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Abstract. Medical devices are nowadays more and more software de-
pendent, and software malfunctioning can lead to injuries or death for
patients. Several standards have been proposed for the development and
the validation of medical devices, but they establish general guidelines on
the use of common software engineering activities without any indication
regarding methods and techniques to assure safety and reliability.
This paper takes advantage of the Hemodialysis machine case study to
present a formal development process supporting most of the engineering
activities required by the standards, and provides rigorous approaches for
system validation and verification. The process is based on the Abstract
State Machine formal method and its model refinement principle.

1 Introduction

In medical treatments depending on the use of a medical device (e.g., a hemodial-
ysis machine), patient safety depends upon the correct operation of the device
hardware/software. For this reason, validation and verification of medical devices
are mandatory, and methods and techniques to assure medical software safety
and reliability are highly demanded. Along this research line, the Hemodialysis
machine case study [20] (HMCS) has been proposed, within the ABZ 2016 con-
ference, as an example of medical device that should be formally validated and
verified to assure safety and hardware-software correct interaction.

Although several standards for the validation of medical devices have been
proposed – as ISO 13485 [1], ISO 14971 [4], IEC 60601-1 [2], EU Directive
2007/47/EC [16] –, they mainly consider physical aspects and electrical com-
ponents of a device rather than its software. The main references concerning
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regulation of medical software development are the standard IEC 62304 [3] (In-
ternational Electrotechnical Commission) and the “General Principles of Soft-
ware Validation” [21] established by the FDA (Food and Drug Administration).
Both documents establish general guidelines on the use of common software en-
gineering activities, but they do not provide any indication regarding life cycle
models, or methods and techniques to assure safety and reliability. These quali-
ties could be assured by adopting rigorous approaches of software development,
based on the use of formal methods, that allow the designers to specify what the
software is intended to do by means of mathematical models, and demonstrate
that the use of the software fulfills those intentions by means of precise validation
and verification techniques [3,19].

Among the different existing formal methods, Abstract State Machines [13]
have been already successfully used in the context of medical software for the
rigorous development of an optometric measurement device software [5].

The ASM-based design process [10] has an incremental life cycle model. It is
based on model refinement, includes the main software engineering activities, and
is supported by techniques for model validation and verification at any desired
level of detail. The process can guide the development of software and embedded
systems seamlessly from requirements capture to their implementation, and this
has been shown by numerous and successful case studies [13]. Although the ASM
method has a rigorous mathematical foundation, practitioners need no special
training to use the method since ASMs can be correctly understood as pseudo-
code or virtual machines working over abstract data structures.

In this paper, we apply the ASM-based process for modeling, validating, and
verifying the HMCS. At the same time, we present a software development pro-
cess compliant with two current standards for medical software. It provides a life
cycle model for IEC62304 and embeds most of the software engineering activities
required by this standard. Moreover, it reflects the principles established by the
FDA, especially those regarding the integration of validation and verification
activities into the development process.

Sect. 2 briefly introduces the ASM-based development process. Sect. 3 presents
the specification of the HMCS given in terms of a chain of refined models. Sect. 4
presents some validation activities we have applied to the developed models, and
Sect. 5 reports the verification of the requirements. Sect. 6 recalls the norma-
tive for medical software and shows how the ASM-based development process
captures the existing regulations. Sect. 7 concludes the paper.

As at the moment of writing this paper no other solutions for the HMCS are
available, we do not report any related work. For an example of application of
different formal methods to a safety-critical system, we remind the reader to the
solutions proposed for the Landing Gear System case study [12].

2 ASM-based development process

ASMs allow an iterative design process, shown in Fig. 1, based on model refine-
ment. Validation and verification (V&V) are fully integrated into the process,
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Fig. 1. ASM-based development process

and are possible at any level of abstraction. Tools supporting the process are
part of the ASMETA (ASM mETAmodeling) framework4 [11].

Modeling requirements starts by developing a high-level model called ground
model (ASM 0 in Fig. 1). It is specified by reasoning on the informal require-
ments (generally given as a text in natural language) and using terms of the ap-
plication domain, possibly with the involvement of all stakeholders. The ground
model should correctly reflect the intended requirements and should be consis-
tent, i.e., without possible ambiguities of initial requirements. It does not need
to be complete, i.e., it may not specify some given requirements. The ground
model and the other ASM models can be edited in AsmEE by using the concrete
syntax AsmetaL [18].

Starting from the ground model, through a sequence of refined models, fur-
ther functional requirements can be specified and a complete architecture of the
system can be given. The refinement process permits to tackle the complexity
of the system, and allows to bridge, in a seamless manner, specification to code.

Each refinement step should be proved to be correct: the refinement correct-
ness proof can be done by hand or, for a particular kind of refinement called
stuttering refinement, using the tool ASMRefProver.

At each level of refinement, already at the level of the ground model, different
validation and verification (V&V) activities can be applied.

Model validation helps to ensure that the specification really reflects the in-
tended requirements, and to detect faults and inconsistencies as early as possible
with limited effort. ASM model validation is possible by means of the model sim-
ulator AsmetaS [18] and by the validator AsmetaV [15] that allows to build and
execute scenarios of expected system behaviors. A further validation technique
is model review (a form of static analysis) to determine if a model has sufficient
quality attributes (as minimality, completeness, consistency). Automatic ASM
model review is possible by means of the AsmetaMA tool [7].

Model verification requires the use of more expensive and accurate meth-
ods. Formal verification of ASMs is possible by means of the model checker
AsmetaSMV [6], and both Computation Tree Logic (CTL) and Linear Temporal
Logic (LTL) formulas are supported.

4 http://asmeta.sourceforge.net/
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Ground model 1st refinement 2nd refinement 3rd refinement 4th refinement

Machine phases Preparation Phase Initiation Phase Ending Phase Checks and errors

size: 0 m, 1 c, 0 d, 5
rd, 11 r, 0 p

size: 15 m, 9 c, 2 d, 58
rd, 179 r, 0 p

size: 32 m, 22 c, 3 d,
89 rd, 303 r, 2 p

size: 39 m, 25 c, 3 d,
103 rd, 363 r, 3 p

size: 60 m, 39 c, 12 d,
154 rd, 608 r, 41 p

Fig. 2. Refinement steps - size: m=#monitored functions, c= #controlled,
d=#derived, rd =#rule declarations, r = #rules, p = #properties

If a system implementation is available, either derived from the model (as
last low-level refinement step) or externally provided, also conformance checking
is possible. Both model-based testing (MBT) and runtime verification can be
applied to check if the implementation conforms to its specification [9]. We sup-
port conformance checking w.r.t. Java code. The tool ATGT [17] can be used to
automatically generate tests from ASM models5 and, therefore, to check the con-
formance offline; CoMA [8], instead, can be used to perform runtime verification,
i.e., to check the conformance online.

3 Hemodialysis device: modeling

In modeling the hemodialysis device6 we have proceeded through refinement.
The complete model has been developed in five levels, as shown in Fig. 2 where
some data of the five models are reported. Each refined model introduces, w.r.t.
the previous model, some additional details to the machine behaviour. The
ground model abstractly describes the transitions between the three hemodialy-
sis phases: preparation, initiation, and ending. In the first three refinement steps,
we refine the three phases singularly. In the last refinement step, to comply with
the given requirements, we introduce the modeling of the checks and the error
handling performed by the device. For each step of refinement, we prove the
refinement correctness using the SMT-based tool AsmRefProver.

3.1 Ground model

The ground model simply describes the transition between the phases that con-
stitute a hemodialysis treatment, without any additional detail. Code 1 shows
the ground model written using the AsmetaL syntax. The machine, at each
step, checks the current phase of the treatment and executes the correspond-
ing rule. Rule r preparation performs all the activities necessary to prepare the
hemodialysis device for the treatment (modeled in Sect. 3.2). Rule r initiation

specifies the hemodialysis therapy in which the patient is connected to the device
and the blood cleaning is performed (modeled in Sect. 3.3). Rule r ending mod-
els the ending of the therapy, in which the patient is disconnected from the device
and the device is cleaned for subsequent treatments (modeled in Sect. 3.4).

5 Note that sequences generated by ATGT could be used to test programs written in
any programming language.

6 Models are available at http://fmse.di.unimi.it/sw/ABZ2016caseStudy.zip
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asm Hemodialysis GM
signature:

enum domain Phases =
{PREPARATION | INITIATION | ENDING}
controlled phase: Phases

definitions:
rule r preparation = phase := INITIATION
rule r initiation = phase := ENDING
rule r ending = skip

rule r run dialysis =
switch(phase)

case PREPARATION: r preparation[]
case INITIATION: r initiation[]
case ENDING: r ending[]

endswitch
main rule r Main =

r run dialysis[]
default init s0:

function phase = PREPARATION

Code 1. Ground model

3.2 First refinement: preparation phase

The first refinement extends the ground model by refining the preparation phase
specified in rule r preparation (see Code 2). In this phase, different activities
are performed to prepare the device for the therapy, as the preparation of the
heparin or the rinsing of the dialyzer. Function modePreparation specifies which
activity (i.e., which rule) must be executed in the current state.

For the lack of space, we here only report the setting of the treatment pa-
rameters, that is modeled by rule r set treatment param. The machine sets one
parameter at a time, using function treatmentParam to keep track of the param-
eter that has to be updated. Each parameter is updated by rule r insert param,
shown in Code 2. For each parameter, there exist one monitored function and
one controlled function. The model takes the value of the monitored function de-
cided by the environment (in this case, by the user), and, if the specified value is
allowed, saves it in the controlled function. When a correct value is acquired, the
machine updates function treatmentParam with the name of the next parameter
that must be set.

3.3 Second refinement: initiation phase

This step refines the initiation phase (see Code 3), which is divided into two steps
identified by function initPhaseMode: r initiate patient and r run therapy.
During all the initiation phase, some checks on the device are performed by rule
r check initiation phase; such rule is left abstract in this refinement step,
and it will be modeled in the fourth refinement (see Sect. 3.5).

r initiate patient is the first activity to perform. It is divided into two par-
allel actions, r check patient and r connect patient. Rule r check patient,
that is responsible for doing some additional checks on the patient, is also left
abstract in this refinement step (as rule r check initiation phase), and it will
be modeled in the fourth refinement (see Sect. 3.5). Rule r connect patient

(shown in Code 4) implements the procedures described in section “Connecting
the patient and starting therapy” of the case study document [20]; it executes
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asm Hemodialysis ref1
signature:

enum domain ModePreparation = { ... |
RINSE DIALYZER | SET TREAT PARAM}
enum domain TreatmentParam = { ... |
BLOOD CONDUCTIVITY | ACTIVATION H}
controlled modePreparation: ModePreparation
controlled treatmentParam: TreatmentParam
...

definitions:

rule r insert param($low lim in Integer,
$up lim in Integer,
$next param in TreatmentParam,
$mon param in Integer,
$contr param in Integer) =

if $mon param <= $up lim and
$mon param >= $low lim then

par
$contr param := $mon param
treatmentParam := $next param

endpar
endif

rule r set h activation =
r insert param[SYRINGE TYPE,

activation h, activation h contr]

rule r set treatment param =
switch(treatmentParam)

case BLOOD CONDUCTIVITY:
r set blood conductivity[]

case ACTIVATION H:
r set h activation[]

...
endswitch

rule r preparation =
switch(modePreparation)

case AUTO TEST:
r auto test[]

case CONNECT CONCENTRATE:
r connect concentrate[]

case SET RINSING PARAM:
r set rinsing param[]

case TUBING SYSTEM:
r tubing system[]

case PREPARE HEPARIN:
r prepare heparin[]

case SET TREAT PARAM:
r set treatment param[]

case RINSE DIALYZER:
r rinse dialyzer[]

endswitch
...

Code 2. First refinement

a series of activities related to the patient connection, specified by function
patientPhase. At the beginning, the patient is connected arterially (by rule
r conn arterially). Then, the blood pump is started (by rule r start bp),
the blood flow is set (by rule r set blood flow), and the blood tubing system
is filled with blood (by rule r fill tubing). Then, the patient is connected ve-
nously (by rule r conn venously). Finally, the blood pump is started and the
blood flow is set again; the connection procedure is terminated (by rule r end -

connection).

r run therapy is executed after r initiate patient and it is composed of
a set of activities, as shown in Code 3. Function therapyPhase specifies which
activity must be executed in a given moment. At the beginning, rule r start -

heparin activates the heparin, if required by the doctor. Then, the therapy is
executed (rule r therapy exec) and terminated (rule r theraphy end).

Rule r therapy exec is shown in Code 4. A set of parallel activities are per-
formed as specified in section “During therapy” of the case study document [20]:
the monitoring of the blood pressure limits (rule r monitor ap vp limits), the
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asm Hemodialysis ref2

signature:
enum domain ModeInitiation =
{CONNECT PATIENT | THERAPY RUNNING}
enum domain TherapyPhase =
{START HEPARIN | ... | THERAPY END}
controlled initPhaseMode: ModeInitiation
controlled therapyPhase: TherapyPhase
...

definitions:

rule r initiate patient =
par

r check patient[]
r connect patient[]

endpar

’

rule r run therapy =
switch(therapyPhase)

case START HEPARIN:
r start heparin[]

case THERAPY EXEC:
r therapy exec[]

case THERAPY END:
r therapy end[]

endswitch

rule r initiation =
par

r check initiation phase[]
switch(initPhaseMode)

case CONNECT PATIENT:
r initiate patient[]

case THERAPY RUNNING:
r run therapy[]

endswitch
endpar

Code 3. Second refinement

asm Hemodialysis ref2
signature:

enum domain PatientPhase =
{CONN ARTERIALLY | ... | END CONN}
controlled patientPhase: ModeInitiation
...

definitions:
rule r connect patient =

switch(patientPhase)
case CONN ARTERIALLY: r conn arterially[]
case START BP: r start bp[]
case BLOOD FLOW: r set blood flow[]
case FILL TUBING: r fill tubing[]
case CONN VENOUSLY: r conn venously[]
case END CONN: r end connection[]

endswitch

rule r therapy exec =
par

r pump heparin[]
r monitor ap vp limits[]
r therapy min UF[]
r update blood flow[]
r check therapy run[]
r arterial bolus[]
r interrupt dialysis[]
r therapy completion[]

endpar

’

Code 4. Second refinement – Rules r connect patient and r therapy exec

activation of the treatment at the minimum ultra filtration rate (rule r the-

rapy min UF), the update of the blood flow (rule r update blood flow), the
infusion of sodium chloride (rule r arterial bolus), the pumping of the hep-
arin in the blood (rule r pump heparin). Rule r check therapy run does some
checks during the blood cleaning: it is left abstract at this level of refinement and
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asm Hemodialysis ref3

signature:
enum domain ModeEnding =
{REINFUSION | ... | THERAPY OVERVIEW}
controlled endingPhaseMode: ModeEnding
...

’

definitions:
rule r ending =

switch(endingPhaseMode)
case REINFUSION:

r reinfusion[]
case DRAIN DIALYZER:

r empty dialyzer[]
case EMPTY CARTRIDGE:

r empty cartridge[]
case THERAPY OVERVIEW:

r therapy overview[]
endswitch

Code 5. Third refinement

it will be modeled in the fourth refinement (see Sect. 3.5). Activities r interrupt -

dialysis and r therapy completion can terminate the therapy (by updating
therapyPhase to THERAPY END): r interrupt dialysis models the premature
interruption of the therapy, whereas r therapy completion models the normal
therapy conclusion.

3.4 Third refinement: ending phase

The third refinement details the behaviour of the ending phase (see Code 5)
consisting of a set of activities that are performed at the end of the treatment.
Function endingPhaseMode specifies the current activity. At the beginning, the
reinfusion of the blood takes place by means of rule r reinfusion. Then, the
dialyzer is emptied (by rule r empty dialyzer), and afterwards the cartridge is
emptied (by rule r empty cartridge). At the end, rule r therapy overview

gives an overview of the executed therapy (e.g., how much blood has been
treated).

3.5 Fourth refinement: handling of checks and errors

In the last refinement step, we model the checking activities and the error han-
dling performed by the device. During the whole hemodialysis process, the device
checks some parameters acquired using sensors. Every parameter is checked and,
when an error occurs, the system raises an alarm and an error signal. The alarms
are reset just after the device operator presses the button. The errors, instead,
are reset when the user fixes them.

For example, we here consider the error due to the high temperature of the
dialysing fluid (see Code 6). The machines checks the temperature only if an
error related to high temperature has not been raised yet (rule r check temp -

high in Code 6). When the temperature exceeds the threshold value, an error
and an alarm signal are generated. If the alarm is running, the device operator

8



asm Hemodialysis ref4
signature:

enum domain ErrorAlarmType =
{TEMP HIGH | UF BYPASS |...}
controlled error: ErrorAlarmType −> Boolean
controlled alarm: ErrorAlarmType −> Boolean
...

definitions:
rule r check temp high =

if not(error(TEMP HIGH)) then
if current temp > 41 then

par
error(TEMP HIGH) := true
alarm(TEMP HIGH) := true

endpar
endif

endif

rule r turnOff alarm =
if reset alarm then

par
forall $a in ErrorAlarmType

with alarm($a) do
alarm($a) := false

...
endpar

endif

rule r error temp high =
if error(TEMP HIGH) and

not(alarm(TEMP HIGH)) then
if current temp <= 41 then

error(TEMP HIGH) := false
endif

endif

Code 6. Fourth refinement – Error of high temperature of the dialyzing fluid

can decide to reset it by setting reset alarm function to true in rule r turn-

Off alarm. Once the alarm has been reset (but the error is still flagged) and
the temperature has returned to an acceptable value, the model resets the error
(rule r error temp high).

4 Hemodialysis device: Validation

We here describe the validation activities we performed on the produced models.

Interactive simulation and scenario-based validation As first valida-
tion activity, we performed interactive simulation by means of the simulator
AsmetaS [18] that allowed us to observe some particular system executions. In-
teractive simulation consists in providing inputs (i.e., values of monitored func-
tions) to the machine and observing the computed state. The simulator, at each
step, performs consistent updates checking to check that all the updates are con-
sistent (two updates are inconsistent if they update the same location to two
different values at the same time [13]), and invariant checking.

As interactive simulation is a tedious and time-consuming activity, after we
gained enough confidence that the system roughly captured the intended require-
ments, we performed a more powerful form of simulation, called scenario-based
validation [15], that permits to automatize the simulation activity. In scenario-
based validation the designer provides a set of scenarios specifying the expected
behaviour of the models (using the textual notation Avalla [15]). These sce-
narios are used for validation by instrumenting the simulator AsmetaS. During
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scenario errorPressureTherapy
load Hemodialysis ref4.asm

execblock completeTherapy.initiationCheck;
step
execblock completeTherapy.preparationPhase;
step
execblock completeTherapy.patientConn;
step
check therapyPhase = THERAPY EXEC;
check heparin running = true;

set passedSec(10) := true;
set current ap := 100;
set vp limit low := 50;
set vp limit up := 150; ...
step
check therapyPhase = THERAPY END;

step
execblock completeTherapy.therapyEnd;

Code 7. Example of scenario using blocks

scenario completeTherapy
load Hemodialysis ref4.asm

begin initiationCheck
check phase = PREPARATION and
prepPhaseMode = AUTO TEST and
rinsingParam = FILLING BP RATE;
...
set auto test end := true;

end

begin preparationPhase
check prepPhaseMode =

CONNECT CONCENTRATE;
set conn concentrate := true;
step
...

end

Code 8. Example of scenario blocks

simulation, AsmetaV captures any check violation and, if none occurs, it finishes
with a PASS verdict. Avalla provides constructs to express execution scenarios
in an algorithmic way, as interaction sequences consisting of actions committed
by the user to set the environment (i.e., the values of monitored/shared func-
tions), to check the machine state, to ask for the execution of certain transition
rules, and to enforce the machine itself to make one step (or a sequence of steps
by command step until) as reaction of the actor actions.

While developing our models, we wrote several scenarios for exercising the
models under different operating conditions. Soon we discovered that such sce-
narios had several common parts, since they had to perform the same actions
and same checks in different parts of their evolution. Therefore, we extended the
validator with the possibility to define some blocks of actions that can be reused
in different components: a block is a named sequence of Avalla commands de-
limited by keywords begin and end. A command block can be defined in any
Avalla scenario and can be called by means of the command execblock in other
parts of the same scenario or in other scenarios.

Code 7 shows an example of scenario (over the last refined machine) repro-
ducing the situation in which an error is detected and resolved. The scenario
calls some blocks (defined in completeTherapy) containing actions related to
the therapy that are used in several different scenarios (e.g., the initial checks
and the operations performed during the preparation phase). Code 8 shows the
definition of some blocks.

10



Static analysis Although interactive simulation and scenario-based validation
can discover many faults in the models, some of them may pass undetected.
Moreover, even if the models correctly capture the requirements, they may still
be improved from the stylistic point of view. We therefore applied model review,
whose aim is to determine if a model has some particular qualities that should
help in developing, maintaining, and enhancing it. The AsmetaMA tool [7] (based
on AsmetaSMV) performs automatic review of ASMs. Common vulnerabilities and
defects that can be introduced during ASM modeling are checked as violations
of suitable meta-properties (MPs, defined in [7] as CTL formulae). The violation
of a meta-property means that a quality attribute (minimality, completeness,
consistency) is not guaranteed, and it may indicate the presence of an actual
fault (i.e., the ASM is indeed faulty), or only of a stylistic defect (i.e., the ASM
could be written in a better way). For example, the presence of an inconsistent
update (meta-property MP1) is the sign of a real fault in the model; the presence
of functions that are never read nor updated (meta-property MP7), instead, may
simply indicate that the model is not minimal, but not that it is faulty.

In our last step of refinement, we found several violations of meta-property
MP1, i.e., inconsistent updates. These were due to a wrong mechanism in the
handling of errors. Different kinds of errors can be detected by the device (see
Sect. 3.5), and, in all these cases, the state of the device is set to the BYPASS

mode. In the faulty model, when a given error is resolved, the error handler
puts the device back to the normal mode MAIN FLOW; however, if another error
is simultaneously detected, another error handler puts the device in the BYPASS

mode: in this way, an inconsistent update occurs, since two rules try to update
the same function to two different values. We have restructured the model so
that error handlers only detect errors and mark them as resolved after the error
handling (but do not modify the device state); the real mode of the device is now
determined by a derived function, whose value is BYPASS if at least one not re-
solved error exists, otherwise its value is determined by the phase of the therapy.
Note that we were not able to detect such a problem by means of simulation,
since in simulations we considered errors occurring singularly or simultaneously,
but we did not consider errors occurring while others are being resolved.

We also found some minimality violations related to some domain values
that were not useful. For example, we discovered that value RED of domain
SignalLamps was useless: indeed, in the manual of the device [14], we found
that the lamp could be red in particular situations, but this case was not con-
sidered in the given requirements [20]. We may decide to remove the value from
the domain or keep it for further improvements of the model.

5 Hemodialysis device: Verification of requirements

We verified the 11 general requirements (S-1 – S-11) and the 36 software re-
quirements (R-1 – R-36) specified in the case study description [20]. We specified
requirements as LTL formulas and we used the model checker AsmetaSMV [6] for
their verification. A formula may capture more than one requirement.

11



As an example of requirement formalization, let us consider the general re-
quirement S-11: “Once empty dialyzer has been confirmed, the blood pump
cannot be started anymore”. Such requirement has been specified as follows:

g(empty dialyzer implies g(bp status der = STOP))

Along the validation activity, each requirement has been proved as soon as
possible in the chain of refinements, i.e., in the first model describing all the
elements involved in the requirement. Requirement S-1, regarding the connection
of arterial and venous connectors, has been added in the second refinement, that
models the initiation phase in which the patient is physically connected to the
device. Also requirement S-4, regarding the exchange between saline solution
and blood during the connection of the patient, has been specified in the second
refinement. Requirement S-11, regarding the stopping of the blood pump at the
end of the therapy, has been added in the third refinement that models the ending
phase. All the other general requirements and all the software requirements
are related to errors and alarms, and, therefore, have been specified in the last
refinement step that models error handling.

Although we specified all of the requirements, some of them are trivial since
already captured by the semantics of the transition rules. In particular, all the
properties (from R-1 to R-36) having form G(ϕ implies X(ρ)), where ϕ and ρ are
predicates over the ASM state, are directly captured by the model structure of
nested conditional rules.

We discovered that some requirements specified in [20] are not correct. For
example, we specified the following property for S-1:

g(art connected contr iff ven connected contr)

checking that “arterial and venous connectors of the EBC are connected to the
patient simultaneously” [20]. However, the property is false since the patient is
before connected to the arterial connector and then to the venous connector.

We had problems in verifying some requirements, since these were ambiguous.
Requirement S-5, for example, states that “the patient cannot be connected to
the machine outside the initiation phase, e. g., during the preparation phase”. We
were not sure whether to interpret “be connected” as the status of the patient
who is attached to the machine, or as the atomic action in which the doctor
connects the patient to the machine. Following the former interpretation, the
temporal property would be

g((art connected contr or ven connected contr) implies phase = INITIATION)

However, the property is false since the patient can be attached to the machine
also outside the INITIATION. Following the former interpretation, we wrote the
two following properties

g((not art connected contr and x(art connected contr)) implies
phase = INITIATION)

g((not ven connected contr and x(ven connected contr)) implies
phase = INITIATION)

12
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Fig. 3. IEC 62304 development process

that are both true. It could be the case that this interpretation is indeed the
correct one; however, this is a clear example of an ambiguous requirement that
would need a clarification from the stakeholders.

For keeping verification time reasonable, we applied some abstractions to our
models. For example, in the preparation phase introduced in the first refinement
(see Sect. 3.2), the model retrieves values for the parameters from the environ-
ment (by means of monitored functions), checks their validity (i.e., whether they
are in allowed ranges), and stores them in some controlled functions. For model
checking, we abstract from that mechanism: for each parameter, we simply have
a monitored function saying whether its new value is allowed or not.

6 ASM process and Normatives for medical software

We want here to relate the ASM-based design process to the current normative
for developing medical software. The aim is to evaluate how far we are from
having a formal process compliant with the standards. The two main normative
references for development and validation of medical software are the standard
IEC 62304 [3] and the “General Principles of Software Validation” [21] estab-
lished by the FDA.

ASM process and IEC 62304 standard The standard IEC 62304 classifies
medical software in three classes on the basis of the potential injuries caused
by software malfunctions, and defines the life cycle activities (points 5.1-5.8 of
Section 5 in [3], also shown in Fig. 3) that have to be performed and appropriately
documented when developing medical software. Each activity is split into tasks
that are mandatory or not, depending on the class of software. The standard does
not prescribe a specific life cycle model, nor it gives indications on methods and
techniques to apply. Users are responsible to map their model to the standard.

Step (5.1) essentially consists in defining a life cycle model, planning proce-
dures and deliverables, establishing how to achieve traceability among system
requirements, software requirements, software test and risks control. By using the
ASMs, we follow an iterative life cycle model based on refinement. Procedures
are modeling, validation, verification, and conformance checking. Deliverables
are given in terms of a sequence of refined models, each model equipped with
validation and verification results. Traceability is given by the conformance re-
lation between abstract and refined models, at each refinement step. We do not
consider risk management, although ASM tools can be used to predict possi-
ble risks by reasoning on models and checking incorrect behaviors or potential
faults. Risk management was also not part of the case study description in [20].
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1. A documented software requirements specification should provide a baseline for
both V&V.

2. Developers should use a mixture of methods and techniques to prevent and to
detect software errors.

3. Software V&V must be planned early and conducted throughout the software life
cycle.

4. Software V&V should take place within the environment of an established software
life cycle.

5. Software V&V process should be defined and controlled through the use of a plan.
6. Software V&V process should be executed through the use of procedures.
7. Software V&V should be re-established upon any (software) change.
8. Validation coverage should be based on software complexity and safety risk.
9. V&V activities should be conducted using the quality assurance precept of “inde-

pendence of review”.
10. Device manufacturer has flexibility in choosing how to apply these V&V principles,

but retains ultimate responsibility for demonstrating that the software has been
validated.

Fig. 4. General Principle for Software Validation (FDA)

Step (5.2) consists in defining, documenting and verifying software require-
ments. This is a continuous activity along the ASM process till the desired level
of refinement, possibly to code level. For the HMCS, this is what is reported in
Sects. 3, 4, 5 (there is no implementation in this case).

Steps (5.3 - 5.4) regard the definition of design from specification. In the
ASM process, these steps are performed in a seamless manner along the chain of
refined models. Already at ground level, system structure is captured, even if not
completely, by the model signature. Design decisions and architectural choices
are added at a certain level of the refinement. For example, for the hemodialysis
machine, patient and hardware checks and error handling are dealt at level four.

Steps (5.5 - 5.7) regard software implementation and testing, at unit and
integration levels. Using ASMs, a first code prototype could be obtained as last
refinement step and conformance checking is possible. Otherwise, techniques for
model-based testing and runtime verification can be used having models avail-
able. These techniques have not been shown for the HMCS since not requested.
However, we refer to [5] as an example of application.

Step (5.8) includes the demonstration, by a device manufacturer, that soft-
ware has been validated and verified. It is intrinsic to the ASM process.

ASM process compliant with the FDA principles FDA accepts the stan-
dard IEC 62304 for all levels of concern and pushes for an integration of software
life cycle management and risk management activities. The organization estab-
lishes some general principles [21], reported in Fig. 4, as guidelines for software
validation, and promotes the use of formal approaches.

We here discuss how the ASM process realizes these FDA guideline principles.
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(1) In our process, requirements are specified and documented through a
chain of models providing a rigorous baseline for both validation and verification.

(2) A continuous defect prevention is supported. At each level, faults and
unsafe situations can be checked. Safety properties are proved on models, while
software testing for conformance verification of the implementation is possible.

(3)-(6) The ASM process allows preparation for software validation and ver-
ification as early as possible, since V&V can start at ground level. These ac-
tivities are part of the process, can be planned at different abstract levels, are
documented, and supported by precise procedures, i.e., methods and techniques.

(7) In case of an implementation local change not affecting the model, our
process requires to re-run conformance checking only; in case of a change affecting
the specification at a certain level, it requires to re-prove refinement correctness,
and to re-execute V&V from the concerned level down to the implementation.

(8) Regarding validation coverage, by simulation and testing, we can collect
the coverage in terms of rules or code covered. This can be used by the designer
to estimate if the validation activity is commensurate with the risk associated
with the use of the software for the specified intended use.

(9) Since V&V are performed by exploiting mathematical-based techniques,
they facilitate independent evaluation of software quality assurance.

(10) The ASM process allows a device manufacturer to demonstrate that
the software has been validated and verified, both when an implementation is
obtained as last model refinement step, and when it is an external code that has
been checked for conformance.

7 Conclusions

We have presented the specification, validation, and property verification of a
hemodialysis device by using ASMs and model refinement. By taking advantage
of the case study, we have related our ASM-based design process with the cur-
rent normative for developing medical software. The main advantages offered to
the standards are: (i) an iterative software life cycle; (ii) models as a rigorous
means for safety properties assurance; (iii) validation and verification performed
continuously along the software life cycle, and always aimed at defect preven-
tion; (iv) software quality evaluation performed in an objective and repeatable
manner; and (v) demonstration that software has been validated and verified.
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