattern. We discuss the main pros and
cons of the proposed approach in Sect. 5, and report the related works on integrating
formal methods in MVC pattern and, in general, how formal methods are integrated
with the UI in Sect. 6. Finally, Sect. 7 concludes the paper.

2 The Asmeta framework

This work is based on the use of Abstract State Machines (ASMs), an extension of
Finite State Machines (FSMs) in which unstructured control states are replaced by states
with arbitrarily complex data. In particular, we use the functionalities offered by the
Asmeta framework [1] which supports the developer with an analysis process spanning
the whole life cycle of the system. The three main phases are design, development, and
operation, and each phase integrates different tools (see Fig. 1). For this case study,

1 https://abz2023.loria.fr/case-study/

2

https://abz2023.loria.fr/case-study/

Verifica�on Valida�on

Model Reviewer
AsmetaMA

Simulator
AsmetaS

Validator
AsmetaV

Modelling Language
Avalla

Animator
AsmetaA

Model Checker
AsmetaSMV

Scenarios

DESIGN

OPERATION

DEVELOPMENT

Metamodel

AsmM

Modelling

ASM 0 ASM 1 ASM
final

C++ Code

C++ Unit test

Visualizer
AsmetaVis

Refinement prover
AsmRefProver

Code Generator
Asm2C++

Abstract Unit Test Generator
ATGT

Behaviour-Driven Development
scenario generator

AsmetaBDD

Ecore

Java API Run�me Simulator
AsmetaS@run.time

Run�me Monitor
CoMA

M
od

el
er

Modelling Language
AsmetaL

Editor
AsmetaXt

Compiler
AsmetaC

Fig. 1: Phases of The ASM development process powered by the Asmeta framework:
design, development and operation.

we only limit to the design phase that includes modeling, validation, and verification
activities.

ASM states are mathematical structures, i.e., domains of objects with functions and
predicates defined on them, and the transition from one state si to another state si+1
is obtained by firing transition rules. Functions are classified as static (never change
during any run of the machine) or dynamic (may change as a consequence of agent
actions or updates). Dynamic functions are distinguished between monitored (only read
by the machine and modified by the environment) and controlled (read in the current
state and updated by the machine in the next state).

An example of an Asmeta specification modeling a simple calculator is shown in
Listing 1. It can multiply or sum, depending on the requested operation, the result of
the previous operation (initially equals to 1) by a desired number. The desired operation
is given by the monitored function operation defined in Line 7 and the number inserted
by the user is the monitored function number defined in Line 8. The result is stored in
calc_result (line 9) and updated by the two rules running in parallel defined in the main
rule (line 13).

With Asmeta, during the modeling phase, the user implements the system mod-
els using the AsmetaL language and the editor AsmetaXt which provides some use-
ful editing support. Furthermore, in this phase, the ASMs visualizer AsmetaVis trans-
forms the textual model into graphs using the ASMs notation. The validation process is
supported by the model simulator AsmetaS, which allows simulating the specification
in an interactive mode or by assigning random values to the monitored functions, the
model animator AsmetaA, the scenarios executor AsmetaV, and the model reviewer As-

3

1 asm calculator
2 import StandardLibrary
3 signature:
4 // DOMAINS
5 enum domain Operation = {SUM, MULT}
6 // FUNCTIONS
7 monitored operation: Operation
8 monitored number: Integer
9 controlled calc_result: Integer

10
11 definitions:

12 // MAIN RULE
13 main rule r_Main = par
14 if operation = SUM then
15 calc_result := calc_result + number
16 endif
17 if operation = MULT then
18 calc_result := calc_result * number
19 endif endpar
20 // INITIAL STATE
21 default init s0:
22 function calc_result = 1

Listing 1: Example of an Asmeta specification for a calculator

notify

Model
binding

user action

View

update model

update view

Controller

user

1

0

2

step 345

Fig. 2: Formal Model-View-Controller architecture with Asmeta

metaMA, which performs the static analysis of the specification and evaluates its quality
attributes. Property verification is performed with the AsmetaSMV tool. It verifies if the
properties derived from the requirements are satisfied by the models. When a property
is verified, it guarantees that the model complies with the intended behavior.

3 Formal Model-View-Controller

In this section we explain the overall approach of our f MVC framework2, that is shown
in Fig. 2. In our approach, the View is a Java graphical container (like a Swing JFrame3),
with many graphical components that can capture user actions (like buttons, text fields,
spinners, etc.) and are able to show information regarding the model, including the
values of selected controlled locations. The View must implement the interface As-

metaFMVCView, which is used to generalize all the possible views and requires the
implementation of the method repaintView that is called when the GUI needs to be
repainted. The Model is an Asmeta specification, with its state, including the current
values of monitored and controlled functions. In practice, it is an instance of the class

2 The code of the AsmetaFMVCLib is available online at https://github.com/asmeta/

asmeta/tree/master/code/experimental/asmeta.fmvclib
3 https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

4

https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.fmvclib
https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.fmvclib
https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

AsmetaFMVCModel that takes an Asmeta file, reads the specification and starts the sim-
ulator for the specified ASM model. Finally, the Controller, an object that extends the
class AsmetaFMVCController, controls the flow of information and when it is built, it
is linked to the view and the model as well.

Regarding the static part of the architecture, the designer must establish a binding
between the View and the Model (step 0 in Fig. 2). This is done by using one or more
of the following Java annotations when declaring graphical components in the View:

– @AsmetaMonitoredLocation: it links a graphical element (like buttons, text fields,
etc.) to a monitored function of the Asmeta model. For each field with this anno-
tation, users must specify the name (asmLocationName) of the location in the
Asmeta model. The value to be assigned to the asmLocationName location can be
taken from the graphical element (e.g., if it is a text field) or specified using the
annotation attribute asmLocationValue (e.g., if it is a button).

– @AsmetaControlledLocation: it links a graphical component to specific con-
trolled locations (of the Asmeta model) whose name is specified by the annotation
attribute asmLocationName.

Graphical elements (like buttons) or timers that generate actions causing an update
of the model are annotated as @AsmetaRunStep. Moreover, if a step requires the GUI
to be repainted (e.g., because the number or type of components shown needs to be
changed), the flag repaintView can be set. When it is created, the Controller registers
itself as an actionListener and changeListener (whichever is applicable) to all the fields
annotated with @AsmetaRunStep in the view.

Regarding the dynamics of the pattern, the complete action can be described as
follows. When the user performs an action on elements annotated with @AsmetaRun-

Step, the Controller handles the request (step 1 in Fig. 2). It takes all the values of
the view that are bound to the model (with @AsmetaMonitoredLocation), and sets
all the monitored functions in the current state of the model with those values (step 2
in Fig. 2). It then executes a step of the ASM model by using the simulator embedded
in the Model component (step 3 in Fig. 2). When the Model is updated, it notifies the
Controller (which is declared as an observer of the Model) (step 4 in Fig. 2). Then, the
Controller updates the View (step 5 in Fig. 2). First it takes all the values of controlled
functions, updates the corresponding graphical elements (those annotated with @As-

metaControlledLocation) by calling the method updateView, and shows the new
values. Then, if it is needed, it repaints the view by calling the method repaintView.

3.1 A simple example: an UI for the calculator

In this section, we present how the f MVC pattern can be applied to the simple example
of Listing 14. We want to provide a UI that allows the user to insert the number in a
text field, and to execute the MULT operation by pressing a button. The result is shown
in another text field. Moreover, it indicates the sign of the result by using the green
background color for positive numbers and red for negative ones. The binding between
the Model and the View is shown in Fig. 3 and described in the following.

5

asm calculator
import StandardLibrary

signature:
 // DOMAINS
 enum domain Operation = {SUM, MULT}
 // FUNCTIONS
 monitored number: Integer
 monitored operation: Operation
 controlled calc_result: Integer

definitions:
 // MAIN RULE
 main rule r_Main =
 par
 if operation = SUM then calc_result := calc_result + number endif
 if operation = MULT then calc_result := calc_result * number endif
 endpar

// INITIAL STATE
default init s0:
 function calc_result = 1

Fig. 3: Bindings between view components and Asmeta locations

The Java code defining the View class, implementing the AsmetaFMVCView inter-
face, is reported in Listing 2. First, we annotate with @AsmetaMonitoredLocation

the text field m_userInputTf, used to valorize the integer number monitored func-
tion in the ASM model (see Listing 1). Then, with the @AsmetaControlledLocation
annotation, we specify that the text field m_totalTf shall report the outcome of the
ASM computation, stored in the calc_result integer controlled function in the ASM
model. Finally, using the @AsmetaRunStep annotation we set the m_multiplyBtn but-
ton to be used for requesting the execution of an ASM step. Note that the ASM model
(see Listing 1) supports multiple operations (MULT and ADD). For this reason, while
executing an ASM step, we need to specify also the operation to be computed. This is
done by adding an additional @AsmetaMonitoredLocation annotation to the m_mul-
tiplyBtn button: when the button is clicked, first the operation monitored location
is set to the MULT value (as specified with the asmLocationValue field), then the step
is performed.

Then, the code for the Controller is defined by extending AsmetaFMVCController.
It redefines the method update, which is automatically called when the Model notifies
a change in values. This extension is needed since the controller in the AsmetaFMVC
framework automatically handles the output of the main types of data (e.g., the text to
be shown in a text field, in a label, in a table, etc.), but case-specific outputs (such as
the color of a text field) has to be managed by the user. This is done by overriding the
method update as in Listing 3.

The three components are then connected and launched in a main class as in List-
ing 4.

3.2 Dealing with wrong actions

One of the advantages of the proposed approach is related to the direct use of formal
models in the Model component of the f MVC pattern. In fact, when working with

4 The source code and the Asmeta model of the multiplier is available online at https://
github.com/asmeta/asmeta_based_applications/tree/main/fMVC/Calculator

6

https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/Calculator
https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/Calculator

Listing 2: Java Swing View for the multiplier example

public class CalcView extends JFrame implements AsmetaFMVCView {
// bind number with a text field
@AsmetaMonitoredLocation(asmLocationName="number")
private JTextField m_userInputTf = new JTextField(5);

// bind calc_result a the text field
@AsmetaControlledLocation(asmLocationName="calc_result")
private JTextField m_totalTf = new JTextField(20);

// bind operation with a button
@AsmetaMonitoredLocation(asmLocationName="operation", asmLocationValue = "MULT")
@AsmetaRunStep
private JButton m_multiplyBtn = new JButton("Multiply");

public CalcView() {
// Adds the component to the Java frame

}
@Override
public void refreshView(boolean firstTime) { }

}

Asmeta (see Sect. 2) users may add conditional guards that limit possible input values
or invariants that must be always satisfied in every state.

When using the f MVC pattern, the update of values shown in the View is always
made by the Controller, based on the value of the controlled functions in the ASM
model after the execution of a simulation step. In this way, using the mechanisms em-
bedded into the Asmeta framework, actions can be ignored when they violate invariants:
an InvalidInvariantException is thrown and caught by the AsmetaFMVCModel.
Similarly, if a conditional guard is not satisfied, the Asmeta simulator embedded into
the Model component does not update the corresponding controlled locations during the
simulation step. With Asmeta, it is possible to deal also with inconsistent updates (i.e.,
when the same location is updated to two different values at the same time). As for the
cases previously presented, if an inconsistent update is found, no update is performed
at model level and, thus, no action is executed within the simulation step and the View
does not change.

The effect of this approach is that only valid actions are executed and valid values
handled. Thus, the consistency between the ASM model and the View is always assured
and they both remain in a safe state.

7

Listing 3: Controller class for the multiplier ex-
ample
public class CalcController extends AsmetaFMVCController{

public CalcController(AsmetaFMVCModel m, CalcView v)
throws IllegalArgumentException, IllegalAccessException {

super(m, v);
}
@Override
public void update(Observable o, Object arg) {

// Handle the main locations as regularly done by fMVC
super.update(o, arg);
// Set the background color of the result based on the sign
CalcView v = ((CalcView)this.m_view);
v.getmTotalTf().setBackground(

Integer.parseInt(v.getmTotalTf().getText()) >= 0 ?
Color.GREEN : Color.RED);

}}

Listing 4: Definition of the three com-
ponents for the multiplier example
// Define the model with the Asmeta spec
AsmetaFMVCModel asmetaModel =

new AsmetaFMVCModel(
"model/calculator.asm");

// Define the view
CalcView view = new CalcView();

// The controller has both the references of the model
// and the view
AsmetaFMVCController controller =

new CalcController(asmetaModel, view);

// Show the view
view.setVisible(true);

4 The AMAN case study

We here explain how we have applied the f MVC pattern to the Arrival Manager (AMAN)
case study5. In particular, we first analyze the modeling and V&V activities that we have
performed with Asmeta. Then, we describe how we have implemented the Controller
and the View of our AMAN prototype in order to let them interacting with the Asmeta
Model.

4.1 Formal (Asmeta) Model

We here describe the structure of the Asmeta model and the requirements that we have
covered for the AMAN case study. In particular, in the following, we introduce the
modeling strategy that we have adopted, we highlight the details of the models that
we have obtained by applying the Asmeta development process, and we describe the
properties that we have proved on them.

Modeling strategy As normally done in the Asmeta-based development process, we
have modeled the AMAN case study using an iterative design process: initially, a sim-
plified model can be developed and, then, the model is refined by adding further details
at a later stage. First, we have specified in the most simple model (in the following iden-
tified as AMAN0) all the functionalities that we considered, sometimes in a limited way,
except from the time, which is not handled at this level. Then, AMAN1 removes all the
limitations introduced in AMAN0 but still does not handle the passing of time. Finally,
AMAN2 includes the time management [3] as well and, thus, it can be used as the for-
mal Model underlying the AMAN implementation based on the f MVC pattern. In the
following, we describe in more details the structure and the requirements captured by
each Asmeta model.

5 The source code and the Asmeta model of the AMAN case study is available online at https:
//github.com/asmeta/asmeta_based_applications/tree/main/fMVC/AMAN

8

https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/AMAN
https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/AMAN

Table 1: Models dimension for the AMAN case study
Functions

Monitored Controlled Derived Static Rules

AMAN0 4 5 0 3 5
AMAN1 6 5 1 4 5
AMAN2 6 9 3 4 7

Listing 5: Asmeta rule handling the moving up of an airplane in AMAN0

[...]
domain TimeSlot subsetof Integer
domain ZoomValue subsetof Integer
controlled landingSequence: TimeSlot −> Airplane
controlled blocked: TimeSlot −> Boolean
controlled zoomValue : ZoomValue
static search: Prod(Airplane,TimeSlot) −> TimeSlot
static canBeMovedUp: Airplane −> Boolean
[...]
domain TimeSlot = {0 : 10}
domain ZoomValue = {15 : 45}
[...]
rule r_moveUp($a in Airplane) =

let ($currentLT = search($a, 0)) in
if $currentLT != −1 and $currentLT < 10 then

let ($blk = blocked($currentLT + 1)) in
if $currentLT < zoomValue and not $blk and canBeMovedUp($a) then par

landingSequence($currentLT + 1):= $a
landingSequence($currentLT):= undef
[...]

endpar endif endlet endif endlet

Model details Tab. 1 shows the models dimension in terms of number of functions and
rules for each refinement level, while further details are given here:

– AMAN0: this model implements the basic functionalities of AMAN. It entirely man-
ages the landing sequence (i.e., labels of the airplanes, color of each airplane, and
status of each time instant - blocked or not blocked), with a maximum dimension
of 10 time instants. It allows moving airplanes up and down, but only for one time
instant at a time, and putting them on hold. For example, we here report in List-
ing 5 the rule used for moving up an airplane, which checks that, given the cur-
rent landing time $currentLT = search($a, 0), the destination time instant
($currentLT + 1) is not blocked and still allows keeping the desired distance
between airplanes.

– AMAN1: this model implements the same functionalities of the previous refine-
ment level, but removes all the limitations we set. Indeed, all the 45 possible future

9

Listing 6: Asmeta rule handling the
moving up of an airplane in AMAN1

rule r_moveUp($a in Airplane, $nMov in TimeSlot) =
let ($currentLT = landingTime($a)) in

if ($currentLT != undef) then
if $currentLT < zoomValue and not
blocked($currentLT + $nMov) and
canBeMovedUp($a, $nMov) then

par
landingSequence(

$currentLT + $nMov):= $a
landingSequence(

$currentLT):= undef
[...]

endpar
endif

endif
endlet

Listing 7: Asmeta rule handling the time pass-
ing in AMAN2

[...]
domain Minutes subsetof Integer
controlled timeShown: TimeSlot −> Minutes
controlled lastTimeUpdated : Minutes
[...]
domain Minutes = {0 : 59}
[...]
rule r_update_time_shown = par

forall $t in TimeSlot do timeShown($t) :=
mod(currentTimeMins + $t + 1, 60)

// If times have been shifted, shift all the airplanes too
if lastTimeUpdated != currentTimeMins then par

lastTimeUpdated := currentTimeMins
forall $a in Airplane do r_moveDown[$a, false, 1]
forall $t in TimeSlot with $t > 0 do

blocked($t − 1) := blocked($t) endpar endif endpar

time instants are shown in the landing sequence, and airplanes can be moved up or
down of more than a single time instant. At this refinement level, the rule reported
in Listing 5 is modified as shown in Listing 6. Instead of searching the landing
time using the static function search, we here introduce a derived function land-

ingTime which associates to each airplane its corresponding current landing time.
Moreover, the rule now uses an additional input parameter $nMov which indicates
the number of moves to be done.

– AMAN2: this last model refinement implements the handling of time, by exploiting
the functionalities offered by the Asmeta TimeLibrary [3]. In this way, the spec-
ification can be used as the Model within the f MVC pattern to show the current
time, and it is able to automatically shift the time instants every minute to show the
passing of time. The rule handling the time passing is shown in Listing 7.

All the requirements we have captured in the ASM models have been proven using
the LTL properties (as described in the following) reported in Tab. 2. Note that the
requirements we report are those directly captured by the model, while others (REQ17,
REQ18, REQ20, REQ21, REQ22, and REQ23) that are automatically guaranteed by
how we have implemented the GUI (i.e., with Java Swing) are not reported.

Safety property verification One of the main advantages in using Asmeta (or, in gen-
eral, a formal notation) is that the models can be used for proving safety properties.
Moreover, if the formal model is directly used in the implementation, the obtained soft-
ware behavior is correct (w.r.t. the proved properties) by construction.

In this case study, we have proved the safety properties on the AMAN0 model, since
the AsmetaSMV module exploits the NuSMV model checker which is not able to deal
with infinite domains (such as the integers used by the Asmeta TimeLibrary [3] to store
the time). However, the particular type of refinement used, namely the stuttering re-
finement [1], preserves in the refined model the properties proved for the more abstract
one.

10

Table 2: LTL properties for the AMAN case study
REQ Description and LTL property

REQ3 Airplanes can be moved earlier or later on the timeline
LTLSPEC (forall $a in Airplane, $t in Time with g(search($a, 0) = $t and selectedAir-
plane=$a and action = UP and canBeMovedUp($a) implies x(search($a, 0) = ($t +
1))))
LTLSPEC (forall $a in Airplane, $t in Time with g(search($a, 0) = $t and selectedAir-
plane=$a and action = DOWN and canBeMovedDown($a) implies x(search($a, 0) =
($t - 1))))

REQ4 Airplanes can be put on hold by the PLAN ATCo
LTLSPEC (forall $a in Airplane, $t in Time with g(search($a, 0) = $t and selectedAir-
plane=$a and action = HOLD implies x(isUndef(landingSequence($t)))))

REQ5 Aircraft labels should not overlap
LTLSPEC (forall $t1 in Airplane, $t2 in Airplane with g(($t1 != $t2 and search($t1,
0) != -1 and search($t2, 0) != -1 and not isUndef(search($t1, 0)) and not isUn-

def(search($t2, 0))) implies ((search($t1, 0)-search($t2, 0)>=3) or (search($t1, 0)-
search($t2, 0)<=-3))))

REQ6 An aircraft label cannot be moved into a blocked time period
LTLSPEC (forall $a in Airplane, $t in TimeSlot with g(search($a, 0) = $t implies not

blocked($t)))

REQ15 The HOLD button must be available only when one aircraft label is selected
LTLSPEC (forall $a in Airplane, $t in TimeSlot with g(search($a, 0) = $t and isUn-

def(selectedAirplane) and action = HOLD implies x(search($a, 0) = $t)))

REQ16 The zoom value cannot be bigger than 45 and smaller than 15
LTLSPEC g(zoomValue >= 15 and zoomValue<=45)

REQ19 The value displayed next to the zoom slider must belong to the list of seven
acceptable values for the zoom

LTLSPEC g(zoomValue = 15 or zoomValue = 20 or zoomValue = 25 or zoomValue
= 30 or zoomValue = 35 or zoomValue = 40 or zoomValue = 45)

Tab. 2 reports the properties we have verified, corresponding to a subset of the
AMAN requirements given in the document presenting the case study. In particular
the properties we here report are those that can be verified with the aspects we have
included in our Asmeta model.

4.2 View

For our experiments, we have implemented a simplified version for the GUI of the
AMAN software as in Fig. 4. The mapping between the components and Asmeta loca-
tions is reported in Listing 8 and described in the following.

The zoom level is managed using the zoom slider, whose value is used to set the
zoom monitored variable. When the zoom changes, a simulation step is executed and
the GUI is repainted (repaintView = true) in order to show only the desired number

11

Fig. 4: The GUI of AMAN developed using the f MVC pattern

of time instants with the corresponding landing airplanes. Note that, at each simulation
step, the ASM model checks which is the action to be executed. For this reason, when
the zoom changes, the additional action monitored function is set to NONE. Then, a
label (lblZoomValue) shows the zoomValue controlled function containing the current
value set for the zoom. We emphasize that its value is set through the model when the
slider controlling the zoom is moved, and not directly by the view itself.

The current time, stored in two controlled functions (mins and hours) is shown,
respectively, in the lblCurrentTimeMins and lblCurrentTimeHours labels on the
view.

The hold of an airplane is handled through a button btnHold which makes the simu-
lator do a simulation step and sets the action to be performed to HOLD. Similarly, the
airplanes can be moved up or down using the btnMoveUp and btnMoveDown buttons,
that run the simulator for a step and set the action monitored function accordingly. The
number of movements (up or down) for an airplane is stored in the numMoves moni-
tored function through the spnrNumMoves spinner. This is a simplification that we have
decided to apply w.r.t. the nominal behavior of AMAN, in which the user can drag an
airplane label and drop it in the desired location.

12

// Zoom management
@AsmetaMonitoredLocation(asmLocationName = "action",

asmLocationValue = "NONE")
@AsmetaMonitoredLocation(asmLocationName = "zoom")
@AsmetaRunStep(repaintView = true)
private JSlider zoom;

// Current value set for the zoom
@AsmetaControlledLocation(

asmLocationName = "zoomValue")
private JLabel lblZoomValue;

// Labels showing the current time
@AsmetaControlledLocation(asmLocationName = "mins")
private JLabel lblCurrentTimeMins;
@AsmetaControlledLocation(asmLocationName = "hours")
private JLabel lblCurrentTimeHours;

// Buttons moving (UP or DOWN) or removing (HOLD)
// airplanes from the landing sequence
@AsmetaMonitoredLocation(asmLocationName = "action",

asmLocationValue = "HOLD")
@AsmetaRunStep
private JButton btnHold;
@AsmetaMonitoredLocation(asmLocationName = "action",

asmLocationValue = "DOWN")
@AsmetaRunStep
private JButton btnMoveUp;
@AsmetaMonitoredLocation(asmLocationName = "action",

asmLocationValue = "UP")
@AsmetaRunStep
private JButton btnMoveDown;

// Number of movements (up or down)
@AsmetaMonitoredLocation(

asmLocationName = "numMoves")
private JSpinner spnrNumMoves;

// Table showing the landing sequence (i.e., which airplane
// lands in which time). It is used also as input, to select
// the airplane to be moved/removed
@AsmetaControlledLocation(

asmLocationName = "landingSequence")
@AsmetaMonitoredLocation(

asmLocationName = "selectedAirplane")
private JTable airplaneLabels;

// Table showing the following time instants
@AsmetaControlledLocation(asmLocationName =

"timeShown")
private JTable times;

// Time instants blocking (both visualization and setting)
@AsmetaMonitoredLocation(asmLocationName = "action",

asmLocationValue = "NONE")
@AsmetaMonitoredLocation(asmLocationName =

"timeToLock")
@AsmetaRunStep
private ButtonColumn isLockedColumn;

// Timer causing the update of AMAN due to time passing
@AsmetaMonitoredLocation(asmLocationName = "action",

asmLocationValue = "NONE")
@AsmetaRunStep
private Timer guiTimer;

Listing 8: Mapping with the proposed annotation between View components and As-
meta locations

AMAN shows the airplanes approaching the landing runway using the airplaneLa-
bels table. This is used both as an output, i.e., it shows the values of the controlled func-
tion landingSequence, and as an input, i.e., it is used to assign to the selectedAir-
plane monitored function the value of the selected cell, which has to be moved or put
on hold. Note that the table showing the landing sequence also handles the background
color of each cell, representing the status of an airplane (freezed, stable, or unstable).
However, this is a very case-specific aspect, and we have decided to manage it using
the controller (see Sect. 4.3). Next to the airplane labels, the following time instants are
stored in the timeShown controlled function and shown in the times table. Similarly,
the blocked time instants are reported in the isLockedColumn button column (a table
with only one column composed of buttons). As for the zoom, isLockedColumn sets
two different monitored functions, namely timeToLock (the index of the time which
the user has requested to lock with a click on the button) and action (set to NONE,
since no move or hold of an airplane is requested). Note that when a button in the is-
LockedColumn is clicked, a simulation step is performed. In this way, the update of
the text on the buttons is checked by the model (e.g., we assume that a time instant
in which there is an airplane cannot be blocked) and updated by the controller (see

13

Sect. 4.3). In particular, the blocked time instants are shown with an X on the buttons,
while the non-blocked ones do not have any label on the associated button.

Finally, the guiTimer is used to refresh the view every minute. For this reason, it
sets to NONE the action and execute a single simulation step.

4.3 Controller

For adopting the f MVC pattern in the AMAN case study, we have extended the As-

metaFMVCController included into the AsmetaFMVCLib by adding case-specific be-
haviors for outputs that are not explicitely mapped to graphical components in the View.
In particular, when the Controller is notified by the Model, it updates the background
color of the airplane names in the table on the View (line 15) and sets the labels of the
buttons signaling the blocked time instants (line 23), as reported in Listing 9.

In both the additional setting procedures, the adopted pattern is the same. First, us-
ing the model.computeValue(...) method we compute the value of a specific func-
tion in the current simulator state. Then, we obtain the list of all the locations associated
to the desired function together with their values using the model.getValue(...)

method. Finally, we iterate over all the results and we set the properties of graphical
components accordingly.

5 Discussion

In this section, we discuss the results obtained with the application of the f MVC pattern
to the AMAN case study and the possible threats to validity. Moreover, we analyze
potential benefits in using f MVC and possible alternatives adoptable when the proposed
solution is not the best fit.

The main threat to the validity of our proposal is external [7], which concerns
whether we can generalize the results outside the scope of our study, i.e., if the approach
we propose in this paper can be applied to other case studies different from AMAN. In
this paper, we have presented a first simple example (see Sect. 3.1) in which we have
shown that the f MVC approach can be applied to a system having different behavior
than AMAN. However, since our intention with this paper is to show a methodology,
rather than propose a solution that fits in all the possible case studies, the AsmetaFMV-
CLib may be extended in future in order to work with additional graphical components
or properties of already supported components. Indeed, the AsmetaFMVCLib library
supports only a limited number of components (i.e., those we have used in the two pro-
posed examples) and to handle only limited interactions among those normally available
in a UI. Nevertheless, we believe that including additional behaviors is easily doable by
extending the proposed annotations or their support to new components.

Note that for user interactions (UI components, properties, and actions) supported
by the AsmetaFMVCLib, using the f MVC approach makes the UI development easier. In
fact, in that case, if the formal model is already available (e.g., because the specifications
have been written for V&V purposes), the user has only to write the view and to link
graphical components to model locations.

14

Listing 9: Controller for the AMAN case study

1 public class AMANController extends AsmetaFMVCController {
2
3 public AMANController(AsmetaFMVCModel model, AMANView view)
4 throws IllegalArgumentException, IllegalAccessException { ... }
5
6 @Override
7 public void update(Observable o, Object arg) {
8 // Handle the main parameters as regularly done by the Asmeta FMVCLib
9 super.update(o, arg);

10 // Set the text on buttons based on the value in the TableModel
11 updateBlockedStatus();
12 // Set the color of cells
13 setAirplaneLabelColors();
14 }
15 public void setAirplaneLabelColors() {
16 m_model.computeValue("landingSequenceColor", LocationType.INTEGER);
17 List<Entry<String, String>> values = m_model.getValue("landingSequenceColor");
18 JTable table = ((AMANView) this.m_view).getAirplaneLabels();
19 ArrayList<String> colors = new ArrayList<>();
20 // Iterate over the results and set the background of each cell
21 ...
22 }
23 public void updateBlockedStatus() {
24 m_model.computeValue("blocked", LocationType.INTEGER);
25 List<Entry<String, String>> value = m_model.getValue("blocked");
26 JTable table = ((AMANView) this.m_view).getIsLocked();
27 IsLockedModel model = (IsLockedModel) table.getModel();
28 // Iterate over the results and set the label on each button
29 ...
30 table.repaint();
31 }

15

While performing our experiments and designing the f MVC pattern, we felt that
the user interface and the formal methods are very different, but it is possible to im-
plement patterns and strategies to link and let them communicate, as we did for the
work presented in this paper. However, our impression is that the part which automa-
tize the communication is hardly generalizable, both for the ASM and Java side, since
the number of components and properties to be handled is significantly high and users
may define their graphical components that are unknown a-priori. Thanks to the expe-
rience gained during the work presented in this paper, we can say that having a formal
model underlying the actual software is very useful, but having a general controller is
not possible. This is the reason why, in the AsmetaFMVCLib, we allow users to extend
the controller part and to handle in ad-hoc manner additional values.

A threat to conclusion validity is that we are experts in using formal methods and
in particular the Asmeta framework. Still, we consider the application of f MVC to be
suitable when the safety of the system is a major concern and for a core critical part
of the system. In this case, f MVC can benefit from the main advantages of using a
formal notation with a precise semantics and with a set of tools for the validation and
verification of models.

There are still valuable alternatives for f MVC. One consists in transforming the
formal specification to source code in a generic programming language and then embed
that program in the UI by using a classical MVC pattern in which the model is the
generated code. Unfortunately, Asmeta does not support the translation to Java (only
C++) for now, but we believe that this path can be viable and we plan to investigate it
in future works.

6 Related work

The integration of formal methods in MVC pattern as presented in this paper, has never
been proposed, to the best of our knowledge. There exist approaches where the MVC
pattern and formal models are combined [9,13] . In those works, each MVC component
is formally developed by applying stepwise refinement, until the executable code of
each component is generated starting from the formal model previously validated and
verified. The whole approach is formalized using Event-B and relies on the Rodin tools
for V&V activities. This approach, compared to the one proposed in this paper, does
not use the formal model directly as Model, but all components are used to generate the
initial version of the code. Another approach based on the generation of verified code
for the UI is presented in [8]. It focuses more on modeling and verifying the behavioral
aspect of user interfaces (UIs) and it does not exploit the MVC pattern. A tool that
aims at generating MVC prototypes (with the GUI written in Java) from requirements
models automatically presented in [14]. The generated UI is generic and differently
from f MVC it cannot be personalized.

Expanding the analysis to the application of formal methods for design and verifica-
tion of GUI and human-computer interaction, we have found some relevant works. The
contribution of different formal approaches in the field of human-computer interaction
is presented in [12]. That paper gives an historical perspective of the main contribu-

16

tions in the area of formal methods in the field of human-computer interaction without
emphasis on the UI development.

A black box approach for the verification of GUIs is presented in [2]. A formal
model for the behavior of the GUI application is derived by dynamic analysis (even
without the UI code). V&V activities are then performed on the derived model. In our
work we try to follow the opposite path: validate first the model to have then the correct
UI. Formal methods and tools have been also used for systematically analyzing control
panel interface in [5]: the authors propose a convenient notation for describing the inter-
face, and describe a set of tools allowing the analysis (in terms of credibility, feedback,
consistency of actions, etc.) of the case-specific interface. Similarly, [11] proposed a
user interface description language and a Petri nets-based tool for the engineering and
development of usable and reliable user interfaces. These are used to support prototyp-
ing phases, for instance when the models and the interactive application evolve signif-
icantly to meet late user requirements, as well as the operation phase, after the system
is deployed. In particular, the notation proposed can be used to describe interaction
techniques, interactive components and behavioral parts of interactive applications.

Another tool used to design, prototype, and analyses UIs is PVSio-web [10]. It
provides a library of widgets to support the development of realistic user interfaces.
Underneath, the toolkit uses the PVS theorem proving system for analysis, and the PVS-
io component for simulation. PVSio-web has been applied successfully to the analysis
of medical devices, to identify latent design anomalies that could lead to use errors. A
comparison with two other tools, CIRCUS and IVY, showed that PVSio-web is more
suitable to rapid prototyping using PVSio for formal verification [6]. This makes our
approach f MVC similar to it, where the formal validation and verification is carried on
in Asmeta.

7 Conclusions

Devoloping UIs using architectural patterns is universally recognized to be the best
solution allowing the higher modularity and maintainability of software. Among all the
patterns proposed in the literature, the MVC, or one of its variants, is commonly adopted
when the software to be developed includes a graphical interface, since it separates data
from how they are shown to users. However, the MVC pattern does not well support
formal models: even if a Model component is present, it is not a formal version. This
may limit the reuse of specifications that have been previously written by using a formal
notation and does not exploit all the verification and validation activities performed.

For this reason, in this paper, we have proposed the formal Model-View-Controller
pattern, in which the Model is written using Abstract State Machines (ASMs). The
pattern is supported by the AsmetaFMVCLib, embedded into the Asmeta framework,
which allows users to annotate components in the View in order to link them to the
input and output locations of the ASM model. It includes a wrapper for the Model, the
Controller and an interface to be implemented by the View.

In this paper, we have applied the f MVC pattern to the AMAN case study, starting
from the modeling and V&V activities with the tools provided by the Asmeta frame-
work, to the implementation of the View and its binding with ASM locations. Moreover,

17

we have discussed the pros and the cons of this solution, and highlighted the scenarios
in which the proposed pattern better fits and those in which alternatives are preferable.
In conclusion, we have found that directly using formal models for designing user in-
terfaces poses several challenges, since the two aspects are very different, and it may
be difficult to generalize all the possible interactions. However, especially for prototype
implementations, having mechanisms allowing the linking between graphical compo-
nents and formal models is valuable, as we have done in the work presented here.

References
1. Paolo Arcaini, Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene,

and Patrizia Scandurra. The ASMETA approach to safety assurance of software systems. In
Logic, Computation and Rigorous Methods, pages 215–238. Springer, 2021.

2. Stephan Arlt, Evren Ermis, Sergio Feo-Arenis, and Andreas Podelski. Verification of GUI
applications: A black-box approach. In Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Technologies for Mastering Change, pages 236–252. Springer, 2014.

3. Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, and Elvinia Riccobene. Extending
ASMETA with time features. In Rigorous State-Based Methods, pages 105–111. Springer,
2021.

4. James Bucanek. Model-view-controller pattern. In Learn Objective-C for Java Developers,
pages 353–402. Apress, 2009.

5. J. Creissac Campos and M. D. Harrison. Systematic analysis of control panel interfaces using
formal tools. In Interactive Systems. Design, Specification, and Verification, pages 72–85.
Springer, 2008.

6. José Creissac Campos, Camille Fayollas, Michael D. Harrison, Célia Martinie, Paolo Masci,
and Philippe Palanque. Supporting the analysis of safety critical user interfaces: An explo-
ration of three formal tools. ACM Transactions on Computer-Human Interaction, 27(5):1–
48, aug 2020.

7. Robert Feldt and Ana Magazinius. Validity threats in empirical software engineering re-
search - an initial survey. In SEKE, 2010.

8. Ning Ge, Arnaud Dieumegard, Eric Jenn, Bruno daAusbourg, and Yamine Ait-Ameur. For-
mal development process of safety-critical embedded human machine interface systems. In
Intl. Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE, sep 2017.

9. Romain Geniet and Neeraj Kumar Singh. Refinement based formal development of human-
machine interface. In Software Technologies: Applications and Foundations, pages 240–256.
Springer International Publishing, 2018.

10. Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby.
PVSio-web 2.0: Joining PVS to HCI. In Computer Aided Verification, pages 470–478.
Springer International Publishing, 2015.

11. David Navarre, Philippe Palanque, Jean-Francois Ladry, and Eric Barboni. ICOs. ACM
Transactions on Computer-Human Interaction, 16(4):1–56, nov 2009.

12. Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, and Alan Dix. State of
the art on formal methods for interactive systems. In Human–Computer Interaction Series,
pages 3–55. Springer, 2017.

13. Neeraj Kumar Singh, Yamine Ait-Ameur, Romain Geniet, Dominique Méry, and Philippe
Palanque. On the benefits of using MVC pattern for structuring Event-B models of WIMP
interactive applications. Interacting with Computers, 33(1):92–114, jan 2021.

14. Yilong Yang, Xiaoshan Li, Zhiming Liu, and Wei Ke. RM2pt: A tool for automated prototype
generation from requirements model. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, may 2019.

18

	formal MVC: a pattern for the integration of ASM specifications in UI development

