
The ASMETA framework

Paolo Arcaini1, Angelo Gargantini2, Elvinia Riccobene1, and Patrizia Scandurra2

1 Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy
{paolo.arcaini,elvinia.riccobene}@unimi.it

2 Dip. di Ing. dell’Informazione e Metodi Matematici, Università di Bergamo, Italy
{angelo.gargantini,patrizia.scandurra}@unibg.it

1 Introduction
The use of formal methods, based on rigorous mathematical foundations, is essential for
system development. However, some skepticism exists against formal methods mainly
due to the lack of tools supporting formal development, or to the tools’ loosely coupling
that does not allow reuse of information. The integration and interoperability of tools is
hard to accomplish, so preventing formal methods from being used in an efficient and
tool supported manner during the system development life cycle.

The ASMETA (ASM mETAmodeling) framework3 [4,10] is a set of tools around
the Abstract State Machines (ASMs). These tools support different activities of the
system development process, from specification to analysis, and are strongly integrated
in order to permit reusing information about models during several development phases.

ASMETA has been developed [4,11,13] by exploiting concepts and technologies of
the Model-Driven Engineering (MDE), like metamodeling and automatic model trans-
formation. The starting point of the ASMETA development has been the Abstract State
Machine Metamodel (AsmM) [12], an abstract syntax description of a language for
ASMs. From the AsmM, by exploiting MDE techniques of automatic model-to-model
and model-to-text transformation, a set of software artifacts (concrete syntax, parser, in-
terchange format, API, etc.) has been developed for model editing, storage and manip-
ulation. These software artifacts have been later used as a means for the development of
new more complex tools, and the integration within ASMETA of already existing tools,
so providing a powerful and useful tool support for system specification and analysis.

After briefly introducing the ASM formal method and its potentiality as system en-
gineering method, we present the ASMETA toolset which provides basic functionalities
for ASM models creation and manipulation (as editing, storage, interchange, access,
etc.) as well as advanced model analysis techniques (validation, verification, testing,
review, requirements analysis, runtime monitoring, etc.).

A suitable set of ASM benchmark examples will be selected for the demo purposes
in order to show all the potentialities of the ASMETA framework over different charac-
teristics of the ASM models (parallelism, non determinism, distributivity, submachine
invocations, etc.)

2 Abstract State Machines
The Abstract State Machine (ASM) method is a systems engineering method that guides
the development of software and embedded hardware-software systems seamlessly from

3 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/


requirements capture to their implementation. Within a single precise yet simple con-
ceptual framework, the ASM method supports and uniformly integrates the major soft-
ware life cycle activities of the development of complex software systems. The pro-
cess of requirements capture results into constructing rigorous ground models which
are precise but concise high-level system blueprints (“system contracts”), formulated
in domain-specific terms, using an application-oriented language which can be under-
stood by all stakeholders. From the ground model, by stepwise refined models, the ar-
chitectural and component design is obtained in a way which bridges the gap between
specification and code. The resulting documentation maps the structure of the blueprint
to compilable code, providing explicit descriptions of the software structure and of the
major design decisions, besides a road map for system (re-)use and maintenance.

Even if the ASM method comes with a rigorous scientific foundation [5], the prac-
titioner needs no special training to use the ASM method since Abstract State Ma-
chines are a simple extension of Finite State Machines, obtained by replacing unstruc-
tured “internal” control states by states comprising arbitrarily complex data, and can
be understood as pseudo-code over abstract data structures. The states of an ASM are
multi-sorted first-order structures, i.e., domains of objects with functions and predicates
(boolean functions) defined on them, while the transition relation is specified by “rules”
describing the modification of the functions from one state to the next.

The notion of ASMs formalizes simultaneous parallel actions of a single agent, ei-
ther in an atomic way, Basic ASMs, or in a structured and recursive way, Structured or
Turbo ASMs. It also supports a generalization where multiple agents interact in paral-
lel in a synchronous/asynchronous way, Synchronous/Asynchronous Multi-agent ASMs.
Appropriate rule constructors also allow non-determinism (choose or existential quan-
tification) and unrestricted synchronous parallelism (universal quantification forall).

A complete mathematical definition of the ASMs can be found in [5], together with
a presentation of the great variety of its successful application in different fields such as:
definition of industrial standards for programming and modeling languages, design and
re-engineering of industrial control systems, modeling e-commerce and web services,
design and analysis of protocols, architectural design, language design, verification of
compilation schemas and compiler back-ends, service-oriented applications, etc.

The ASM method allows a modeling technique which integrates static (declarative)
and dynamic (operational) descriptions, and an analysis technique that combines vali-
dation and verification methods at any desired level of detail. The ASMETA framework
makes the application of this modeling technique practically feasible.

3 The ASMETA tool-set
Concrete syntax and other language artifacts To write ASM models in a textual
and human-comprehensible form, a platform-independent concrete syntax, AsmetaL, is
available, together with a text-to-model compiler, AsmetaLc, to parse AsmetaL mod-
els and check for their consistency w.r.t. the AsmM metamodel OCL constraints. It is
also possible to save ASM models into an XMI interchange format, and Java APIs are
available to represent ASMs in terms of Java objects4.

4 All these software artifacts have been developed in a generative manner from the AsmM meta-
model, by exploiting MDE techniques of automatic model-to-model/text transformations.



Simulator Simple model validation can be performed by simulating ASM models with
the ASM simulator AsmetaS [9] to check a system model with respect to the desired be-
havior to ensure that the specification really reflects the user needs. AsmetaS supports
invariant checking to check whether invariants expressed over the currently executed
ASM model are satisfied or not, consistent updates checking for revealing inconsistent
updates, random simulation where random values for monitored functions are provided
by the environment and interactive simulation when required inputs are provided inter-
actively during simulation.

Scenario-based validation A more powerful validation approach is scenario-based
validation by the ASM validator AsmetaV [6]. AsmetaV is based on the AsmetaS sim-
ulator and on the Avalla modeling language; this last provides constructs to express ex-
ecution scenarios in an algorithmic way as interaction sequences consisting of actions
committed by the user actor to set the environment, to check the machine state, to
ask for the execution of certain transition rules, and to enforce the machine itself to
make one step (or a sequence of steps) as reaction of the actor actions.

AsmetaRE Use cases are commonly used to structure and document functional re-
quirements, and should be used for validating system requirements. The AsmetaRE [14]
automatically maps use case models – written by the tool aToucan5 according to the ap-
proach Restricted Use Case Modeling (RUCM) [15] – into ASM models written in
AsmetaL. The result of such model-to-text transformation is an executable ASM speci-
fication that serves as basis to perform requirements validation by the ASMETA toolset.
In particular, an ad-hoc transformation allows also the generation of Avalla scenarios
from use cases for scenarios-based validation with the AsmetaV tool.

Model review Model review is a validation technique aimed at determining if a model
is of sufficient quality; it allows to identify defects early in the system development,
reducing the cost of fixing them. The AsmetaMA tool [2] permits to perform automatic
review of ASMs; it looks for typical vulnerabilities and defects a developer can intro-
duce during the modeling activity using the ASMs.

Model checking Formal verification of ASM models is supported by the AsmetaSMV
tool [1]; it takes in input ASM models written in AsmetaL and maps these models into
specifications for the model checker NuSMV. AsmetaSMV supports both the declara-
tion of Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas.

Runtime verification Runtime verification is a technique that allows checking whether
a run of a system under scrutiny satisfies or violates a given correctness property. CoMA
(Conformance Monitoring by Abstract State Machines) [3] is a specification-based ap-
proach (and a supporting tool) for runtime monitoring of Java software. Based on the
information obtained from code execution and model simulation, the conformance of
the concrete implementation is checked with respect to its formal specification given
in terms of ASMs. At runtime, undesirable behaviors of the implementation, as well as
incorrect specifications of the system behavior are recognized.

ATGT Model-based testing aims to use models for software testing. One of its main
applications consists in test case generation where test suites are automatically gen-

5 http://www.sce.carleton.ca/˜tyue/

http://www.sce.carleton.ca/~tyue/


erated from abstract models of the system under test. The ATGT tool [8] is available
for testing of ASM models. ATGT implements a set of adequacy criteria defined for
the ASMs [7] to measure the coverage achieved by a test suite and determine whether
sufficient testing has been performed. To build test suites that satisfy some coverage
criteria, it implements a technique that exploits the capability of a model checker to
produce counterexamples, and it uses the model checker SPIN for the automatic test
case generation.

References
1. P. Arcaini, A. Gargantini, and E. Riccobene. AsmetaSMV: a way to link high-level ASM

models to low-level NuSMV specifications. In Abstract State Machines, Alloy, B and Z, 2nd
Int. Conference (ABZ 2010), volume 5977, pages 61–74. Springer, 2010.

2. P. Arcaini, A. Gargantini, and E. Riccobene. Automatic Review of Abstract State Machines
by Meta Property Verification. In C. Muñoz, editor, Proceedings of the Second NASA Formal
Methods Symposium (NFM 2010), pages 4–13. NASA, 2010.

3. P. Arcaini, A. Gargantini, and E. Riccobene. CoMA: Conformance monitoring of java pro-
grams by abstract state machines. In 2nd International Conference on Runtime Verification,
San Francisco, USA, September 27 - 30 2011, 2011.

4. P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra. A model-driven process for engi-
neering a toolset for a formal method. Software: Practice and Experience, 41:155–166, Feb.
2011.

5. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer Verlag, 2003.

6. A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra. A Scenario-Based Validation
Language for ASMs. In Proceedings of the 1st international conference on Abstract State
Machines, B and Z, ABZ ’08, pages 71–84, Berlin, Heidelberg, 2008. Springer-Verlag.

7. A. Gargantini and E. Riccobene. ASM-Based Testing: Coverage Criteria and Automatic Test
Sequence Generation. J.UCS, 7:262–265, 2001.

8. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from ASM
Specifications. In ASM 2003 - Taormina, Italy, March 2003. Proceedings, LNCS 2589, 2003.

9. A. Gargantini, E. Riccobene, and P. Scandurra. A Metamodel-based Language and a Simu-
lation Engine for Abstract State Machines. JUCS, 14(12):1949–1983, jun 2008.

10. A. Gargantini, E. Riccobene, and P. Scandurra. Model-Driven Language Engineering: The
ASMETA Case Study. In Int. Conf. on Software Engineering Advances, ICSEA, pages 373–
378, 2008.

11. A. Gargantini, E. Riccobene, and P. Scandurra. Integrating Formal Methods with Model-
Driven Engineering. In Software Engineering Advances, 2009. ICSEA ’09. Fourth Interna-
tional Conference on, pages 86 –92, sept. 2009.

12. A. Gargantini, E. Riccobene, and P. Scandurra. Ten Reasons to Metamodel ASMs. In J.-R.
Abrial and U. Glässer, editors, Rigorous Methods for Software Construction and Analysis,
volume 5115, pages 33–49. Springer Berlin / Heidelberg, 2009.

13. A. Gargantini, E. Riccobene, and P. Scandurra. Combining formal methods and mde tech-
niques for model-driven system design and analysis. International Journal on Advances in
Software, 3(1,2):1 – 18, 2010.

14. P. Scandurra, T. Yue, A. Arnoldi, and M. Dolci. Functional requirements validation by trans-
forming use case models into abstract state machines. In Proceedings of the 27th Symposium
On Applied Computing (SAC 2012), 2012.

15. T. Yue, L. C. Briand, and Y. Labiche. A use case modeling approach to facilitate the transition
towards analysis models: Concepts and empirical evaluation. In MoDELS, pages 484–498,
2009.


	The ASMETA framework

