
AsmetaA: Animator for Abstract State
Machines?

Silvia Bonfanti1, Angelo Gargantini1, and Atif Mashkoor2

1 Department of Economics and Technology Management, Information Technology
and Production, University of Bergamo, Italy

{silvia.bonfanti,angelo.gargantini}@unibg.it
2 Software Competence Center Hagenberg GmbH &

Johannes Kepler University Linz, Austria
atif.mashkoor@{scch|jku}.at

Abstract. In this paper, we present AsmetaA – a graphical animator
for Abstract State Machines integrated within the ASMETA framework.
The execution of formal specifications through animation provides sev-
eral advantages, e.g., it provides an immediate feedback about system be-
havior, it helps understand system evolution, and it increases the overall
acceptability of formal methods.

1 Introduction

One important feature of the Abstract State Machines (ASM) method [3] is that
it allows to execute specifications that represent the evolution of a system by a
sequence of states. An important advantage of the state-based execution is that
it helps users understand through experimentation the behavior of the system
being designed [7].

The ASMETA framework [4] provides an environment for systems develop-
ment using ASMs including a simulator. During simulation, the user can interact
with the simulator by inserting monitored values when required and observe the
system evolution. The user can drive and follow the ASM execution and under-
stand whether the specification really captures the intended system behavior.
However, the simulation engine currently available for the ASMETA platform
provides only a textual interface that prints the states as strings with some op-
tional messages on the console. Observing system evolution in this fashion can
be difficult. For this reason, the need for a graphical animator for the ASMETA
platform has been felt for a long time.

The graphical animation of specifications consists in showing by means of
graphical elements, e.g., tables and colors, the evolution of the system state.
This provides several advantages: the user can perform a rapid validation, it

? The research reported in this paper has been partly supported by the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of the
COMET center SCCH.



helps in understanding the system behavior, and it shows concrete scenarios in
which abstract states can be instantiated. For this reason, many formal notations
and tools (see Sec. 4) support this kind of validation technique.

In this paper, we present AsmetaA – a graphical animator for the ASMETA
platform, which shows the system execution and state evolution using graphi-
cal elements. It is integrated in the framework and it can be downloaded and
installed as an eclipse plug-in3. The rest of the paper is organized as follows: In
Sec. 2, we discuss the main goal of this work. In Sec. 3, we briefly present the
AsmetaA tool. A brief comparison of AsmetaA with similar tools is presented in
Sec. 4. The paper is concluded in Sec. 5.

2 Animation of ASMs: requirements and goals

In the wake of a recent effort for providing visual information to users of the
ASMETA framework, we have already developed a visualizer that provides a
graphical view of ASMETA models [1]. The visualizer provides information about
the structure of the machine, in terms of a set of construction rules and schemas
that give a graphical representation of an ASM and its rules. However, in current
settings, information about system dynamics is missing. For this reason, we
started to work on the concept of animation of ASM specifications. In our tool,
animation has the following main objectives:

1. Providing a user with complete information about all the locations in one
state. In this way, the user can understand the system state at every step.

2. Showing the evolution of an ASM during the execution. In this way, the user
can understand the behavior of the specification.

3. Using colors, tables, and figures over simple text to convey information about
states and their evolution.

ASM execution
S0 S1 S2 S3

A
SM

 lo
ca

ti
o

n
s

Fig. 1. Animation of an ASM

In order to achieve these goals, we
decided to structure the animator as
shown in Fig. 1. The table captures
the two dimensions of locations in one
state and their evolution. On the hor-
izontal axis, we want to represent the
evolution of the execution, by showing
the sequence of states. On the vertical
axis, we want to show the states, i.e.,
locations and their values at each state.

As an auxiliary goal of the animator, we use graphical elements also for user
interaction and avoid the use of textual consoles whenever possible. Additionally,
we cope with the specification complexity by allowing the user to highlight some
locations of interest.

3 http://asmeta.sourceforge.net/

2

http://asmeta.sourceforge.net/


Observed Functions

Non-observed Functions

Sequence of States

Fig. 2. AsmetaA tool

3 AsmetaA: animator for ASM specifications

A graphical view of the AsmetaA tool is shown in Fig. 2. We now describe various
characteristics of this tool.

Random vs interactive animation. Random and interactive animations are two
modalities of execution provided by the animator. Random animation runs the
ASM specification and the values of monitored functions are chosen by the an-
imator. The number of steps is selected by the user and it can be changed
dynamically. Interactive animation runs one step at a time and the value of
monitored functions are selected by the user. These two modalities of animation
can be mixed within the same run. This means that one state can be reached
using random animation and the next state can be reached using interactive
animation. The two modalities of animation are executed using the following
corresponding buttons.

– Do one interactive step: asks the user about the value of monitored functions
and runs one step. The monitored functions are inserted through a dialog
box.

– Do random step/s: runs one or more steps based on the number inserted in
the field Insert random step number.

In case of invariant violation, the message is shown in the dedicated text box.

Random simulation: multiple steps. With complex specifications, running one
random step each time is tedious. To overcome this limit, we have added a field
in which the user inserts the number of steps to be performed and the tool
performs the random simulation accordingly.

3



Fig. 3. GUI dialogs allow the user to input new values for monitored functions

Use of tables. The first version of the animator was realized using one table
for all functions. However, it was difficult for the user to follow the functions
of his/her interest in complex specifications. To cope with this difficulty, we
have now added two tables. The upper table contains the functions observed by
the user, while the lower table contains all other functions. When the function
appears for the first time during the simulation, the animator inserts it in the
lower table. If the user is interested to follow this function, he/she has to move
it to the upper table using the check box display in the first column. When the
user is no longer interested in observing a specific function, he/she can move
it into the lower table and still follow other observed functions. The user can
also move functions (from one table to the other) that belong to a specific type
(controlled functions or monitored functions) using the buttons in the lower
left corner shown in Fig. 2. Moreover, the content of the tables can be sorted
alphabetically based on the type or name of the functions.

Colors for easy reading. One of the main features of AsmetaA is the usage of
multiple colors to facilitate the readability of tables. Multiple colors help a user
to identify particular events during the ASM execution: the initial value of the
function (light blue cells) and when the function changes the value compared to
the previous state (light green cells).

Dialog box. The insertion of monitored functions is achieved through different
dialog boxes (see Fig. 3) depending on the type of function to be inserted. For
example, in case of a boolean function, the box has two buttons: one if the
answer is true and one if the answer is false. By pushing the button, the user
assigns the corresponding value to the function. In case of functions with the
enumerative domain, the dialog box shows all the possible assignable values and
the user selects the chosen value from a combo box. At the moment, for other
data types, the user inserts the value in a text box.

4 Related work

Several formal methods support the animation of specifications. For the B family
methods, one of the main tools that provides such facility is ProB [6]. In this
tool, the user can select the events to fire while the state is constantly updated

4



and shown to the user. Differently from our animator, ProB displays the history
of events but the history of the system states does not appear.

Visualization of traces is used in TLA+ to show counter examples in case
of errors while model checking a specification [8]. Also for the NuSMV model
checker, traces can be shown in tables by the NuSeen toolbox [2]. As compared
to model checkers, our animator is intended to be used in an interactive way to
allow the validation of specifications.

There is already one tool with the goal of animating ASM specifications [5].
In this work, the authors extend CoreASM with some plug-ins to show the state
evolution of the ASM specifying a flash file system. As compared to AsmetaA,
it is an application specific work focusing on a particular case study. AsmetaA,
on the other hand, is a generic animator capable of animating any ASM. As a
future work, we plan to introduce a method allowing the definition of special
graphical widgets for application specific animations.

5 Conclusion

In this paper, we have presented AsmetaA – an animation engine for ASM
specifications. The tool supports users in the validation process and concretizes
the abstract states. The users can run two types of animation: random and
interactive. In initial tests, the graphical interface of AsmetaA has been proved
intuitive, simple, and user friendly.

References

1. P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene. Visual Notation and
Patterns for Abstract State Machines. In P. Milazzo, D. Varró, and M. Wimmer,
editors, Software Technologies: Applications and Foundations, pages 163–178, Cham,
2016. Springer International Publishing.

2. P. Arcaini, A. Gargantini, and E. Riccobene. NuSeen: A Tool Framework for the
NuSMV Model Checker. In 2017 IEEE International Conference on Software Test-
ing, Verification and Validation (ICST), pages 476–483, 2017.

3. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

4. A. Gargantini, E. Riccobene, and P. Scandurra. A Metamodel-based Language and
a Simulation Engine for Abstract State Machines. J. UCS, 14(12):1949–1983, 2008.

5. D. Haneberg, M. Junker, G. Schellhorn, W. Reif, and G. Ernst. Simulating a Flash
File System with CoreASM and Eclipse. In Informatik 2011: Informatik schafft
Communities, Beiträge der 41. Jahrestagung der Gesellschaft für Informatik e.V.
(GI), volume 192 of LNI, page 355. GI, 2011.

6. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Journal on Software Tools for Technology Transfer, 10(2):185–203, Mar 2008.

7. A. Mashkoor and J. Jacquot. Validation of formal specifications through transfor-
mation and animation. Requir. Eng., 22(4):433–451, 2017.

8. Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In
L. Pierre and T. Kropf, editors, Correct Hardware Design and Verification Methods,
pages 54–66. Springer, 1999.

5


	AsmetaA: Animator for Abstract State Machines

